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NUMERICAL COMPUTATION
OF DYNAMIC STRESS INTENSITY FACTORS
BY A LAGRANGIAN FINITE-DIFFERENCE METHOD
(THE HEMP CODE)

Abstract

Numerical computation of the dynamic
stress intensity factor for a centrally
cracked rectangular bar, subjected t.
uniaxial tensions in plane strain geome-
try with Heaviside-function time depend-
ence, is carried out uging the time-
dependent Lagrangian finite-difference
code, HEMP, Excellent agreement is

found with results obtained from other
methods, This demonstrates the capabil-
ity and the reliability of the HEMP code
as an extremely useful numerical method
for solving dynamic problems in fracture
mechanics. Also discussed is the dy-
namic behavior of the stress intensity

factor and crack opening.

Introduction

The knowledge of the stress field in
the vicinity of a crack is a prerequisite
to the prediction of fracture and failure
of the material. 1n order for the crack
to propagate, the stress at the crack tip
must exceed some critical value. For
brittle materials, the linear elasticity
model usually gives a reasonably good
description of the macroscopic phenom-~
ena of fracture in solids. However, for
this model it is well known that regard-
less of the magnitude of the applied load
the strese at the tip of a crack may have
a singularity of O(r-l/z), where r is the
radial distance from the crack tip to the
paint of observation.) ™ To overcome
the analysis difficulty that an infinite
stress assumption causes, the stresses

in the neighborhood of the crack tip are

-1-

normalized by roultiplying them by a func-
tion O(rl/z). yielding zero at the crack
tip. This leads to the definition of the
stress intensity factors.3 For dynamic
problems, the dynamic stress intensity
factor is defined in the ;ame manner as
for the static case, The only difference
is that the dynamic stress intensity factor
is a function of time t,

Recently, considerable research has
been done on the determination »f the
dyramic stress fields around a finite
crack in an infinite elastic solid.a.15
However, the quasi-numerical methods
used are incapable of solving dynamic
On the

other hand, the finite element method can

problems with finite boundaries,

be used to solve problems in fracture
mechanica with finite boundaries provided
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the loads are static,
finite element methods can be used for
dynamic problems by applying a series of
incremental static loads to approximate
time variations.?* 23 This approach re-
quires inordinate amounts of computer
time for two~ and three-aimensional prob-
lems when a large number of elements
are used, because a large set of simulta-
neous linear algebraic equations must be
solved at each time step, It becomes
especially inefficient when large matrices
occur as in calculations involving three
space dimensions, The work presenied
here is concerned with the solution of
problems involving dynamic fracture with
finite boundaries using finite difference
methods, which avoid the difficulties of

the finite element method.

A e o = 8 s e

The main mathematica® tocl used is a
Lagrangian finite-difference computer
program, the HEMP code,

program can be used to solve problems
24-26

The general

in three space dimension and time,
In this paper we demonstrate the capabil-
ity and the reliability of the HEMP code
for solving dynamic problems in fracture
mechanics by applying it to a simple two-
dlmensional but nontrivial dynamic problem.
For simplicity, acentrally cracked rec-
tangular bar in plane strain geometry is con-
sidered. A uniaxialtension with a Heaviside-
function time dependence is applied. The
details of the example are given in the next
section, and the numerical results are
presented graphically in the third section.
Finally, in thelast section, a detaileddis-
cussion of the numerical results is given

Exampie Problem

Consider a rectangular bar with a cen-
trally located crack shown in Fig. 1, 1t
is loaded dynamically in the axial direc~

tion by a uniform tension P(t) with
Heaviside~function time dependence

(Fig, 2). The boundary conditions given

y
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Fig. 1. Geometry of the bar in the example problem; a = 0,24 cm.
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0.004 Mbar

Fig, 2, Load curve assumed in example
problem,

correspond to plane strain loading. The
bar is wssumed to be a linear elastic ma-
terial with the following characteristics:
Shear modulus G = 0,76923 Mbar,
Rulk modulus K = 1,66667 Mbar,
Poisson’s ratio v = 0,3,
Density p = 5 g/cms.
Hence the longitudinal wave speed is

K+3C
\VL = -——-—p——-— =~ 0,734 cm_/useC, (03]

4
k = 51 —_—
[ R(H)
k=|3T —_—
o
Y 5 /SR
j=1 j=10 x

Fig. 3. Zoning of the quarter of the bar
treated in the calculation,

the transverse wave speed is
v G ~ 0,392 cm/usec, (2)
T LS
; 27
and the Rayleigh wave speed”’ is
VR = 0.495 v; ~ 0,363 cm/usec, (3)
By symmetry it is sufficient to solve

the quarter problem, as shown in Fig. 3.
A grid of 50 zones/cm was used.

