MASTER

ORNL-2627 Chemistry-General

THE USE OF TRI-n-OCTYLPHOSPHINE OXIDE IN THE SOLVENT EXTRACTION OF THORIUM FROM ACIDIC SOLUTIONS

W. J. Ross J. C. White

OAK RIDGE NATIONAL LABORATORY

operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORNL-2627 Chemistry-General TID-4500 (14th ed.)

Contract No. W-7405-eng-26

ANALYTICAL CHEMISTRY DIVISION

THE USE OF TRI-n-OCTYLPHOSPHINE OXIDE IN THE SOLVENT EXTRACTION OF THORIUM FROM ACIDIC SOLUTIONS

W. J. Ross and J. C. White

DATE ISSUED

NOV 201958

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

TABLE OF CONTENTS

Page

4

.

¥

.

....

ABSTRACT
INTRODUCTION
REAGENTS
GENERAL PROCEDURE
EXPERIMENTAL
Effect of Concentration of Acids5Effect of Concentration of Chloride and Nitrate9Effect of Concentration of Thorium13Effect of Phase Ratio16Effect of Extraction Time17Effect of Concentration of Tri-n-octylphosphine Oxide18Investigation of the Species of Thorium Extracted from Chloride20Effect of Nitrate on the Extraction of Thorium from Sulfate and Phosphate Solutions23
SUMMARY
ACKNOWLEDGEMENT
REFERENCES

iii

ABSTRACT

Thorium is readily extracted by a solution of tri-n-octylphosphine oxide in cyclohexane from either acidic nitrate or chloride solutions. The maximum extraction coefficient in a nitrate medium is 380° as compared to 1300 for a chloride solution. In nitrate media the extraction coefficient is relatively unaffected by changes in the anion concentration. In chloride media, however, the coefficient varies directly with increasing chloride concentration, i.e. from about 0.4 in one molar chloride to the maximum in 7 to 10 molar. The acid concentration should be at least one molar.

Thorium is not appreciably extracted from sulfate solutions. The extraction coefficient is of the order of 0.3. The addition of nitrate or chloride increases the coefficient sufficiently so that essentially 99 per cent of the thorium can be extracted in a single equilibration. In perchlorate systems the extraction is most efficient in one molar acid. The maximum coefficient is about 80.

The amount of thorium that can be extracted to 99 per cent in a single 10-minute equilibration period is 46 mg in nitrate and 28 mg in chloride systems per millimole of TOPO. The extracted species are postulated to be ThCl₄·HCl·3[n-(C_8H17)_3PO] and Th(NO_3)_4·HNO_3·3[n-(C_8H17)_3PO] wherein the concentration of the acid adduct is a function of the initial concentration of acid in the aqueous phase.

THE USE OF TRI-n-OCTYLPHOSPHINE OXIDE IN THE SOLVENT EXTRACTION OF THORIUM FROM ACIDIC SOLUTIONS

W. J. Ross and J. C. White

INTRODUCTION

In several communications (4,7,8,9,10) from this laboratory the selectivity and the versatility of tri-n-octylphosphine oxide (TOPO) as a reagent for the solvent extraction of certain metals have been discussed. Systematic investigations of the solvent extraction of chromium, (8) iron, (4) and zirconium (9) from acidic solutions with TOPO, dissolved in inert hydrocarbon solvents, have been reported previously. This report involves a similar study of the extraction characteristics of thorium in acidic systems.

In their preliminary survey test program,⁽⁷⁾ the authors reported that thorium was extracted by TOPO from acidic chloride, sulfate, nitrate and perchlorate solutions. These results were considered tentative inasmuch as the sensitivity of the spectrographic method used in these tests was less for thorium than for most of the other elements investigated. In this investigation more refined analytical techniques have been used to determine the fundamental extraction characteristics of thorium.

This report is limited to a description of these fundamental extraction characteristics. Several interesting and useful analytical separations of thorium have already been derived from applications of these basic data, however, and will be reported elsewhere.

REAGENTS

Thorium nitrate stock solution, approximately 233 mg of thorium per ml. This solution was prepared by dissolving 26 g of reagent grade thorium oxide, ThO₂, in 100 ml of 3 M HNO₃.

Standard solutions of thorium nitrate, approximately 12 and 23 mg per ml. These solutions were prepared by diluting 5 and 10 ml of the stock solution, respectively, to 100 ml with water. The solutions were standardized by analyzing them for thorium gravimetrically.⁽²⁾

Standard solutions of thorium chloride, approximately 11 and 113 mg per ml. These solutions were prepared by evaporating 25 ml of the thorium nitrate stock solution to dryness and dissolving the residue in 25 ml of concentrated hydrochloric acid which had been equilibrated with 0.1 M TOPO in cyclohexane to remove traces of iron(III). The evaporation and dissolution procedure was repeated four times to ensure complete removal of nitrate. The final residue was dissolved in 50 ml of 1 M HCl. The more dilute standard solution was prepared by diluting 10 ml of the concentrated thorium chloride solution to 100 ml with 1 M HCl. Both solutions were standardized by a gravimetric method.

Standard solution of thorium perchlorate, approximately 11 mg of thorium per ml. This solution was prepared by evaporating 10 ml of the thorium chloride solution (113 mg Th per ml) to dryness and then dissolving the residue in 10 ml of perchloric acid. The solution was evaporated to fumes of perchloric acid four times with intermittent dilutions with 10 ml of 2 M HClO₄ in order to remove chloride. After the final evaporation step, the solution of thorium was diluted to 100 ml with 1 M HClO₄ and standardized gravimetrically.

