NOTICE
This roporil was prepared at on eceound of work aponyofed by the U円inad gistel Gavermpenc. Neither The Unified Slates oort the United Sales Alombe Energy Commission h, thar shy of their employer, nor thy of Ibis cantracrory, subcon tractors, or their employetes,
 If gal liability of taspogalbility for ito accuracy, sem
 product of process tiaclocid, or rapiessifit that its late would not infringe privalety $\mathrm{onwh}_{\text {wi }}$ rights.

*Prebent address: Rerinerla Dominican de Petroleos, S.A. Sarto Domingo, D.R.

ABSTRACT

The vapor pressure of potassium wa experimentally determined from 2100 F up to its critical temperature. An empirical equation of the rom in in $P=A+B / R+C$ in T $+\mathrm{Dr}^{1} 4$ twas found to best fit the data. A critical pressure of 2373.2 ± 4.0 psia (161.79 ± 0.27 att) ms measured. The corresponding critical temperature, extraplated from the Pressurp-temperature curve,

The technique employed was the pressure tube method developed earlier in this laboratory and used for determining the vapor pressure of rubidium and cesium. This method measures the critical pressure directly, as well as the vapor pressure at lower temperatures.

INTRODUCTION

Potassium has been studied as a nuclear reactor coolant and as a Rankine cycle worlcing fluid for space power plants. For design and optimization of such uses, the vapor pressure is needed up to high temperatures, and preferably up to the critical point. In addition, critical point properties are useful in correlating and in predicting other properties. Finally, the family of the alkali metals provides a sequence of metals of graduated properties Hist which corresponding states an m be compared and the nature of the liquid state studied.

Accordingly, the vapor pressure and critical point of potassium were measured by the "pressure tube" method, devised and initially employed with cesium (1-3) and rubidium $(4,5)$ in this laboratory.

APPARATUS

The equipment employed with potassium (Fig 1) used the same concept as earlier or a smail-bors "pressure tube" closed at one end and connected at the other to a 11quio injection and high pressure measuring system. As before, pure dodecane was used above the alkyl metal to force it n the pressure tube and to transmit the prated pressure to the gauges. Also ssure was read by a 3000 psi Hesse grange (6) and a 5000 pas CEC (7) transducer,
both calibrated with a dead weight gauge. However, substantial improvements were adopted for this study. The pressure tube, Including the closed tip, was now made of chemically vapor -deposited tungsten in one piece, $0,10 \mathrm{in}$, ID $x 0.34 \mathrm{in}, 00$ $x 15 \mathrm{in}$. long (8). The open end was then centerless ground to 5/16 in. OD for a Gyrolok coupling to the system. Another key Improvement was the use of a "displacemint valve" or injector, a high pressure valve having a $3 / 81 \mathrm{n}$, diameter valve stem with a low-leakege Morion cylindrical or Vito o-ring packing (9). The seat was drilled out to permit a longer stem travel, and the valve handle was fitted with a pointer and a scale graduated in hundredths of a turn. An additional injector was mate from a high pressure stainless steel bellows (10) fitted with a chose -pitch compression screw, also with a pointer and scale. It was too "sort," or compressible (high GV/dF at constant acting), to use or to leave in the active system while determining a vapor preseure, but was helpful for transferring substantial amounts of dodecane into or out of the system when necessary, then shut of.

The tip temperature was given by four $\mathrm{H}-5 \% \mathrm{Re} / \mathrm{N}-26 \%$ Re pairs of 0.010 in. bare thermocouple wires (in) with Mg sleeves 1 (12). Tho more thermocouples 0,5 and 1.0 in. away verified the positive temperature gradient towards the tip. The calibration provided every 200 F by the manufacturer Has fitted by Least squares with a cubic equation in temperature. The consensus is that this thermocouple wire does not drift in calibration with moderate times. At least over the several days required by each group of runs, this was verified by the good agreement among early and late points of P Vs T .