Numerical Results

Due to the inability of any finite-
difference method to represent the ex-
tremely steep stress gradients that occur
in the neighborhood of a crack tip, a sub-
routine for extrapolation of the mode I
dynamic stress intensity factor kl(t) from
the stress field in the vicinity of the crack
tip is used here, The procedure uses the
stress field equations in the neighborhood
of the crack tip (r = 0), assuming an
imiinite elastic medium,

4)

where

~ .8 . 38\ _ 8
fxx(o) = (l + sin 5 sin -2-) <08 3,

yy(s) (1 ~ 8in -e—sm -2-) g,

= = i 2_ ﬂ 30
rxy(e) fyx(o) sin 7 Co8 5 cos 3-.

From (4) we define for every time
step

)1/2

(2xr.
* _ k
k,(nat) = —,-J(r,- oy MOt (5)

im )k



w
.
o

t =10 psec

Here (r.k,ejk) are the radial coordinates

T
of a point {j,k) referred to the crack tip,

5
..28 2.5 — Once the extrapolation path is chosen,
@ Eq. (5) can be considered as a discrete
2 2.0 ] functional relation between k;:(nAt) and
|
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QOur particular extrapolation path
= 0,01 em is the
closest to the best path (see Appendix).
Next,

Tk
aiong the straight line x

these discrete data are fitted by
least-sguares to a straight line,
k](nAD =k, (nAt) + BlnAbr, (6)
where kl(nAt) is
the mode [ dynamic stress intensity fac-
tor at time nAt, The error for this kind
of straight-line extrapolation is owrd
(gee Appendix), Note that the data for
two to thrce zones nearest to the crack
tip are discarded in the least-squares
~urve fitting. Extrapclations along lines

in several directions were also made,.

30

the approximate value of

The final vaiues agreed to within 5%. A
typical plot of (S} and (6) is shown in
Fig. 4.
stress intensity facter k (t) = k (ty/
P(t)(ara)l/2 is plotted aga(nst t in Fig. 5,

Also, the geometry of the crack opening

The normalized mode | dynamic

for several time steps is shown in Fig, 6
A Txx
The above subroutine hzs
17,28

contour plot is given in Fig. 7.
been used suc-
cessfully by others.

t=3,57 usec

0 1 { | | -
0 5 10 15 20 25 /’\
‘
x — 10-2 cm Units are 100 MPa -
Fig. 6. Geometry of the crack opening Fig. 7. A typical oy, contour (retraced
at three different time steps, from computer plot).
Discussion

If there were no crack in the rectangu-
lar bar, the stress field in the bar due to
the dynamic loading P(t) of Fig. 2 would
be a standing wave centered arounc the
appropriate static value, However, in
the presence of the crack there are many
oscillations in the K, (t)-vs-t curve,

These oscillations are due to scattering

phenomena from the crack tip and the
boundary surfzces.

On the time axis of Fig, 5, Il denotes
the numerically compuied (HEMP code)
time needed fnr the incident longitudinal
wave to travel to the crack from the bar
ends., Now, the following times are com-
puted from the wave velacities, Egs, (1),
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2), and (3), and the true geometric dis-

tances: (R, - Il) denctaes the time needed

for the Raylleigh wave, generated by the
{nitial incident waves, to travel between
the two crack tips; (Pl - Il) de.iotes the
time needed foc the scattered longitudinal
wave, generated by the initial incident
waves, to tra.-  from a crack tip to the
nearest boundary surface of the bar and
back to the same tip; similarly, (S1 - Il)
corresponds to the scattered transverse
wave; 12 denotes the time needed for the
incident longitudinal waves to travel the
length of the bar, reflect from the bound-
ary surface on the opposite side, and then
travel back to the crack; analogous defini-
tions are given to (R2 - 12), ('F‘2 - 12), and
8, - 12) respectively, generated by these
secondly incident longitudinal waves.
Hence, with the help of these time marks
one can identify the oscillations in the
El(t)-vs-t curve as being caused by the
cancellation and the reinforcement of the
incident waves by various scattered
waves. The g -vs-t curve (Fig. 8) at

4

14
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2:_ t(average }—{
0’- l L ' 1 ' L I L l L. l ]
6 2 4 6 8 10 12 14
-2 t — usec
Fig. 8. The oyy-vs-t curve at (x,y)

=(0.01 cm, 0.37 cm).

