NEUTRAL BEAM STUDIES OF COHERENT PRODUCTION ON NUCLEI FROM GEV/c

BY
WILLIAM C. CARITHERS, JR.

THE UNIVERSITY OF ROCHESTER
DEPARTMENT OF PHYSICS AND ASTRONOMY

ROCHESTER, NEW YORK

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

neutral beam studies of coherent production on nuclei from

 $6-16 \mathrm{GeV} / \mathrm{c}^{*}$William C. Carithers, Jr.
Department of Physcis and Astronomy

University of Rochester
Rochester, New York
Contract Number AT (11-1)-3065
January 20, 1975

*To appear in Proc. Topical Meeting on High Energy Collisions Involving Nuclei, ICTP, 9-13 September 1974.

Individual copies will be supplied as long as the supply lasts.

HEUTRAL BEAM STUDIES OF COHEAENT PRODUCTION ON

WUCLEI FROM 6-16 Gev/e

William C. Caritherg, Ir. University of Rochester, Rochester, Hew York 14627

Introduction

Coherent production has always been interesting as a filter for certain exchange mechanisms. Particular amplitudes - such as Pomeron exchange - can be enormously enhanced in coherent production from nuclei and even electronagnetic amplitudes can compete in certain reactions. We have been studying reactions of the sort

$$
\begin{gathered}
n+A+\left(p^{-}\right)+A \\
K_{L}^{O}+A+\left(K^{-} \pi^{+}\right)+A^{\prime} .
\end{gathered}
$$

We have analyzed a small fraction of the data; and even though the results are very preliminary, many trends are clear. This report will consist of four parts: (1) le brief description of the experimental technique, (2) messurenent of total aross-section for unstakle ($p \pi^{*}$) states in nuclear matter, (3) Coulomb production of $A^{\circ}(1236)$ and $K^{* O}(890)$, (4) resonance prodution.

1. Experimental Details

The apparatus and target system are shown in Fig. 1. The neutral beam is taken at an 83ar production angle from the Brookhaven AGS internal target. It consists of approximately 95\% neutrons and $5 \% \mathrm{KF}$ with a broad momentum spectrum ranging from $4-16 \mathrm{GeV} / \mathrm{c}$. Data were taken with targets of $\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Pb}$, and U , each approximstely 0.2 radiation lengths thick. The target was enclosed in an evacuated volume and surrounded by a veto system of scintillator-lead sandwiches to suppress incoherent interactions.

The spectrometer consists of 3 planes of proportional wire chambers, (FWC), a wide aperture magnet, and a threshold Cerenkov counter for identifying pions. Each PWC plane contains both X, Y readouts and each of these is divided into logicaily independent left and right halves in order to interpret the 2-prong topology without ambiguity.

The resolution of the apparatus was calibrated using $K_{T}^{O} \rightarrow \pi^{+} \pi^{-}$decays. The mass and t' distributions are shown in Fig. 2. The mass resolution is $4 \mathrm{MeV} / \mathrm{c}^{2}$ and the t ' resolution is better then . 00004 (GeV/c) ${ }^{2}$. Multiple scattering in the target inereases this somewhst, but the t ' resolution is still capable of resolving Coulomb production. The beam flux was monitored using K decays so that all intensitydependent corrections are automatically included.

The acceptance of the apparstus is smooth in both mass and t ' with the exception of a sharp arop in acceptance for masses very elose to
threchold. This inefticiency arises from a requirement that both tracks have morenta sbove the Cereakov counter pion threshold.

2. (pin) Cross Section in $n+A \rightarrow\left(p \pi^{-}\right)+A^{1}$

We have interpreted our data within the framework of an optical model using essentialiy the same analysis techniques developed for multipion production in nuelei . The differential eross section for production of $p \pi^{-}$is witten as the sum of a coherent part and an incoherent part:

$$
\frac{\partial \sigma}{d t^{1} d m}=C_{0}(m, p)\left\{A^{2}\left|\vec{F}\left(t^{*}, m, p\right)\right|^{2}+I_{0}(m, p, A) e^{-B(m, p) t^{\prime}}\right\}
$$

where $C_{0}(m, p)=\frac{d g}{d t^{t} d m}$ at $t^{t}=0$ for free nucleons

$$
\begin{aligned}
& I_{0}(m, P, A)= \\
& B(\pi, p)= \text { incoherent proportionality factor } \\
& \text { slope parameter for free nucleong }
\end{aligned}
$$