Welding of tungsten tends to initiate grain growth and brittleness. Accordingly, the thermocouple wires were not welded together, nor to the pressure tube. Instead the 8 tip wires were placadaltermating in composition around the tip, leading axially a way from the tube, then firmly tied down

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
by several turris of 0.003 15. tungsten wire with its ends twisted tightly together. This arrangement substantially transferred the effective not junctions to the contaets between the thermocouple isires and the pressure tube, calculated to be well within 1 F from the actual inner tip temperature. It also facilitated utilizing overy wire that remained if one or more of the wires should becone open-circuited, or picking a pair of spaced wires as a monitor couple, since each wire composition led to its own selector switch, and any one wire of each composition could be eraployed. In the c-runs themocouples were read digitaliy (14) for apeod and steadiness, and verified with a precision potentiometer at intervals. The furmace (15) was rated at 16 FVA and 2500 c and employed a 7.5 in. ID graphite tube heater 15 1n. long, in an argon atmosphere. A thyriston SCR with phase angle control (16), enploying a Dekapot working pa load IR drop, yielded very steady and Finely controllable furnace temperstures. Downtard insertion of the pressure tube into the furnace was employed, as with Cs and Rb , to minimize ifkelihood of interference of possible inert gas left in the system with the vapor space at the tip. The possible disadvantage of inistability in the observed pressure, dua to inquid railing at the interface, was only dbaerved in 3 rans ($C-4,11,12$) and did not cause disagreement between these break points and the vapor pressure correlating equations.

Experimental Procedtre

$$
\text { Ihe sygtem }(F 1 g 2) \text { was rirgt }
$$ evacuated, then filled with 99.995% argon and reevacuated, several tiams. Then the pressure tube section was shut off and charged with 10 g of molten patassium (Tabie I), fliling it and part of the $S S$ tubing above it. Keeping the K moiten, dodecane in the reservolr was deaerated by bubbiling argon, the syeter reevacuated, and the dodegane passed downards, completely filling the remaining system space. By passing $D C$ along the $5 S$ tube and heating it with a Eunsen birner until a sharp IR break. In the tubing was obtained, wetting of the tubing by the K was achieved and the location or the interface verified. During charging and at all later times it is necesiary to prevent penetration of the oil dom into the K, where on later high temperature runs it would erack thermally and plug the presaure tube. This can be achieved by keeping the K molten by a low rurnace power and heater tapes on the adjacent SS tube. For shutdomas it is necessary to cool and freeze the K sequentially from the pressuretube tip to the interface in the adjacent tube, avoiding freeze cracks. Remelting for later rund is done in tha reverse gequence. Thus the pluge encountered previousiy with Gs and Rb , and after runa A end G , causing the termination of those runs, can be avolded.

VAPOR PRESSURE

mo obtain vapor pressure data, furnace poner was adjusted until a steady tip temperature was observed in the desired temperature range. The bellows was then used to introdure or remove oll, so as to adjust the aystem pressure to about 100 psi below the expected vapor pressure twith the injector stem at its outernost position. This ensured on adequate but not exnessive vapor space at the tip of the pressure tube to complete a curve without further K addition. The K vapor-1iquid interface was now slawly forced towards the tip by turning the ingeetor handle inwards in small increments. This basically reduces the total system volume, and 15 equivalent to injecting K into a constant volume apparatus.

The vapor-1iquid interface encounters rising temperatures as it maves totards the tip. The pressure inside the apparatus is seen to rise instantly to a new velue with each amali increment injected, which is the saturation vapor pressure at the local pressure tube temperature where the interface happens to be looated. Thus, the pressure increase follows the temperature gradient elong the pressure tube, After the liquid completely rills the tube, the pressure in. ereates much more rapidly due to the greater "hardness" of a completely inquidfilled system. For each run the output of the pressure transducer was plotted on a recorder, and the keise gauge rading and

TABLE I
R MALYSIS PROVIDED FOR THE ${ }^{\text {HIOH PORTTY }}$ POTASSIUM" SUPPLIED IN OLASS CAPSULES BY MSA RESEARCH, INC.

tip thermocouple voltases written on the chart at the correct time. since a aniform time interval was emplpyed for each point, a direct plot was obtalned on which a preiminary observation could be made of the break. Howsver', the Helse gauge readings were considered more reliablet and were enployed in the final plots, e.g. Figs 2-4.