-2-

<u>Tri-n-octylphosphine oxide (TOPO), $(C_8H_{17})_3PO$, 0.1 <u>M</u> solution. This solution was prepared by dissolving 38.6 g of TOPO in one liter of cyclohexane. The reagent was obtained from Eastman Organic Chemicals, EK7440; its purity exceeded 99 per cent $(C_8H_{17})_3PO$. The diluent was also obtained from Eastman, EK702 (M.P. 4-5.5°C).</u>

GENERAL PROCEDURE

The experimental techniques that are described in this report have been reported previously.⁽⁸⁾ The test solution to be extracted in each experiment was prepared by combining the desired amounts of standard thorium solution with either nitric, hydrochloric, perchloric, or sulfuric acid. The volume of the solution to be extracted was usually 5 ml. In those tests where the effect of anion concentration was being investigated at constant hydrogen-ion concentration, neutral salts were dissolved in the acidic thorium solutions to yield the desired concentration of anion. The solutions were extracted with 5 ml of the cyclohexane solution of TOPO by agitating the two phases by means of a Kahn shaker for a predetermined period of time.

Following equilibration, the phases were allowed to stand until they separated completely. The degree to which thorium was distributed between the two phases was usually established through the determination of the thorium that remained in the aqueous phase. Test portions of the aqueous phase were removed by pipet and the concentration of thorium was determined by the gravimetric oxalate or spectrophotometric Thorin⁽⁶⁾ methods. The concentration of thorium in the organic phase was subsequently calculated by difference.

-3-

A non-aqueous colorimetric method⁽⁵⁾ was developed and applied to the determination of thorium in the organic phase of many of the test mixtures, usually as an independent method for checking the results of the indirect method. This non-aqueous method consisted of forming the red thorium-alizarin complex in an ethanol-acetone dilution of the organic phase and measuring the absorbance of this colored solution at a wavelength of 538 mµ. The intensity of the colored solution adheres to Beer's law at this wavelength and the molar absorbance index is about 11,000.

The concentration of chloride in the organic phase was determined by titrating the chloride in alcoholic dilutions of the organic phase by the Volhard method.(3)

The determination of nitrate in the organic phase was achieved by an ultraviolet spectrophotometric method⁽⁵⁾ that was adapted from a method for the determination of nitrate in aqueous solutions.⁽¹⁾ This non-aqueous method involves the measurement of the absorbance of nitrate at 197 or 273 mµ. Beer's law is followed at both wavelengths with molar absorbance indices of 18,000 and 10 respectively. The TOPO that was used in most of the studies that required the determination of nitrate in the organic phase was re-purified to reduce the cut-off wavelength of 0.1 M solutions to below 190 mµ. This degree of purification is not required for absorbance measurements at 273 mµ, but is necessary for accurate measurements at 197 mµ.

The results of all the extraction tests are reported either as thorium extracted, per cent, or as the extraction coefficient, E_a^O . This term is defined as: $E_a^O = \frac{\text{concentration of thorium in the organic phase}}{\text{concentration of thorium in the aqueous phase}}$.

-4-

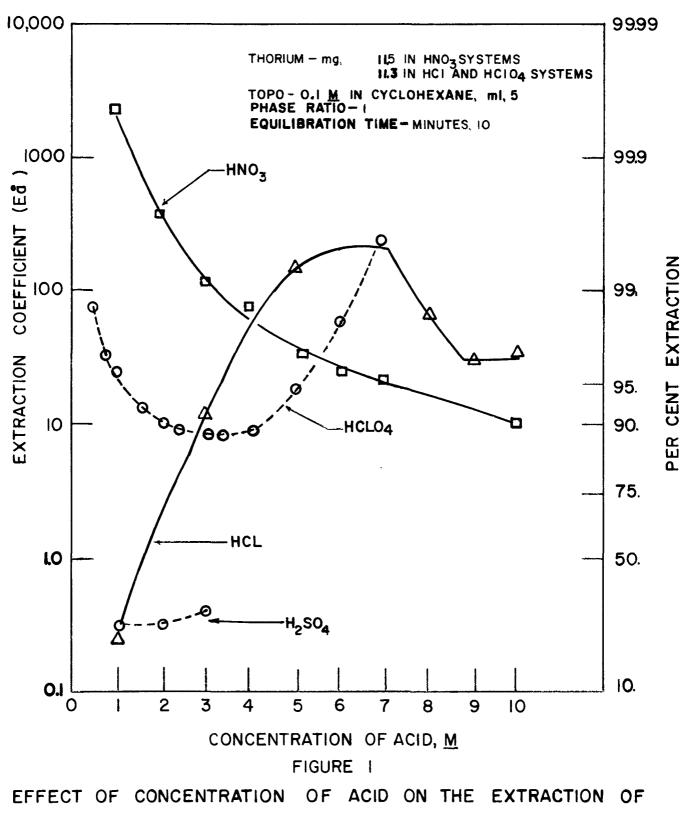
EXPERIMENTAL

Effect of Concentration of Acids

The effect of acid concentration on the extraction of thorium from chloride, nitrate, sulfuric, and perchlorate solutions was determined. Solutions that contained approximately ll mg of thorium in 5 ml of various concentrations of either nitric, hydrochloric, perchloric, or sulfuric acid were equilibrated for 10 minutes with 5 ml of 0.1 <u>M</u> TOPO in cyclohexane. The results of these tests are given in Table I and Figure 1.

TABLE I

EFFECT OF ACID CONCENTRATION ON EXTRACTION OF THORIUM WITH TOPO FROM ACIDIC SOLUTIONS


Thorium present, ll.3 mg ThCl₄, Th(ClO₄)₄, ll.5 mg Th(NO₃)₄ TOPO, O.1 M in cyclohexane, 5 ml Equilibration time, 10 minutes Phase ratio, l

_

Acid,		Thorium,		$\mathbf{E}_{\mathbf{a}}^{O}$
Molari	Lty	Organic	Aqueous	
HCl,	1	2.3	9.00	0.26
	3	10.4	0.930	11
	5	11.2	.077	145
	7	11.2	.054	208
	8	11.1	.177	64
	9	10.9	.390	28
	10	11.0	.344	32
HC10 ₄ ,	0.5 .8 1.0 1.6 2.0 2.4 3.0 3.2 4.0 5.0 6.0	11.2 10.9 10.9 10.4 10.3 10.2 10.1 10.1 10.1 10.1 10.7 11.1	0.135 .353 .425 .890 1.04 1.13 1.22 1.23 1.21 0.663 .200	82 31 26 12 9.9 9.1 8.3 8.2 8.3 16 56
HNO3,	1	11.5	.0055	2100
	2	11.5	.028	420
	3	11.4	.103	112
	4	11.4	.147	78
	5	11.2	.338	33
	6	11.1	.415	27
	7	11.0	.490	22
	10	10.5	1.01	10
*H2SO4,	, 1	2.7	8.81	0•3
	2	2.6	8.87	•3
	3	3.2	8.30	•4

* Thorium added as the nitrate salt. Total nitrate concentration, 0.02 M.