The details of the optical model are contained in the form factor, $\vec{F}\left(t{ }^{\prime \prime}, \mathrm{m}, \mathrm{p}\right.$). For completeness, we give the exact expressions:

$$
\begin{aligned}
\tilde{F}\left(t^{\prime}, m, p\right)= & 2 \pi \int_{-\infty}^{\infty} d z \int_{0}^{+\infty} d b b \exp \left[i \frac{m^{2}-m_{n}^{2}}{2 p} z\right] T_{0}(\sqrt{t}, b) \rho(b, z) \\
& \times \exp \left[-\left(1-i a_{1}\right) 1_{2} \sigma_{1} T_{1}(b, z)\right] \exp \left[-\left(1-i \alpha_{2}\right) \xi_{2} \sigma_{2} T(b, z)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& T_{1}(b, z)=\int_{-\infty}^{2} A \rho\left(b, z^{\prime}\right) A z^{\prime}, T_{2}(b, z)=\int_{z}^{\infty} A \rho\left(b, z^{\prime}\right) d z^{\prime} \\
& \rho(r)=\rho_{0}\left[1+\exp \frac{r-c}{z}\right]^{-1} \text { (Fermi aistribution) } \\
& \sigma_{1}\left(\sigma_{2}\right)=\text { total cross section for incoming (outgoing) systera } \\
& a_{1}\left(\alpha_{2}\right)=\begin{aligned}
& \text { ratio of real to imaginary part of scattering amplitude for } \\
& \text { incoming (outgoing) system }
\end{aligned}
\end{aligned}
$$

Although the formulas are long, their interpretation is straightforward, The first exponential in \vec{F} is just the longitudinal coherence phese. The second and third exponents describe the complex (including absorption) indices of refraction for the incoming and outgoing systems. $T,\left(T_{s}\right)$ are just the thickness functions for the incoming (outgoing) systems for a point interaction at impact parameter b and beam com ordingte z. For this section we have not included Coulomb production terms so we restrict the mass of the pir to be outside the region of the 4° (1236) where Coulonb effects are noticable.

The optical model parameters for the fncoming system (neutron) and the muclear density function have been very well measured. These are then fixed to be:

$$
\begin{aligned}
\sigma_{1} & =39 \mathrm{mb} \\
\alpha_{1} & =-0.3 \\
c^{4} & =1.18 \mathrm{fm} \mathrm{~A}^{1 / 3} 5 \\
\mathrm{a} & =0.545 \mathrm{fm} 6
\end{aligned}
$$

The blope paremeter, $B=11(G e V / c)^{-2}$, is found by a fit to the data in
the incoherent region $0.1<t^{1}<0.3(0 e v / c)^{2}$, in reasonable ngreement with hydrogen data.

First we show in Fig. 3 that the t^{\prime} distributions for all the elements studied are well represented by the optical model where we have arbitrarily set $\sigma_{2}=39 \mathrm{mb}, \alpha_{2}=0$. For Fb we observe the expected diffraction pattern out to the fourth maximum. No attempt wea made to correct the model for experimental resolution.

Heaing shown that the model is applicable, we proceed to fit for σ_{2} making use of the atrong dependence of the cohereat cross section of efomic numbers, A. Ope standard technique for extracting the coherent aross section uses the extrapolation of $d \sigma / d t$ ' to t ' $=0$. This requires a detailed knowledge of the experimental resolution. We have chosen instead to integrate the coherent part in the interval $0<t$ ' $<t^{\prime \prime}$, where $t^{\prime *}$ is the second diffraction maximum for each target.

The results of the ift are show in Fig. 4. We find $\sigma_{3}=(36 \pm 7)$ mb for the mass interval $1.35 \mathrm{GeV}<\mathrm{m}_{\mathrm{p} \pi^{-}}<1.45 \mathrm{GeV}$ with a χ^{2} of 4.5 for 5 degrees of freedom. The error $\mathrm{P} \mathrm{\pi}^{-}$corresponds to a unit change in χ^{2}. Lacking any wisdon on a choice for α_{2}, we have constralned it to zero. Changing α_{2} to -0.3 leads to s decrease in σ_{2} of 6 mb .

