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NUMERICAL COMPUTATION 
OF DYNAMIC STRESS INTENSITY FACTORS 

BY A LAGRANGIAN FINITE-DIFFERENCE METHOD 
(THE HEMP CODE) 

Abstract 

Numerical computation of the dynamic 
s tress intensity factor for a centrally 
cracked rectangular bar, subjected U, 
uniaxial tensions in plane strain geome
try with Heaviside-function time depend
ence, i s carried out using the t ime-
dependent Lagrangian finite-difference 
code, HEMP. Excellent agreement is 

The knowledge of the s t re s s field in 
the vicinity of a crack is a prerequisite 
to the prediction of fracture and failure 
of the material. In order for the crack 
to propagate, the stress at the crack tip 
must exceed some critical value. For 
brittle materials, the linear elasticity 
model usually gives a reasonably good 
description of the macroscopic phenom
ena of fracture in solids. However, for 
this model it is well known that regard
less of the magnitude of the applied load 
the stress at the tip of a crack may have 

- 1 / 2 a singularity of 0 ( r ' ), where r is the 
radial distance from the crack tip to the 

1 -4 point of observation. To overcome 
the analysis difficulty that an infinite 
s tress assumption causes, the s tresses 
in the neighborhood of tne crack tip are 

found with results obtained from other 
methods. This demonstrates the capabil
ity and the reliability of the HEMP code 
as an extremely ujeful numerical method 
for solving dynamic problems in fracture 
mechanics. Also discussed is the dy
namic behavior of the s tress intensity 
factor and crack opening. 

normalized by multiplying them by a func-
1/2 tion 0 (r ' ), yielding zero at the crack 

tip. This leads to the definition of the 
3 

s tress intensity factors. For dynamic 
problems, the dynamic stress intensity 
factor is defined in the =ame manner as 
for the static case. The only difference 
is that the dynamic stress intensity factor 
is a function of time t. 

Recently, considerable research has 
been done on the determination o{ the 
dynamic s tress fields around a finite 
crack in an infinite elastic solid. 
However, the quasi-numerical methods 
used are incapable of solving dynamic 
problems with finite boundaries. On the 
other hand, the finite element method can 
be used to solve problems in fracture 
mechanics with finite boundaries provided 
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1B- 20 the loads are static. Actually, 
finite element methods can be used for 
dynamic problems by applying a series of 
incremental static loads to approximate 

21-23 time variations. This approach re
quires inordinate amounts of computer 
time for two- and three-dimensional prob
lems when a large number of elements 
are used, because a large set of simulta
neous linear algebraic equations must be 
solved at each time step. It becomes 
especially inefficient when large matrices 
occur as in calculations involving three 
space dimensions. The work presented 
here is concerned with the solution of 
problems involving dynamic fracture with 
finite boundaries using finite difference 
methods, which avoid the difficulties of 
the finite element method. 

The main mathematica' tool used is a 
Lagrangian finite-difference computer 
program, the HEMP code. The general 
program can be used to solve problems 

24 —26 in three space dimension and time. 
In this paper we demonstrate the capabil
ity and the reliability of the HEMP code 
for solving dynamic problems in fracture 
mechanics by applying it to a simple two-
dimensional but nontri vial dynamic problem. 

For simplicity, a centrally cracked rec
tangular bar in plane strain geometry is con
sidered. A uniaxial tens ion with a Heavi side-
function time dependence is applied. The 
details of the example are given in the next 
section, and the numerical results are 
presented graphically in the third section. 
Finally, in the last section, a detailed dis
cussion of the numerical results is given 

Example Problem 

Consider a rectangular bar with a cen
trally located crack shown in Fig. 1. It 
is loaded dynamically in the axial direc

tion by a uniform tension P(t) with 
Heaviside-function time dependence 
(Fig. 2). The boundary conditions given 

P(0-

y 

p / 
2 cm • 

p / 
• 

0 X 

^— 4 cm — ^ 

•p«) 

Fig. 1. Geometry of the bar in the example problem; a = 0.24 cm. 
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* p ( t ) 

0.004 Mbar 
k - 5 

k = 13 
k = I 

j = 101 

Fig. 2. Load curve assumed in example 
problem. 

Fig. 3. Zoning of the quar te r of the bar 
t reated in the calculation. 

correspond to plane s t ra in loading. The 
bar is uosumed to be a l inear elast ic m a 
te r ia l with the following cha rac t e r i s t i c s : 

Shear modulus G = 0.76923 Mbar, 
Rulk modulus K = 1.66667 Mbar, 
Poisson ' s rat io v = 0.3, 

q 

Density p = 5 g/cm . 
Hence the longitudinal wave speed is 

the t r a n s v e r s e wave speed is 

W ^ « 0.734 cm/j isec. (1) 

v_ - / — * 0.392 c m / p s e c , (2) 

27 and the Rayleigh wave speed is 

v R •» 0.495 v, m 0.363 cm/^isec. (3) 

By symmet ry it is sufficient to solve 
the quar te r problem, as shown in Fig. 3. 
A grid of 50 zones /cm was used. 