UNCLASSIFIED ORNL-LR-DWG. 33465

THORIUM WITH TRI-n -OCTYLPHOSPHINE OXIDE

-7-

<u>Hydrochloric Acid</u>. The extraction of thorium from chloride solutions is enhanced as the concentration of hydrochloric acid is increased from 1 to 7 M, and, then, decreased as the acid concentration is increased further. Thorium is extracted to a degree that exceeds 98 per cent from 4 to 10 M HCl solutions. The impairment in extraction from > 7 M acidic solutions is probably caused by formation of non-extractable thorium chloride complexes in strong hydrochloric acid.

<u>Perchloric Acid</u>. In perchloric acid systems, the extraction coefficient of thorium passes through a minimum in 3 to 4 M HClO₄ media as the concentration of HClO₄ is varied from 1 to 6 M. The extraction of thorium from perchlorate systems is most efficient in 1 M acidic systems. Two immiscible organic phases are formed when 7 M HClO₄ and TOPO are equilibrated.

<u>Nitric Acid</u>. In nitrate systems, the extraction of thorium is continuously impaired as the concentration of nitric acid is increased. Extraction coefficients greater than 1000 are obtainable in 1 <u>M</u> HNO₃ systems; complete extraction, i.e. > 99 per cent, is achievable from < 4 <u>M</u> HNO₃ media. Extraction becomes incomplete, < 98 per cent, however, in more concentrated nitric acid systems.

The depression in the extraction of thorium that results from increased nitric acid concentration is contrary to the effect previously encountered in metal-TOPO extraction studies. This decrease in extraction is probably the result of formation of non-extractable complex species of thorium nitrate in solutions of high acid concentration rather than competition between the extraction of thorium and nitric acid. This hypothesis is supported by the fact that the extraction coefficient which was obtained when the TOPO had

-8-

been pre-equilibrated with 7 \underline{M} HNO₃ prior to the extraction of thorium is identical to that obtained using TOPO that had not been pre-equilibrated with acid.

<u>Sulfuric Acid</u>. Thorium is extracted only to a small degree from sulfate solutions. The extraction is not materially affected by varying the concentration of sulfuric acid from 1 to 3 molar.

Effect of Concentration of Chloride and Nitrate

The extraction coefficients of zirconium⁽⁹⁾ in acidic chloride or nitrate solutions and iron⁽⁴⁾ in chloride solutions are dependent primarily on the anion concentration. The concentration of acid in the solution to be extracted must be relatively high, i.e. one molar, however, to achieve significant extraction by TOPO. In studying the anion effect on the extraction of thorium, the acid concentration was held constant at one molar. Solutions that contained either 11.3 mg of thorium as the thorium chloride or 11.5 mg of thorium as the thorium nitrate in 5 ml of 1 M HCl or HNO₃ were made 1 to 10 M with respect to the anion by the dissolution of various amounts of sodium chloride, aluminum chloride, or sodium nitrate. These solutions were equilibrated for 10 minutes with 5 ml of 0.1 M TOPO in cyclohexane, following which the thorium content of the aqueous phase was determined. The results are shown in Table II and Figure 2.

-9 -

TABLE II

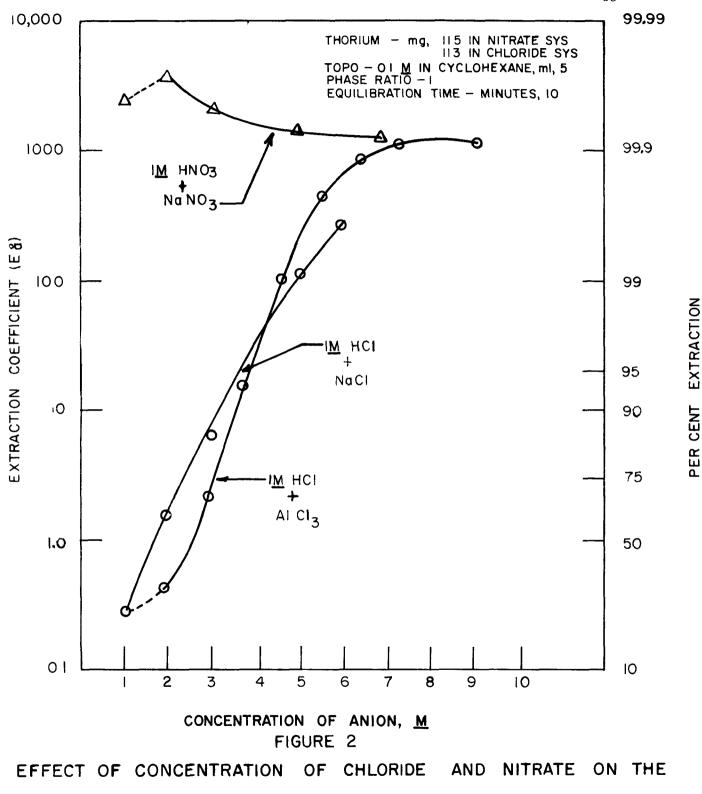
EFFECT OF CONCENTRATION OF CHLORIDE AND NITRATE ON EXTRACTION OF THORIUM

HCl (HNO₃), 1 M TOPO,0.1 M in cyclohexane, 5 ml Phase ratio, 1 Equilibration time, 10 minutes