Fig. 2 Run Bu (Suberdtical)
Tip temperature: 3389.69 R Break pressure : 1032.34 psio

The two branchea of each plot were then extended by straight-edges or French curves to their intersection, A correction for hydrostatic head of the gauge eenter over the pressure tube tip was added, and the tip temperature was obtesned from the rerrocouple wire correlation, using the rerage of the tip thermocouple valtages, *ter eliminating eny that aright have fallen olat of general egreement with the others. A typtical high temperature break is shown in

Fig 2. The procedure was continued for a number of volume and preseure increments beyond the break in the pov curve, then the injector valve stem vas seresed out and the procedure repeated at a new tip temperature.

CALTICAL PRESSURE
In a serias of runs at increasting temperatures, evontually the pressure tube tip refaches and exceeds the eritical Eemparature, T_{e} In this situation, some point along the pressure tube, slightiy above the tip, has exactly reached T_{c}. then the 1iquid-vapor interface reaches this position a change suddenly oceurs: this interfase disappears, and all of the rluid down to the tip ehanges from suberitical vapor to supereritical fluid. Experimentally it is found that a break, though less sharp, still oceur's in the P-V curves. The break is evidentiy obtainec at this location, namely at the critical pressure, P_{c}. which is thos observable, and at Te, which is belon T but is not determinable from the test alone, sinte neither the location of the interface nor the exact temperature distribution along the tube is known. P_{C} is veririabie by other runs at other high tip temperatures, which are round to shov their breaks etili at the eame presture, uithin a relatively high order of reproducibility for these rather extreme conditions *

Six points with supercritical tip temperatures were obtained, as listed in Table II, With widely different T, but P_{E} within a spread of 0.3 . Fige 3 and 4 shou typleal stupercriticai runs. An intaresting difference is that Fig 3 shows an increase in slope at the break, as with the suberitical

P1g. 3 Run B26
Tip Tenuperature: 4347.18 月 (Supercritical) Break Pressure : 2381.00 psia (Critical)
runs, wheregs Fig 4 shows a decresse in slope. On inspection, muns B-16 and 22,with tip superheats of 246 and 263 F , show increases. Funs C-8 and 18, with tip supertests of 36 and 19 F show decreases. Evidently high tip superieate cause slope increase and vice versa. Runs B-15 and 17 , for which the tip thermocouples falled, show slopat decreases, and presumably did have low tip temperatures. Interpolating

Pig. 4 Pun 014
Tip Temperature': 4129.7 R (Supercritical) Break Presture : 2373.52 psia (critical)
on a plot of alope increase at the break vs ($\mathrm{T}-\mathrm{T}_{\mathrm{C}}$) gives tip supermeats of some 42 and 28 P, respectively, for these runs. About 5 ? to 68 F 18 obtalned as leading to no visible break. This abservation might be verifica theoreticaily, for a given tip tempersturg, by intecretins along the tube to the tip, with an appropriate temperature digtribution, and obtaining the integrated volume contraction for a small pressure increment. However, it has the practical result that if supereritical runs on oceasion do not shoo a break with a particular subctance in a given apparatus, one can probably overcome that dirficulty by raising or lawering the tip temperature while stiIl exceeding the critical temperature range.

Kxperimental Fesults

Fhree separate geries of rung were capried out. Funs A and B yielded enough results for the thesis (17). Runs c were carried out as an added check on the prior resulte, and to obtain more data in the critical region.

The 44 points collected are given 1n Table II and. except for the 4 that were rojected for large deviations, are plotted in Fig 5, with the last 100 er enlarged in

Fis 6. The tip temperatures are considered reproductible to ± 20 microvolts, or 2 F , with uncertainties in the calibration raising the standard error to about 5 F. The pressures are considered reproducibie to within about 1 psi , and accurate to about 2.5 psi , which yielda a standard error of about 3 psi, considerint errors In the gauge and in the graphical interpection.