Numerical Results 

Due to the inability of any finite-
difference method to represen t the ex
t r emely steep s t r e s s gradients that occur 
in the neighborhood of a crack tip, a sub
routine for extrapolation of the mode I 
dynamic s t r e s s intensity factor k .( t ) from 
the s t r e s s field in the vicinity of the crack 
tip is used here . The procedure uses the 
s t r e s s field equations in the neighborhood 
of the crack tip (r =0) , assuming an 
iminite elastic medium. 

lm 
k.( t ) 

n 2 f i m « » . 
( 2 » r ) 1 / 2 l m 

(4) 

where 

f (6) xx 

f y y ( e ) 

( l + sin f sin - j -

8 - i_ 39 ( - sin j sin -3-

3 6 \ 6 
) C O B 2-

• ) c o 9 f . 

V e > = f y x ( e ) = s i n f c o s f c o s ^ -

From (4) we define for every t ime 
step 

k*(nAt) = <**y 1 / 2 

o l m (nAt> . k*(nAt) = wv o l m (nAt> . (5) 

- 3 -



Here (r^,.©*!.) a re the radial coordinates 
of a point (j,k) re fer red to the crack tip. 
Once the extrapolation path is chosen, 
Eq. (5) can be considered as a discrete 
functional relation between k.(nAt) and 

Fig. 4. A typical l inear extrapolation 
curve for k . . 

k. (average) 

— k , ( s t n t i c ) , h o o r 6 ( > 
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r.. . Our par t icular extrapolation path 
along the straight line x = 0.01 cm is the 
closest to the best path (see Appendix). 
Next, these discrete data a re fitted by 
l eas t - squares to a s traight l ine. 

;'j(nAt) = kjfnAt) + 0(nAt)r, (6) 

where k.(nAt) is the approximate value of 
the mode [ dynamic s t r e s s intensity fac
tor at t ime nAt. The e r r o r for this kind 

9 
of s t ra ight- l ine extrapolation is 0 ( r ) 
(see Appendix). Note that the data for 
two to three zones neares t to the crack 
tip a r e discarded in the l ea s t - squa res 
^urve fitting. Extrapolations along l ines 
in several direct ions were a lso made. 

The final values agreed to within 5%. A 
typical plot of (5) and (6) is shown in 
Fig. 4. The normalized mode I dynamic 
s t r e s s intensity factor k , ( t ) n k , ( t ) / 

1 /? * 
P<t)(jra) ' Is plotted against t in Fig. 5. 
Also, the geometry of the crack opening 
for several time steps is shown in Fig. 6. 
A o contour plot is given in Fig. 7. 
The above subroutine has been used suc-

17 28 cessfully by o thers . ' 

t =3.57 usee 

Fig. 6. Geometry of the crack opening 
at three different t ime s teps . 

Units aro 100 MPa 

Fig. 7. A typical o x x contour (retraced 
from computer plot). 

Discussion 

If there were no crack in the rectangu
lar ba r , the s t r e s s field in the bar due to 
the dynamic loading P(t) of Fig. 2 would 
be a standing wave centered arounO the 
appropriate static value. However, in 
the presence of the crack there a r e many 
oscillations in the E, ( t)-vs-t curve. 
These oscillations a re due to scat ter ing 

phenomena from the crack tip and the 
boundary surfaces . 

On the time axis of Fig. 5, I. denotes 
the numerical ly computed (HEMP code) 
time needed for the incident longitudinal 
wave to travel to the crack from the bar 
ends. Now, the following t imes a re com
puted from the wave velocities, Eqs. (1), 

- 5 -



(2), and (3), and the t rue geometr ic d i s 
tances : (R, - I . ) denotas the t ime needed 
for the Rayleigh wave, generated by the 
initial incident waves, to travel between 
the t*o crack t ips; (P . - I.) de.iotes the 
t ime needed for the sca t te red longitudinal 
wave, generated by the initial incident 
waves, to t r a ' from a crack tip to the 
nea res t boundary surface of the ba r and 
back to the s a m e tip; s imi la r ly , <S, - I . ) 
corresponds to the sca t te red t r a n s v e r s e 
wave; I , denotes the t ime needed for the 
incident longitudinal waves to t ravel the 
length of the bar , reflect from the bound
a ry surface on the opposite s ide, and then 
t ravel back to the crack; analogous defini
tions a r e given to (Rg - Ig), ( P 2 - Ig), and 
(S„ - I ) respect ively, generated by these 
secondly incident longitudinal waves . 
Hence, with the help of these t ime marks 
one can identify the oscil lat ions in the 
k"j(t)-vs-t curve as being caused by the 
cancellation and the reinforcement of the 
incident waves by various scat tered 
waves. The o -v s - t curve (Fig. 8) at 

14 

.. 12 

1 , 0 
'o 8 
I 6 =. 

" x x (average) 

0 2 

(x,y) = (0.01 cm, 0.37 cm) has the same 
general behavior as the k , - v s - t curve ex
cept for the ext ra peak at l » 3 msec due 
to the scat tered longitudinal wave t rave l 
ing direct ly from the neares t crack tip to 
the point (0.01 cm, 0.37 cm). 