Total		NaNO ₃			NaCl			AlCl3	
Anion, <u>M</u>	Organic	Aqueous	Ea	Organic	horium, mg Aqueous	Ea	Organic	Aqueous	Ea
2	11.5	0.003	3800	6.8	4.51	1.5	3.2	8.06	0.4
3	11.5	.006	1900	9.7	1.58	6.1	7.6	3.74	2.0
4	-	-	-	-	-	-	10.3	0.963	11
5	11.5	.008	1400	11.2	0.105	107	11.2	.117	102
6	-	-	-	11.3	.045	252	11.3	.025	450
7	11.5	.010	1200	-	-	-	11.3	.010	1100
8	-	-	-	-	-	-	11.3	.009	1300
9	-	-	-	-	-		11.3	.010	1100

,

<u>Nitrate</u>. The addition of sodium nitrate to $1 \leq M \leq NO_3$ solutions of thorium markedly enhances the extraction at all concentrations of nitrate over that attained in the absence of the salt. Maximum coefficients are found in $1 \leq M$ HNO₃-1 $\leq M \leq NaNO_3$ solutions. The extraction coefficients are extremely large, greater than 1000, at all concentrations tested. The coefficients decrease slightly, however, with increasing nitrate concentration. This trend is similar but not nearly so pronounced as that observed when the concentration of nitric acid is increased (Figure 1). Apparently the formation of nonextractable complex species of thorium nitrate in aqueous solution is more dependent on a high acid concentration rather than on high nitrate concentrations.


<u>Chloride</u>. The extraction coefficient of thorium increases linearly from about 0.5 to approximately 100 when the total chloride concentration is increased from one to five molar by the addition of either sodium chloride or aluminum chloride. This variation in extraction coefficient is identical, over this range of concentration, to that found for straight hydrochloric acid solutions.

In contrast to the extraction behavior in 7 to 10 \underline{M} HCl, the coefficient remains in the vicinity of 1000 when the total chloride concentration is 7 to 10 molar as supplied by aluminum chloride. Some depression is noted but not to an appreciable extent. Sodium chloride would undoubtedly have a similar effect although such concentrations of chloride are not possible with sodium chloride due to its limited solubility in 1 M HCl.

A possible explanation for this difference in extraction as a function of whether the chloride is added as acid or salt is that in extremely strong

-11.

UNCLASSIFIED ORNL-LR-DWG. 33466

EXTRACTION OF THORIUM WITH TRI-n-OCTYLPHOSPHINE OXIDE

-12-

hydrochloric acid solutions there is some tendency for formation of nonextractable thorium chloride complexes. Such formation is not favored in much weaker acid solutions of equivalent chloride concentration, however.

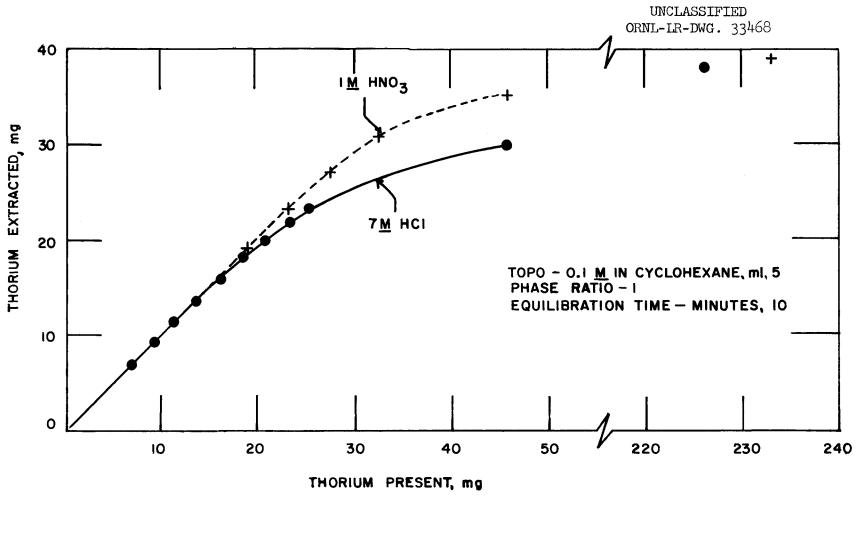
Effect of Concentration of Thorium

The maximum amount of thorium that can be completely (> 99 per cent) extracted by TOPO in a single equilibration was determined for 7 <u>M</u> HCl and 1 M HNO₃ systems by adding various amounts of thorium to 5 ml of these acids, extracting the solutions for 10 minutes with 5 ml of 0.1 <u>M</u> TOPO in cyclohexane, and then determining the amount of thorium that remained in the aqueous phase. The degree to which these various amounts of thorium were extracted are given in Table III. The same results are presented graphically in Figure 3.

-13-

TABLE III

EFFECT OF CONCENTRATION OF THORIUM ON ITS EXTRACTION WITH TOPO


TOPO - 0.5 millimole Equilibration time - 10 minutes Phase ratio - 1

Acid		Thorium, mg		E_{a}^{O}	Per Cent
	Present*	Organic	Aqueous		Extracted
7 <u>M</u> HCl	6.9	6.9	0.022	310	99.7
	9.2	9.2	.036	260	99.6
	11.5	11.4	.068	170	99.4
	13.8	13.7	.130	106	99.1
	16.1	15.9	.235	68	98.5
	18.4	18.0	.437	41	97.6
	20.7	20.0	.705	28	96.4
	23.0	21.8	1.20	18	94.8
	25.3	23.2	2.12	11	91.2
	45.8	29.8	16.0	2	65.1
	226	38	188	0.2	16.8
1 <u>M</u> HNO3	11.5	11.5	0.003	4000	99.9
	18.3	18.3	.033	560	99.8
	22.9	22.8	.130	180	99.4
	27.5	27.0	.482	56	98.2
	32.1	30.6	1.54	20	95.2
	45.8	35.0	10.8	3	76.4
	233	39	194	0.2	16.7

* Thorium present as Th(NO3)4.

In 7 \underline{M} HCl systems, about 28 mg of thorium is extracted completely, i.e. >99 per cent per millimole of TOPO, whereas 46 mg can be extracted to a degree that exceeds 95 per cent. The loading capacity of 1 millimole of TOPO in 7 M HCl systems is 76 mg of thorium.