Fig. 5 Vapor presgure of potasstum

Fig. 6 Vapor pressure of potass 1 mm critical region

CRITICAL PRESSURE

The aritics pressure values in Table II yield a mean of 2378.2 psia with a standerd deviation of 3.06 pR1a. An add1tionsl eatimated uncertainty or 1,0 psia in the breakpoint and e gatge reading uncertainty estimated at 2,4 paia yield a standard error of P_{G} of 4.0 psia.
CRITICAL TEMPERATURE
Determining T_{C} requires extrepolating the vapor pressure as obtalned from the experimental points to the accepted P_{c} of 2378.2 pela. This could be done by fitting

TABLE II
EXPERIMERTAL DATA ON VAPOR PRESSURE AND CRITICAL PRESSURE OF POTASSITMA, AND COMPARISON WITH CORRELATINQ EQUATIONS

all of the points by least squares with a alngle equation of as many termis as is appropriate to minimize the standard det viation of the points from the equation. However, this would be imposing a single fom of equation over the full temperature range, and in all probability increasing the deviation of the correlation from the higher points compared to a correlation limited to these points, wich should have the greatest influanc in extrapolating to obtain Te.

Accordingly a simple Young's equation was fitted by least squares to only the top 10 points in Fig 6, yislding for P in psis and T in deg R :

1n $\boldsymbol{F}=11.524581-15,397.048 / \mathrm{T}$
with a standard deviation of $0.49 x^{4}$ Substituting $\mathrm{P}=\mathrm{P}_{\mathrm{c}}=2378,2 \mathrm{psiz}$ yields $\mathrm{T}=\mathrm{F}_{\mathrm{C}}$ -4105.4 $\mathrm{F}(2280.8 \mathrm{~K})$, itith a eormined standari erime of 5 R. This is accepted as the critical temperature of potassium from this program. A 3-teral Kirehhorf equation was found not to pield a lower standard deviation than oq 1. It gave $\mathrm{T}_{\mathrm{c}}=4107.4 \mathrm{R}$, which does not seern preferable to the straight-line result 4105.4 R , as a T_{c} lower than 4105.4, if different, might be expected

VAPOR PRESSURE

To fit the vapor pressure datz over the full temperature range of this program, additional terms would be needed. thtilizing the full 34 accepted subaritinal pointa, the following equations were devejoped:
Least Squares Kirchhofr equation:
In $P=6.54786-14614.9 / T+0.576926$ In T
Eq 2 yielded a atardiard aeviation of 1 n P of 0.0107 , and an RMS error of the pressures themselves of 1.07%, and yielded T_{C} mo91.6 k㫙 $P_{0}=2378.2$ psia. Noting the 14 R dis. crepaney in T_{c}, it is evident, that this 3-ters equation aannot fit these data, considering the wido teroperature range they cover, as closely as would be desired. Howerer, if only a 3-term equation is preferred and full closeness of rit 15 not required, eq 2 could be suitable, and oimpler than using more terms.
Pour-temp Least squares equations
1n $P=3.40397-25401.1 / 14+1.05145 \mathrm{in}$ T

$$
-2.38226 \times 10^{-6} \mathrm{~T} .5
$$

Eq 3 yielded a \quad tandard deviation of In P of 0.0042 , and an RMS Error of the P values of 0.43%, and yielded $\mathrm{T}_{\mathrm{c}}=1105.5 \mathrm{R}$. Eq 3 was estabilshed by applying an equation of this fomm to the 34 posnts with values of the exponent of the last term varying from 2 to 5 in incremente of 0.5 and with the edded constraint of passing through a bet Tc from 4203 to 4107, alao in increments of 0.5 , at the established P_{c} of 2378.2 psia. Eq 3 , then, has the exponent of the last term that best fits the 34 points and aimultaneously yields $T_{c}=4105.5 \mathrm{R}$, which of course is edegustely close to the se-
lected 4105.4 R for all purpodess. Aetuelly, decreasing the set T_{c} filightly deareanes the $\%$ totel error further, to a minimisg of 0.427 at $T_{c}=4104.0$, the optimum exponent remaning at 1.5. It would seem that eq 3 best combines aft of all the data points while weighting the important eritical region.