The value of σ_{2} thus obteined confirns the previous observations of coherent production of multiparticie final states in nuclet. 7 The outgoing state is absorbed with about the ame cross section as the incoming state.

3. Coulomb Production

Following the original suggestion or Primakorf ${ }^{8}$ for measurement of the π° lifetime, several examples of "photoproduction" reactions have been studied using the virtual photons in the Coulomb field of a heavy nucleus as a target. This technique is especially important in thè case of Vector meson \rightarrow Pseudosealar meson $+\gamma$, aince these radiative widths are often very difficult to obtain by other means. The radiative widths for such reactions are related in the limit of SU_{3} symmetry as listed in Table I.

We have looked for exemples of the reaction $n+Y_{f}+\Delta^{\circ}(1236) \rightarrow p \pi$-. The cross section for this process cen be related to the messured photoproduction cross section, $\sigma_{\gamma^{*}}$ as a check on the Primakoff process:

$$
\frac{t^{2} g}{d t d m^{\prime \prime}}=\frac{z^{2} \alpha}{\pi} \frac{\sigma_{\gamma}}{\left(m^{*}-m^{2}\right)} \frac{t^{1}}{t^{2}}|F(t)|^{2}
$$

Pirst we show the geaeral features of the $p \pi^{-\quad \text { mass aistribution for a }}$ Pb target integrated over all t ', in Fig. 5. The distribution is broad and featureless with the possible exceptions of enhancements in the regions of the $\Delta(1236)$ and $W^{*}(1690)$. If the $A(1236)$ is aue to Coulomb production, it should be seen only for very small t^{\prime}, ($t^{\prime}<.002 \mathrm{GeV} / \mathrm{c}^{2}$) and only for large Z^{2}. In Fig. 6 we show mass distributions for a Pb target for various t^{\prime} euts. For $t^{\prime \prime}<.001 \mathrm{GeV} / \mathrm{c}^{2}$ the Δ if the most prominant feature. For the region . $001<\mathrm{t}^{+}<.006 \mathrm{GeV} / \mathrm{c}^{2}$, some 0 remains but no evidence for Δ is seen for $t^{+}>.006 \mathrm{GeV} / \mathrm{c}^{2}$. The corresponding distributions for a C target are shom in Fig. 7. No evicience for the A is seen, although otherwise the shape of the mass distribution is essentially the same as the Pb dats. In fact, a carefur Pb-C difference gives a clean Δ signal in reasonable agreenent with
expectations for Coulomb production.
Thus encouraged, we searched for examples of the reaction $K_{0}^{0}+\gamma_{c}+\bar{K}^{* O}(890) \rightarrow K^{*} \pi$. Unlike the Δ which requires isovector exchange, this reaction proceeds via isoscalar (presumably o) exchange. The Coulomb process must be then extracted from a strong background of w-exchange. The differential cross section for Couloni production is expected to be of the form:

$$
\frac{d \sigma}{d t}=24 \pi z^{2} \alpha \quad \Gamma\left(\bar{K}^{* O} \rightarrow \bar{K}_{\gamma}\right) \frac{\mathrm{m}^{*^{3}}}{\left(m^{*^{2}}-m^{2}\right)^{3}} \frac{t^{1}}{t^{2}}|F(t)|^{2}
$$

This Coulomb contribution peaks at very small t^{\prime} ($t^{\prime}=.0005 \mathrm{GeV} / \mathrm{c}^{2}$) whereas the ${ }^{\text {a }}$ exchange is much broader and peaks at larger t^{\prime} (t^{\prime} ' = $\left..002 \mathrm{GeV} / \mathrm{c}^{2}\right)$. Both contributions must go to zero as $t^{\prime}+\infty$ as a consequence of parity conservation (helicity-flip amplitudes).