The extraction capacity from 1 M HNO₃ solutions is even greater than that from 7 M HCl. Approximately 46 mg of thorium is extracted completely by 1 millimole of TOPO, while 64 mg can be extracted >95 per cent. The loading capacity of 1 millimole of TOPO is 78 mg of thorium.

٩

FIGURE 3 EXTRACTION OF THORIUM FROM CHLORIDE AND NITRATE SOLUTIONS WITH TRI-n-OCTYLPHOSPHINE OXIDE ٨

1

Effect of Phase Ratio

The efficiency of TOPO as a means of concentrating thorium through extraction from dilute solutions was investigated by varying the phase ratios of 7 <u>M</u> HCl and 1 <u>M</u> HNO₃ systems from 1 to 20. Solutions that contained 11.5 mg of thorium in 10 to 100 ml of 7 <u>M</u> HCl or 1 <u>M</u> HNO₃ were equilibrated for 10 minutes with 5 ml of 0.1 <u>M</u> TOPO. The aqueous phases were analyzed for thorium; the results are presented in Table IV.

TABLE IV

EFFECT OF PHASE RATIO ON THE EXTRACTION OF THORIUM

Nitrate, ~0.02 M Thorium present - 11.5 mg TOPO - 0.1 M in cyclohexane, 5 ml Equilibration time - 10 minutes

Acid	Va/Vo	Thorium	, mg/ml	$\mathbf{E}_{a}^{\mathrm{O}}$	Per Cent
		Organic	Aqueous	af 11	Extracted
7 м нсі	2	2.28	0.0145	157	98.7
	5	2.22	.016	138	96.5
	10	2.16	.0141	148	93.7
	20	2.06	.0118	175	89.7
l <u>M</u> HNO3	2	2.30	.0049	470	99.6
	5	2.30	.0016	1430	99.6
	10	2.28	.0016	1420	99.2
	20	2.28	.0013	1750	98.9

The degree to which ll.5 mg of thorium is extracted from $1 \text{ M} \text{ HNO}_3$ is diminished by less than one per cent when the aqueous to organic phase ratio is increased from 1 to 20. In 7 M HCl the extraction of thorium is depressed slightly by increasing the phase ratio, yet is 90 per cent complete when the ratio is 20.

These results indicate that thorium can be readily extracted from large volumes of aqueous solution, thus effecting the concentration as well as the separation of this element in a single step.

Effect of Extraction Time

Previous investigations have revealed that equilibrium between acidic solutions of metals and cyclohexane solutions of TOPO is attained in relatively short periods of time, i.e. 5 to 10 minutes. A series of extractions was conducted to establish the rate with which TOPO and acidic solutions of thorium attain equilibrium and also to determine if the variations in extraction coefficients that have been attributed to variations in acid concentration might be due in part to incomplete attainment of equilibrium. These tests consisted of extracting solutions that contained ll mg of thorium (also 23 mg in 1 M HNO₃ systems) in 5 ml of 1 and 7 M HCl and HNO₃ for predetermined periods of time and then determining the thorium that remained in the aqueous phase. The effects of these variable periods of time are shown in Table V.

TABLE V

EFFECT OF EXTRACTION TIME ON THE EXTRACTION OF THORIUM

Acid	Equilibration Time, minutes	Present	Thorium, mg Organic	Aqueous	Ea
HNO3, 1 <u>M</u>	1 3 5 10 30	22.9*	15.5 22.6 22.8 22.8 22.8	7.44 0.330 .128 .130 .128	2.1 68 180 180 180
	10 30	11.5*	11.5 11.5	.005 .005	2300 2300
HNO3, 7 <u>M</u>	10 30	11.5*	11.2 11.2	•329 •330	34 34
HC1, 1 <u>M</u>	10 30	11.3**	2.2 2.9	9.09 8.64	0.24 .34
HCl, 7 M	10 30 present as Th(NO	11.3**	11.2 11.3	0.051 .021	220 540

TOPO, 0.1 <u>M</u> in cyclohexane, 5 ml Phase ratio - 1

* Thorium present as $Th(NO_3)_4$

** Thorium present as ThCl₄

An extraction time of five minutes is sufficient in 1 M HNO₃ systems, whereas in 7 M HCl systems slightly greater extraction is achieved by increasing the time from 10 to 30 minutes.

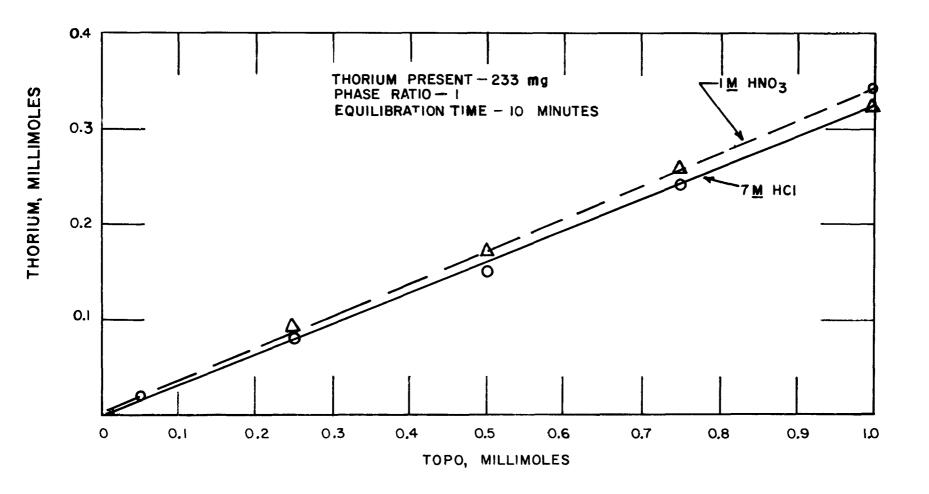
In 7 <u>M</u> HNO_3 systems no additional extraction is achieved by increasing the time from 10 to 30 minutes and only slight enhancement is attained in 1 <u>M</u> HCl media. Obviously, extraction time is not a critical factor in extraction of thorium.