Presaures salculated by the above equations 1-3 at the experimental tenperatores of the secepted ouberitical runs have ben added in Table II For comparison. Et 3 if seen to only once (point B-12) depart by over 1% from an experimental point, and most calculated values are within several tenths \$. It thus seems appropisiate for all purposes to employ values calculated by eq. 3 , and not to compare calculated vs experin. mental groups by temperature regions to obtain slight additional corrections for eq 3. Table III has been prepared Iron. eq 3 for corvenient interpolationa

Bowles (28) developeá a rattuxing apparatus superfictilly similer to that used in this work, in that it employed basicaily the same componentso fowever, the eapsule (1.0° e pressura tube) was muctr larger, 0.7 in. ID. In addition, pains were taken to make it'ajmost ipotisenmal overits rull length of 12 ins, , with a silght temperature secrease of some 1 to 4 C going from bottom to top. The crucial difference was that eath vapor pressure point'wis obtained at a constant level. with the capsule only partialiy filled and the patessius slowly vaporizing frow the liquit pool, condensing higher up, and refluxing. Presmart
 bottom cominetion was raquired. The top center thermocouple was taken as giving the saturation temperature for the observed liquid pressure. This equipment was evidently carefully tonstructied but would seem to have had possibie acurces of error in the suostantial vepor and iaquid volumes in the large capsule, which might originate or obseure gignificant temperature variaz tions, ineluding colder spots in the wall of the vapor space, which might decrease the generated pressure. Houever, Bowles. ne sulte, which reach to about 200 F and 340 psi below the aritical point, agree within about 0.5% with the present rebuits, as seen in Fig 5 and Table IV. Thuss, wh recognize that he mast heve achieved so uniform a temperature, or in fact so eonsistent a low negative temperature gradientto the top, that his wesurts agree with onirs, which extrapolate to zespo active volume. This agreament reinforces the vallaity of our pressure tube method and reandts, as well an of hid onn experimental gare and resulta.

Freylend end thensel (29) omployed a thethod spmewhat similar to Bowles, but with a smaller, thin-walled oapsule, 26 mur tail and 6.85 mm in ID . They also utilized the capsula to determine electrical realetin vity of the ilquid K , and from the electrical
$\ln P=3.40397=25401.1 / T+1.05145 \ln T-2.38226 \times 10^{-6} T T^{1.5}$