The normalized stat ic s t r e s s intensity 
factor for the same problem but with 
s tat ic load of 4 X 10 Mbar at both ends 
of the b a r can be es t imated with r eason
able accuracy, if the maxima and minima 
of k , ( t ) a r e not significantly a l tered by 
the dynamic osci l la t ions . We believe that 
this is the case for our example. The 
s imples t way to obtain k, (static) is 

kj(stat ic) = i [ M a x kjU) - Min kj(t)] 

- [Min kj( t l ]H(-Min kj( t ) ) , 

where H is the unit Heavi&ide function, 
and Max f<*.) and Min f(t) a re the first 
global maximum and the first global min
imum of f(t) respectively. Hence from 
Fig. 5 and the above formula, k . (s ta t ic ) 
= 1.095, which is about 5.5% l a rge r than 

2 
the more accurate theoret ical solution, 
k , (s ta t ic ) = 1.038. Since the dynamic k , 
has a l ready incorporated an extrapolation, 
a more accura te method to obtain the 

29 

stat ic k, would be to use the calculated 
o It) a few zones away from the t ip. 
Thus we obtain k, (s ta t ic) as follows: 
F i r s t obtain a (static) from Fig. 8. 

a x x ( s t a t i c ) = i [ M a x o x x <t) - Min o x x <t) ] 

- [Min a x x ( t)] .H(-Min o ^ l t ) ) 

= 5.70 X 10 Mbar. 

Fig. 8. The ^ X x " v s " t curve at (x, y) 
= (0.01 cm, 0.37 cm). 

This s t r e s s value corresponds to t 
= 9.22 Msec. It is seen in Fig. 5 that for 
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t = t , k, (static) = 1.028, which is about 
s 1 

1% less than the value given in Ref. 29. 
Thus we see that both the dynamic and 
static values of the s t r e s s intensity fac
tor can be calculated with the t ime-
dependent HEMP code. 

It is important to notice that the dy
namic s t r e s s intensity factors for a finite 
crack in an infinite elastic solid a re found 
to be 15-30% grea t e r than the analogous 

13 15 static value. ' These phenomena a r e 
attributed to the scat tered Rayleigh waves. 
If there were only one incident plane wave 
in our example, then due to the superpos i 
tion principle in l inear elast ici ty theory. 

•8 
E 
u 

Fig, 9. The u -vs - t curve at the middle 
of the crack surface. 

[Max kjft)] 

£[Max k.(t) l , 
2 l 1 Jtwo waves 

1.35, 

which is about 30% la rge r than the analo
gous s tat ic value. But for the two-wave 
case , the overshooting is about 160%. 
This shows that in a pract ical situation 
the overshooting of the dynamic s t r e s s 
intensity factor is attributed mainly to 

the par t icu la r geometry and the manner 
of loading. 

The geometry of the crack opening and 
the opening and the closing of crack s u r 
faces as functions of t a r e the natural 
products of the HEMP code calculation. 
They a r e plotted in Figs . 6 and 9, r e s p e c 
tively. In general , the crack opens or 
closes when the crack tip experiences 
tension o r compress ion, respectively. 
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Appendix 
Error Analysis 

In the neighborhood of the crack tip, assuming an infinite elastic medium, 

CTxx(r'e) = k \ t - l j 2 ( 8 ) r ' 1 / 2 * t 0 l 9 ) + f i / 2

( e ) r l / 2 + f ! < e > r 

+ t3/2<6) r S / 2 + f2(fl) r 2 + 0 ( r 5 / 2 ) , (A-l) 

where 

f _ 1 / 2 ( 9 ) f 0. for Os | 8 | < i r . 

30 It i s well known that the angular functions fn<0), n = 0, 1, 2, . . . , have the special 
proper ty 

f n(0) =0 , n = 0, 1,2 (A-2) 

If we define 

k ? r - e ) = " r f y - W x x ( r ' e ) ' <A-3> 

then (A-l) and (A-2) yield 

k*(r, 6) = k t + lt.l/2i6)f1 f y e j r 1 / 2 + f j / 2 < e ) r + f j ( e ) r 3 / 2 

+ f 3 , 2 W ) r 2 + f 2 ( e ) r 5 / 2 + 0 ( r 3 ) | . (A-4) 

It is obvious that the best way to obtain higher accuracy is to choose the extrapolation 
path so that most of the f's vanish. In this par t icu la r case , the extrapolation path is 
along $ = 0. From <A-2) and (A-4), 

k*(r,0.i = kj + ( f . j ^ C O ) ] " 1 Tfj , 2 (0 ) r + f 3 , 2 ( 0 ) r 2 + O ( r 3 ) l . (A-5) 

* 2 
Hence a s t ra ight- l ine fit of k, (r, 0) will have an e r r o r 0 ( r ), and a. quadratic fit of 

* 3 
k , ( r , 0) will have an e r r o r 0 ( r ). 

- 8 -
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