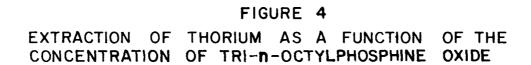
Effect of Concentration of Tri-n-octylphosphine Oxide

The effect of concentration of TOPO on the extraction of thorium from nitric and hydrochloric acid solutions was investigated by equilibrating 5 ml of 0.01 to 0.20 <u>M</u> TOPO in cyclohexane with 5 ml of aqueous solutions that contained 233 mg of thorium in 7 <u>M</u> HCl or 1 <u>M</u> HNO₃. The results of these tests are presented in Table VI and Figure 4.

TABLE VI

EFFECT OF CONCENTRATION OF TRI-n-OCTYLPHOSPHINE OXIDE ON THE EXTRACTION OF THORIUM


Nitrate, ~ 0.4 M Th present - 233 mg (as Th(NO₃)₄) Equilibration time, 10 minutes Phase ratio, 1 TOPO, 5 ml


Acid	TOPO,	T	Thorium, mg				
	milli-	Aqueous	0r{	ganic	Th		
	moles		mg	mmoles			
нсі, 7 <u>м</u>	1.0 0.75 .50 .25 .05	155 177 195 214 228	78 56 38 19 5	0.34 .24 .16 .08 .02	2.9 3.1 3.1 3.1 2.5		
HNO3, 1 <u>M</u>	, 1.0 0.75 .50 .25 .05	156 173 194 212 232.5	77 60 39 21 0.5	•33 •26 •17 •09 •002	3.0 2.9 2.9 2.8 25		

UNCLASSIFIED ORNL LR-DWG. 33467

1

.

-19-

The amount of thorium that is extracted from $1 \leq M \leq 7 \leq M \leq 1$ solutions increases linearly as the concentration of TOPO is increased. The ratios of TOPO to thorium in the organic phases are approximately 3 except in the least concentrated TOPO systems. The relationship of this molar ratio to the actual stoichiometry of the extracted species will be discussed in the next section.

Investigation of the Species of Thorium Extracted from Chloride and Nitrate Solutions

The nature of the species of thorium and mineral acid that are extracted into 0.1 \underline{M} solutions of TOPO in cyclohexane was investigated in 1 to 9 \underline{M} HCl and 1 M HNO₃ systems.

<u>Chloride</u>. A series of solutions that contained 226 mg of thorium in 5 ml of 1 to 9 <u>M</u> HCl was extracted with 5 ml of 0.1 <u>M</u> TOPO for 20 minutes. The amount of thorium taken was about six times the loading capacity of the TOPO present. This amount was so chosen to minimize extraction of free acid. The thorium that remained in the aqueous phase was determined gravimetrically by the oxalate method and the thorium that was extracted was calculated by difference. The chloride in the organic phase was determined by titration with silver nitrate solution. The TOPO concentration in the organic phase was assumed to be the same as that taken, i.e. 0.5 millimole. The molar ratios of thorium to chloride and thorium to TOPO in the organic phase were calculated from these data and are presented in Table VII.

-20 -

TABLE VII

MOLAR RATIOS OF THORIUM TO CHLORIDE AND TOPO AS A FUNCTION OF ACID CONCENTRATION

Thorium present - 226 mg TOPO, 0.1 <u>M</u> in cyclohexane - 5 ml Phase ratio - 1 Equilibration time - 10 minutes

M	olarity	Molar	Ratio	
Total Cl	HCL	AlCl3	Cl/Th	TOPO/Th
1	l	-	3. ⁸	5.0
2	l	0.3	- 5.4	9.6
3	3 1	0.6	3.7 4.2	3.6 5.5
<u>)</u> 4	1	1.0	4.2	4.5
5	5 1	_ 1.3	4.0 4.4	3.1 3.6
6	l	1.7	4.2	3.3
7	7 1	2.0	4.2 4.1	3.1 3.1
9	9	-	6.1	3.8

The molar ratio of chloride to thorium is four, which indicates that ThCl₄ is the species of thorium extracted by TOPO. In strong hydrochloric acid, a medium that yields high extraction coefficients, thorium exists predominantly as ThCl₄. In more dilute acid solution, where coefficients are low, the ThCl₄ species is correspondingly less concentrated. Since the Cl/Th ratio greatly exceeded four in the 9 <u>M</u> HCl test, acid must be extracted also by the TOPO. This is confirmed by previous experiments ⁽¹⁰⁾ in which it was shown that HCl·TOPO adducts are readily formed when strong acid and TOPO are equilibrated.

The limiting ratio of TOPO to thorium is three. The nature of the extracted species probably is more accurately defined, however, by a formula $0.3 \text{ M} \text{ H}_2\text{SO}_4$. Subsequently, thorium in the aqueous phase can be determined by the Thorin method after the sulfuric acid has been expelled by evaporation. This method was applied to the determination of thorium in all the following extraction tests.

The first series of extraction tests, the results of which are presented in Table IX, was designed to establish the effects of various concentrations of nitrate on the extraction of thorium from either 0.1 to $4 \text{ M} \text{ H}_2\text{SO}_4$ or H_3PO_4 . The desired amount of nitrate, as HNO_3 or NaNO_3 , was added to sulfate and phosphate solutions of thorium so that the final volume was 5 ml. This solution was then extracted for 10 or 20 minutes with 5 ml of 0.1 <u>M</u> TOPO in cyclohexane. After equilibration, aliquots of the organic phase were removed by pipet and then back-extracted for 20 minutes with 5 ml of 0.3 <u>M</u> H₂SO₄. Thorium in the aqueous phase was subsequently determined by the Thorin method.