7	F	T	P	T	P	T	\mathbf{P}
$\cdots 900.0$	32．53	2599．	10．75	3060，0	605＊ 05	$35=9.3$	：751＊＊2
20：0．0	37.27	>560.0	136.15	7070，0	616405	350000	136 Br ？9
$30>0.0$	35， 37	フラ介0．0	10\％： 6	30，0，0	6） 7.97	34.0000	1385．57
2030．0	3 AnP 5	246？${ }^{3}$	790.57	＋49A00	639＊＊5	34，3． 0	$1<0 \underline{2}, 16$
2040.0	39．39	7570．0	712.30	3100.0	450．72	1420，0	1430.76
2050．2	35．97	2590，0	317.4	3110.0	681.71	3440.0	143 A 46
$20 \leq 0.9$	40.50	7 ¢ J 0．0	273.04	71 20000	673.73	7550．0	145 ¢． 31
7.470	63， 79	7500.0	72 B 71	3） 3 ？${ }^{3}$	6R4．97	3850.0	1674.76
2779＊	45.51	$? 180$	234.48	3） 40.0	$4^{7} 6.64$	7579.1	149？．31
7 mog 0	46．79	26 $\geqslant 0,0$	240.75	7159，0	709＋51	7590.0	$\pm \leq 10.47$
≥ 19000	49.52	26．9000	246．72	31×70	729．51	3.500 .0	
710.0	50.31	264\％．9	252．39	7170．0	737．53	1700.0	154743.
212000	52．46	265000	2585	719000	744＊ AB	3710.0	7565.8 ？
	54.45	2660.0	784．93	317% \％	757＊ 24	37200	1584．23
$31 \leq 0.0$	56.51	7670	771.75	7200.0	769.73	3720	1602.84
2150.0	$59+43$	7690．0		2719.8	782＊＊＊	374040	162I． 76
3153.3	$\rightarrow 0,30$	2609．0	284，75	$\cdots ? 20.0$	745.39	1750	164080
2！TM，	63．53	3700.18	270．35	3） 30.0	$80{ }^{\text {T }}+3$	3「ヶ\％4	169\％．71
ワ990．0	65．9	771000	29744	9き4	日？ 0.31	377000	1678．95
？＇， 90.0	47．4拷		$304+4$	？ 2 ¢0．0	F74．01	37804	1898.09
7ア900	70．09	2790．0	${ }^{2} 11.65$	7240.0	647．23	5790	1717444
7219．7	72.51	774000	318.76	$\cdots 270.0$	A60．6．7	3月0030	1736.95
73200	＋${ }^{\text {a }}$ ？	7750.0	$3 \geq 5.35$	77 90， 0	874． 24	19！ 0.0	1756．45
72×0.0	71， 73	7740.0	33．3．21	3240.5	日月7．62	1420.0	1776．？1
2240.3	80，40	2777	$3 \cdot 1474$	33000	901.23	333000	1795.58
7．750．0	87． 5	3750.0	149\％29	3310.0	\％15，76	7940.0	1815.74
2260．0	A5， 36	7\％000	755．95	$33 ? 0.2$	929.15	1950．0	1835．71
2？ 70.0	\％8．74	7875.0	363.71	7770.0	943419	355000	1455．77
ラッ：0．0	97.79	？ 810.0	271．59	$73+0.0$	957．39	33700	1875．94
2．779．9	94.91	7220.0	279， 58	3150．0	－71．49	－¢ ¢\％	1．496－21
7370.3	97．90	7330.0	319749	3760．0	988， 3	34 OLO	1916.57
$7 * 10.0$	101．37	2740.0	305,90	3×70.3		79000	1.157004
2：79．9	1024？	2959．0	4？ 4_{4} ？ 3	3980	1075.36	3219．2	1957.60
71200	307．43	7360.0	42.57	13000	1020.15	3700	\％ 978.85
7） 30.0	111．02	7470	421.03	7670．7	1045.97	707080	1 安732
2350．0	114．47	7989	472＊ 20	3410.0	1040.15	374000	Z050．97
$\Rightarrow \geqslant \in O, 0$	118.07	75900	A38．5 ${ }^{\text {¢ }}$	3470.0	1075.27	3090	204089
7． CH	！21．86	2＇00．0	447．59	3430.0	1090.55	3060.0	2761.95
$ラ 190,0$	125.3	3910.0	456.60	3660.0	1105.74	3970.0	2082.97
$\begin{aligned} & 7390.0 \\ & 7405.9 \end{aligned}$	129，14	7a20．0	465.73 474.78	7450.7 3480.0	$\begin{aligned} & 1121.45 \\ & 1177.09 \end{aligned}$	7580	2104\％${ }^{\text {a }}$
$\begin{aligned} & 7407.2 \\ & 7610.0 \end{aligned}$	17345 13656	2729.9 7440,9	474．78	$\begin{aligned} & 3420.0 \\ & 3470_{2} 0 \end{aligned}$	$\begin{aligned} & 1177,0 \% \\ & 1157.94 \end{aligned}$	7779.1	？ 12.254
3670.0	13646 14.27	7040．9	$484 * 74$ 603.32	3.4950	12684．72	4000.0 $40 \% 0.0$	2145．35
24．0．0	，145．10	29＋5．）	503．62．	340000	1 IRA．71	4020.0	2100.94
7640.0	149．30	20\％0．0	513． 4	3500，0	12072 Rt	40．0．0	2211.73
765\％．7	153.59	209000	522．5自	3510.0	1717 04	4 NaHyy	2233．53
7450．0	157．75	3070	532．73	7520.0	1337 76	4050	2？55．36
2.300	162.63	300000	54.3 .01	3530.0	$124{ }^{\text {\％}}$－ 80	4J50 0	2277．70
34 ¢ C． 3	166．75	3720．	553.39	3040，0	126845	437 m	2740．34
34.000	17140	30\％0，0	563.51	7550.0	1283010	4080．0	2.321 .66
750000	776.33	3090．0	473， 74.	356．7．	209.91	4070 FO	2343.56
7510.0	181．14	$\cdots 34 ?$	584．49	＊590．6	1336.95	4100.0	2365．75
75700	186， 55	3050.0	509，16	35 RO 0	133389	4105.4	2378.17