{x,y) = (0,01 cm, 0.37 cm) has the same
general behavior as the El-vs_t curve ex-
cept for the extra peak at t = 3 usec due
to the scattered longitudinal wave travel-
ing directly from the nearest crack tip to
the point (0.01 cm, 0.37 cm).,

The normalized static stress intensity
factor for the same problem but with
static load of 4 X 10-3 Mbar at both ends
of the bar can be estimated with reason-
able accuracy, f the maxima and minima
of El(t) are not significantly altered by
We believe that
The
simplest way to obtain El (static) is

the dynamic oscillations,
this is the case for our example,

K, (static) = £[Max K, () - Min &, 1]
- (Min K () H¢-Min &, 0,

where H is the unit Heaviside function,
and Max f(*) and Min f(t) are the first
global maximum and the first giobal min-
imum of f(t) respectively, Hence from
Fig, 5 and the above formula, Kl(static)
= 1,085, which is about 5.5% larger than
the more accurate theoretical solution,29
k,(static) = 1,038, Since the dynamic k,
has already incorporated an extrapolation,
a more accurate method to obtain the
static El would be to use the calculated
axx(t) a few zones away from the tip.
Thus we obtain kl(static) as follows:

First obtain cxx(static) from Fig. 8.
L1 i .
cxx(statnc) = E[Max axx(t) - Min cxx(t)]
- [Min cxx(t)J-H(-Min gxx(t))

3

= 5,70 X 10 ° Mbar.

This stress value corresponds to ts

= 9,22 usec. It is seen in Fig. 5 that for




t = ts, Kl(static) = 1,028, which is about
1% less than the value given in Ref, 29,
Thus we see that both the dynamic and
static values of the stress intensity fac-
tor can be calculated with the time-
dependent HEMP code,

It is important to notice that the dy-
namic stress intensity factors for a finite
crack in an infinite elastic solid are found
to be 15~30% greater than the analagous

13,15 These phenomena are

static value,
attributed to the scattered Rayleigh waves,
If there were only one incident plane wave
in our example, then due to the superposi-

tion principle in linear elasticity theory,

[Max k 1 (t)]one wave

= %[MBX El(t)]two waves 1.35,
which is about 30% larger than the analo-
gous static value. But for the two-wave
case, the overshooting is about 160%.
This shows that in a practical situation
the overshooting of the dynamic stress
intensity factar is attributed mainly to

§ 2.5
©
)
~ 2.0
|
>
& 1.5
3
1.0
]
e
Y 0.5+
ol | |

0 2 4 6 & 10 12 14
t — psec

Fig. 9. The u-vs-t curve at the middle
of the crack surface,

the particular geometry and the manner
of loading.

The geometry of the crack opening and
the opening and the closing of crack sur-
faces as functions of t are the natural
products of the HEMP code calculation.
They are plotted in Figs, 6 and 8, respec-
tively, In general, the crack opens or
closes when the crack tip experiences
tension or compression, respectively.

Acknowledgments

The author wishes to thank Drs. Mark
L. Wilkins and D, E, Maiden of LLL,
and Prof, I. Finnie of the University of
California, Berkeley, for many helpful
discussions, and Ms, N, Wilt of LLL for

programming our problems.



Appendix
Error Analysis

In the neighborhood of the crack tip, assuming an infinite elastic medium,

0yl 8) =K\ T_ 1 (6) 2 g0 + f1/2(8)r1/2+ £,0) ¢

+f3/2(9) r3/2+f2(6)r2+0(r5/2). (A-1)

where

f_y/9(0) £ 0,for0s |6] <.

30

{t is well known" "~ that the angular functions fn(e), n=0,1,2, ..., have the sperisal

property

fn(D) =0, n=0,12.... (A-2)

If we define

2
kl(r, a) "‘T—r—/—'(yy c’xx(l‘, 9), (A-3)
~1/2

then (A-1) and {A-2) yield

3/2

ki, 6) = ky + £y @07 [l 2 5y o + 1y co0r

-1/2
2 5/2 3} _

+ f3/2(6)r +£,(8)c + Q). (A-4)
It is obvious that the best way o obtain higher accuracy is to choose the extrapalation

path sa that most of the {'s vanish, In this particular case, the extrapolation path is
along 8 =0, From (A-2) and (A-4),

oo o -1 2,4 003 )
Kpe0) =k 4 (L )o@ [E (00 + 1 p@% +0%]. (A-5)

-1/2

Hence a straight-line fit of kf(r, 0) will have an error O(r2), and & quadratic fit of
k;(r, 0} will have an error O(rs).

-8-
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