-24-

TABLE IX

EFFECT OF NITRATE ON THE EXTRACTION OF THORIUM FROM SULFATE AND PHOSPHATE SOLUTIONS BY TRI-n-OCTYLPHOSPHINE OXIDE

TOPO, 0.1 <u>M</u> in cyclohexane - 5 ml Phase ratio - 1 Equilibration time - 20 minutes

Thorium Present,		Mola	arity		Thorium Extracted,
mg	HNO3	NaNO3	H_2SO_4	H3PO4	Per Cent
0.570 11.5 0.690 11.5	1 1 1 - 1 - 1		- 0.5 0.5 1.0 1.0 2.0 2.0 3.6		99 100 100 91* 95* 78* 86* 60* 62* 34*
0.690	l	1	1 _	- 0.3	78 86
0.345	- 0.5 - - 0.5	2 2 4 4 4	1 0.5 1.0 2.0 - 0.5 1.0 0.5 1.0 0.5 1.0	- 0.3 - 0.24 0.50 1.0 2.0 0.1 0.1 0.1 0.3 0.3 0.6 0.6	93 92 99 102 103 98 94 81 28 110 92 95 64 41 43
11.5	1	ц	0.5 1.0 2.0	- - -	100 97 63

* Equilibration time, 10 minutes.

-25-

As revealed in Table IX, thorium can be extracted completely, under certain conditions, from sulfate or phosphate solutions if nitrate is added to the aqueous solution. The addition of nitrate in the form of the neutral salt has a more beneficial effect on the extraction of thorium from sulfate solutions than is obtained with nitric acid. Inasmuch as most metals are extracted only to a slight degree from weakly acidic, i.e. < 1 M, solutions, nitric acid as well as sodium nitrate was added in most tests to maintain the acidity of the aqueous solution at 1 M.

The extraction of thorium is increasingly depressed when the concentration of sulfate or phosphate is increased. Phosphate inhibits the extraction to a greater extent than does sulfate. This impairment can be partially overcome by increasing the concentration of nitrate by the addition of NaNO₃. Sub-milligram amounts of thorium are extracted to an extent that exceeds 95 per cent from solutions 2.0 M in H₂SO₄, 0.5 M in H₃PO₄, or $\langle 0.8 \text{ M} \text{ with respect to a mixture of the two acids when the solution is 0.5 M in HNO₃ and 4 M in NaNO₃. Eleven mg of thorium is likewise extracted readily by 5 millimoles of TOPO from 1 M H₂SO₄ solutions that are 1 M in HNO₃ and 4 M in NaNO₃.$

The above results represent a great improvement in the extraction of thorium from sulfate or phosphate solutions; however, definite limitations are still imposed by the maximum permissable concentrations of sulfuric and phosphoric acids.

A second series of extraction tests was conducted to ease these limitations on the versatility of this method of extracting thorium by reducing the concentrations of sulfuric acid and phosphoric acid through

-26 -

dilution with $1 \ \underline{M} \ \text{HNO}_3$. Solutions that contained 0.345 or 0.069 mg of thorium in 5 ml of $1 \ \underline{M} \ \text{H}_2\text{SO}_4$ and various concentrations of phosphoric acid were diluted to 50 ml with a $1 \ \underline{M} \ \text{HNO}_3$ solution. Weighed amounts of sodium nitrate were added to some test solutions. These solutions were extracted for 20 minutes with 5 ml of 0.1 \underline{M} TOPO in cyclohexane, following which aliquots of the organic phase were back-extracted with 5 ml of 0.3 $\underline{M} \ \text{H}_2\text{SO}_4$, and the thorium content of the acidic solution determined colorimetrically by the Thorin method. The results of these tests are presented in Table X.

TABLE X

EXTRACTION OF THORIUM FROM DILUTE SOLUTIONS OF SULFATE AND PHOSPHATE THAT CONTAIN NITRATE

 $HNO_3 - 1 M$ $H_2SO_4 - 0.02 M$ TOPO, 0.1 M in cyclohexane - 5 ml Phase ratio, Va/Vo - 10 Equilibration time - 20 minutes

	Present		Thorium
Thorium, mg	NaNO3, M	H ₃ PO ₄ , M	Extracted, Per Cent
0.345	- 1 2 2	0.0012 .0012 .0006 .0006 .0012	93 99•9 99•9 99•9 99•9
0.069	-	.0004	98 *

* Equilibrations of 5-minute duration.

Sub-milligram amounts of thorium are readily extracted from such systems as listed in Table X. The concentrations of sulfate and phosphate are reduced to negligible amounts, while the extraction of thorium is not impaired by dilution of the aqueous phase to 50 ml. Analyses of samples of thorium ores, the thorium content of which had been determined by other methods, prove that as much as 5 mg of thorium is completely extracted from these dilute solutions. (It is interesting to note that cerium(III) and the other rare-earth elements are not extracted under these conditions.)

The applicability of TOPO to the separation of thorium from sulfate and phosphate solutions greatly increases the versatility of TOPO as an extractant of thorium.

SUMMARY

Thorium is extracted readily from acidic chloride and nitrate solution by cyclohexane solutions of TOPO. In nitric acid systems the extraction coefficient is 2000 in 1 M HNO₃ but decreases to 75 in 10 M HNO₃ with increasing nitric acid concentration. A somewhat similar behavior of the extraction coefficient occurs when the nitrate concentration of 1 M HNO₃ solutions is increased by the addition of neutral salts; however, the extraction coefficient of thorium remains greater than 1000. In hydrochloric acid systems, the extraction coefficient increases from 0.3 to 200 as the acidity is increased from 1 to 7 M and then decreases to 30 in 10 M. The addition of chloride to 1 M HCl solutions of thorium enhances the extraction to a greater extent than is achieved with hydrochloric acid alone.

The loading capacity of 1 millimole of TOPO is 76 and 78 mg of thorium in 7 <u>M</u> HCl and 1 <u>M</u> HNO₃ respectively. The molar ratio of TOPO to thorium is three in 7 <u>M</u> chloride systems; the stoichiometry of extracted species is postulated to be ThCl₄·HCl·3(TOPO). In nitrate systems two species are extracted simultaneously by TOPO, i.e. Th(NO₃)₄·2(TOPO) and x HNO₃·(TOPO).