From：W．R．Jerez，V．Enise，S．Des Gupta and C．F．Bonilla，Sixth Symposlum on Thermophyaical Properties，ASNE，Atlanta（ig73）
resistance to verify that vapor phase was present in a vapor pressure determination. Their tests shouing a substantial constancy of the temperature at the top of the capsule while refluxing isoberically at different pates qeemed to confirm the merit, in the boiling method, of measuring condensing rather than boiling surface, temperature. Hovever, they selected as the critical point a condition of instability in the cell, which, ag shom in FIg 5, is about 150 F and 70 psi too 10 w , and, in fact, rether far from the vapor pressure cume. Furthermore, their vapor pressure data, as seen in Fig5, 6 have a higher slope than ours, agreeing with og 3 at approximately 2860 F and ranging from lower belou that tempereture up to 9.4\% high at 3956 R , their gupposed Te.

It would seem that the mein trouble is that with a wide vertical cell and a regativa temperature gradient, instability is to be expected before the critical point is reachect, and Bowlea probably did not encounter it because his maximura temperature was somewhat lower and his 'tenperature gradient and L/D ratio much emaller. It also seems probable that Preyland and Hensel at their higher temperatures would not have observed as good constancy of their condenaing terperature with change of capsule temperature gradient as they did in the run reported at 23 bars (19). For a given capsule overall ΔT, the boil-up rate would no doubt increase with P (20), and very probably the condensing film aT would incroase, and the surface temperature would have to decrease. Presence of any noncondensible gas would have a similar effect. Thege effects are both in the direction of the main discrepancy in their vapor pressure data, In particular, it may be that accurate critical property determinations cannot be dependably carried out in capsules with finite volumes of both ilquid and vepor phase, and that extrapolation to the cons dition of a single phase, only locelily at the critical point, as made uge of in the "pressule tube" nethod here employed for P_{G} and T_{c}, and approximately in the "tiltw ing capsule" method for po and T_{c} (21), is preferable.

Among the prior studies or the vapor pressure of potaseitun, that of Euing et al (22) was the most complete and reached the highest temperature, $2836 \mathrm{R}_{\text {. }}$ Table iv shows that agreement with his equation is obtained at about $3200 \mathrm{R}_{\text {, }}$ his pressure being some 2.7% high at 4000 F . It is therefore undesirable to extrepolate his Xirchthoff-type equation beyond some 3200 R ,

TABLE IV
COMPARISON OF CORRELATIONS FOR VAPOR PRESSURE OF POTASSIUH (PEIA)

${ }^{\circ} \mathrm{R}$	Eq 3	Bowles (18)	Ewing Et al(22)
2400	(133.01)	130.14	127.67
2800	363.71	364.44	358.50
3200	769.73	774.60	(770.2士)
3600	1360.29	1372.74	(1385.76)
4000	2146.95	2145.15	(2203.75)

Thesa equations in psia end R are:
Bowles: in $\mathrm{P}=2 \mathrm{~L} .13050-19945.3 / \mathrm{T}-1.02160$ ln T
Ewing et al: in P. $=$ 16. $82326.18732,22$ T