The mass distribution for $\mathrm{K}^{-} \mathrm{T}^{+}$events from a Fb target is shown in Fig. 8. A elear $K^{*}(890)$ signal is found both for all t^{\prime} and for $t^{\prime}<.006 \mathrm{GeV} / \mathrm{c}^{2}$ where the Coulomb signal is enhanced. The t^{\prime} distribution for . $84<m_{\mathrm{K} \pi}<.94 \mathrm{GeV}$ is shown in Fig. 9. The excess of events near $t^{\prime}=0^{K \pi_{i}}$ evidence for Coulomb production. The statistics at this time are not surficient to deternine the radiative width without knowledge of the relative phase between the Coulomb and w-exchange terms. However, it is already clear that the radiative width is substantially emailer than one would expect based on unitary symuetry predictions with the measured $\Gamma\left(\omega+\pi^{0} \gamma\right)$ as input. Such a conclusion does not disagree $w i t h$ recent results on $\Gamma(\rho \rightarrow \pi y) .9$

4. Resonance Production

As previously noted, the p^{-7} mass distribution shows a noticable structure in the region of the $N^{*}(1690)$. This structure seems to be a very general feature in dur data and we list some of the systematic trends:

1. The structure appears in data from all nuclei studied, although it is more prouinant in light nuclei. (Compare Figures 6 and 7.)
2. The structure at 1690 is more prominant for lerge t^{\prime}. This is especially clear in Fig. 7.
3. There is a suggestion that the t ' distribution is broader in the region of the 1690 then that obtained from lower masses. These t ' aistributions are shown in Fig. 10. Notice that the first diffraction minimum is almost completely washed out for masses in the structure at 1690.
Taken together these trends indieate that the structure at 1690 has a much larger incoherent component.

The anslysis on all phases of the work reported here is continuing and we expect to increase the statistics by as much as 20 -fold in the near future. It is a pleasure to acknowledge the contributions of my colleagues Dave Ryan of Mectill, Tom Ferbel and Dave Underwood at Fochester, and particulariy Peter Mïhiemann at Rochester who has carried out most of the analysis.

Footnotes

2. W. C. Carithers et al., Contribution Ho. 454, XVII Internetional Cont'. on High Energy Physics, London, 3974.
3. K. S. Kolblg and B. Margolis, Fuc. Phys. B6. 85 (1968); C.Bemporad, et al., Huc. Phys. B33, 397 (1971); Huc. Fhys. $\mathrm{B4} 2,627$ (1972); Huc. Phys. B59, 106 (1973).
4. K. J. Foley et al., Phys. Rev, Lett. 19, 857 (1967); J. Engler, et al., Phys. Letters 27B, 599 (1968).
5. G. G. Beznogish, et al, submitted to Yadenaje Fysika.
6. G. Belletini, et al., Nuc. Phys. 79, 609 (1966).
7. B. Hahn et al.. Phys. Rev. 101, 1131 (1956).
8. See for example, C. Bemporad et al., op. cit.
9. H. Primakotit, Phys, Rev. 81 , 899 (1951).
10. Leo Strawezynski, Thesis, University of Rochester Report UR-475.

TABLE I

Exact $\mathrm{SU}(3)$ Predictions for Radiative Amplitudes

$$
\begin{aligned}
-\left\langle K^{* 0} \mid K^{0} \gamma\right\rangle & =\frac{2}{\sqrt{3}}\left\langle\omega_{Q} \mid \pi \gamma\right\rangle \\
& =2\langle\rho \mid \pi \gamma\rangle \\
& =2\left\langle K^{*}{ }^{+} \mid K^{+} \gamma\right\rangle \\
& =\frac{2}{\sqrt{3}}\left\langle\rho^{0} \mid \eta \gamma\right\rangle
\end{aligned}
$$

Ref: Becehi and Morpugo, Phys. Rev. 140B, 687

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

$$
\mathrm{n}+\mathrm{Pb} \rightarrow\left(\mathrm{p} \pi^{-}\right)+\mathrm{Pb}
$$

Figure 6

Figure 7

$$
\mathrm{K}_{\mathrm{L}}^{0}+\mathrm{Pb} \rightarrow\left(\mathrm{~K}^{-} \pi^{+}\right)+\mathrm{Pb}
$$

Figure 9

Figure 10