-28 -

The composition of the acid adduct is $HNO_3 \cdot (TOPO)$ in $1 \text{ <u>M</u>} HNO_3$ and is a function of the initial concentration of acid.

As much as 46 mg of thorium can be extracted per millimole of TOPO from $1 \leq M \leq 100$ to an extent that exceeds 99 per cent, while 28 mg can be extracted from 7 $\leq M$ HCl. Equilibrium is attained rapidly in nitrate systems, 5 minutes being sufficient for extraction, whereas in chloride systems 10 minutes is required. Essentially complete extraction from $1 \leq M \leq 100$ solutions is achieved at a phase ratio, V_a/V_o , of 20; however, the extraction from 7 $\leq M$ HCl is decreased by 10 per cent as the phase ratio is increased from 1 to 20.

Thorium is extracted from sulfuric and phosphoric acids only to a very slight extent. By reduction of the concentrations of sulfuric and phosphoric acid to less than 2 <u>M</u> and 0.5 <u>M</u> respectively and the addition of sufficient nitric acid and sodium nitrate to make the solution 1 <u>M</u> in HNO_3 and 5 <u>M</u> in nitrate, the extraction of thorium can be made essentially quantitative. Milligram amounts of thorium can be extracted completely from solutions that are $\langle 0.1 \text{ M}$ in sulfate and phosphate if the solution is 1 M with respect to HNO_3 and 2 M in nitrate.

The extraction of thorium is readily achieved from solutions of perchloric acid; however, these systems frequently contain two immiscible organic phases, which complicate the recovery of the extracted thorium.

ACKNOWLEDGEMENT

The authors are indebted to C. A. Blake and J. M. Schmitt for furnishing the re-purified TOPO that was used in some of the tests and to M. A. Marler for assistance in the preparation and editing of this report.

-30 -

REFERENCES

1. Bastian, R., Weberling, R., and Palilla, F., "Ultraviolet Spectrophotometric Determination of Nitrate," Anal. Chem., 29, 1795 (1957).

2. Oak Ridge National Laboratory Master Analytical Manual, Method No. 1 218750.

3. Oak Ridge National Laboratory Master Analytical Manual, Method No. 1 212071.

4. Ross, W. J. and White, J. C., "The Solvent Extraction of Iron with Tri-n-octylphosphine Oxide," ORNL-2382, September, 1957.

5. Ross, W. J., unpublished data.

6. Thomason, P. F., Perry, M. A., and Byerly, W. M., "Determination of Microgram Amounts of Thorium," Anal. Chem., 21, 1239 (1949).

7. White, J. C. and Ross, W. J., "Extraction of the Elements with Trioctylphosphine Oxide from Acidic Solutions," ORNL-CF-56-9-18, September 1956.

8. White, J. C. and Ross, W. J., "Extraction of Chromium with Trioctylphosphine Oxide," ORNL-2326, July, 1957.

9. White, J. C. and Ross, W. J., "The Use of Tri-n-octylphosphine Oxide in the Solvent Extraction of Zirconium," ORNL-2498, April, 1958.

10. White, J. C. and Ross, W. J., Analytical Chemistry Division Annual Progress Report for Period Ending December 31, 1957, ORNL-2453, p.68.

•

ORNL-2627 Chemistry-General TID-4500 (14th ed.)

INTERNAL DISTRIBUTION

1.	C. E. Center
	Biology Library
	Health Physics Library
	Central Research Library
6	Reactor Experimental
•••	Engineering Library
7-26	Laboratory Records Department
27.	Laboratory Records, ORNL R.C.
	A. M. Weinberg
	L. B. Emlet (K-25)
	J. P. Murray (Y-12)
	J. A. Swartout
32.	E. H. Taylor
33.	E. D. Shipley
34.	E. H. Taylor E. D. Shipley M. L. Nelson M. T. Kelley
35.	M. T. Kelley
36.	C. P. Keim
37.	W. H. Jordan
	R. R. Dickison
39.	F. L. Culler
40.	S. C. Lind
41.	A. H. Snell A. Hollaender K. Z. Morgan
42.	A. Hollaender
43.	K. Z. Morgan
44.	T. A. Lincoln
45.	A. S. Householder
46.	R. S. Livingston
47.	D. S. Billington
48.	C. E. Winters
49.	H. E. Seagren D. Phillips
50.	D. Phillips
	J. A. Lane
	M. J. Skinner
	G. E. Boyd
	C. L. Burros
77. 56	J. H. Cooper
50.	L. T. Corbin C. Feldman
ノイ・ 5名	D. J. Fisher
<i>.</i>	D. C. LIDHEI

59. U. Koskela 60. W. R. Laing 61. C. E. Lamb 62. D. E. LaValle 63. G. W. Leddicotte 64. S. A. Reynolds 65. P. F. Thomason 66. T. E. Willmarth 67. G. R. Wilson 68. E. I. Wyatt 69. L. J. Brady 70. H. P. House 71. J. R. Lund 72. E. C. Lynn 73. 0. Menis 74. A. S. Meyer, Jr. 75. A. F. Roemer, Jr. 76. C. D. Susano 77. C. K. Talbott 78. J. C. White 79. W. F. Vaughan 80. J. P. Young 81. H. P. Raaen 82. T. C. Rains 83. D. L. Manning 84. W. J. Ross 85. K. B. Brown 86. D. J. Crouse 87. C. A. Blake, Jr. 88. C. F. Coleman 89. C. F. Baes, Jr. 90. D. N. Hume (consultant) 91. C. E. Larson (consultant) 92. L. L. Merritt (consultant) 93. N. H. Furman (consultant) 94. G. Friedlander (consultant) 95. H. A. Laitinen (consultant) 96. ORNL - Y-12 Technical Library, Document Reference Section

EXTERNAL DISTRIBUTION

97. L. B. Rogers, Massachusetts Institute of Technology

- 98. Division of Research and Development, AEC, ORO
- 99-659. Given distribution as shown in TID-4500 (14th ed.) under Chemistry-General category (75 copies OTS)