- 0.53560 In T

THERHODYNAME CONSISTENCY
As an independent verification of the internal consistency of the vapor pressure data, the "Third Lax" check was applied(23). The heat of vaporization of the monomer at absolute zero was computed for each measured saturation point. The equation employed is:

The vapor dinerization equilibrium constant K was obtained from Stull and Sinke (24) and the enthalpy and entropy functions from the formulae for $C_{p}(T)$ ysed by Earling et al (25). This average ($\left.\Delta H^{0}\right)$ v má $22.267 \mathrm{Kcal} / \mathrm{g}$ atom, some $2 \$$ higher than 21.7 as calculated from low temperature measurements (26). In addition, there isa slight dteady deorease in ($\left.\Delta \mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right) \mathrm{V}$ of 1\% over the whole range of 2700 to 4100 K . with a standard deviation of 0.5% of the points fron the best strejght infe. AccordIngly, these vapor prestrure values arg mell corroborated by this standard test.

Due to the uncertainties in the required extrapolations of the several thermodynaralc functions to these considerabiy higher temperatures, it was also deaided to determina the avarage co, which would eliminate the modest trend with tenperature of (ΔH_{0}°) γ. It was found that a Cp, of 0.213 yieided an average ($\triangle H_{0}^{\prime}$) of $23.816 \mathrm{Kcal} / \mathrm{g}$ atom with a atandard deviation of 0.17%. Lasuing out the 7 lowest tem perature pointa, with preaumabiy the least gecuracy in vapor pressure, the average (ΔH_{0}^{o}) b becomos 23,835 over the range of 3200 to 4100 R , with a standard doviation of only 0.05\%. If these vapor pressure data are accorded greater accurscy than the extrapolation of $\mathrm{C}_{\mathrm{p}, \mathrm{I}}$, tt would be concluded
that a constant vailue or' $0.213 \mathrm{cal} / \mathrm{g}$ deg K "or $C_{p, L} 18$ preferable to the function or ' in this high femperature range, even hough the (ΔH_{C}^{δ}) v obtained is gome 10 hlgher than reported by Evans et al (26).

hOMENCLATURE

($\Delta \mathrm{H}_{\mathrm{O}}^{\mathrm{O}}$) y standard heat of vaporization of potassium monimer at 0 R , cal/g atom
K Equipibrium constant of aimerization, atm ${ }^{-1}$
P_{s}, P Vapor pressure of saturated 11quid,atm
P1s Partial presaure of monomerie potassium, athи
($\mathrm{r}_{\mathrm{p}}^{\mathrm{O}}$) Enthalpy at standard state, BTV/1b
$\mathrm{s}_{\mathrm{T}}^{\mathrm{D}}$ Entropy at standard state, BIU/Lb R F Gas eonstant

ACKMONLEDCEPENT

This work was supported by the Division of Fesearch of the U, S. Atomic Energy Commission under contract AT(11-1)-3027 With Columbia univergity. This article is designated report $000-3027-4$.

Assistanse by research otudents f. Larrain, L_{4} Breitstein, and $\mathbf{J .}_{-} W_{*}$ Chung of the Liquid Netals Research Laboratory, services by F. Antezand, F. Lech, and G. Trost of the Department of Chemical Engineer1ng, and cooperation by R.D. Brooks of the Nuclear Systems Programs, Spact Division, General Electric Company, are also much appreciated.

reperences

1 Sllver, I.L., "Vapor Pressure and Critical Point of cesium, Eng.Sc. D. Dissertation mith C.F. Bonilia, Division of Nuclear Science and Engineering, Columbia University, 1968. Rvail. Univ, Hicrofilme.

2 Silver, I.L. and Bonilia, G.P., "The High Tmperature vapor Preasure and the Critical Pressure and Temperature of cesium by Direct Measurement," Proceedings of the 5th Symposium on Thermophysical properties, ASHE, PP. 461 -467 (1970). Also: CUT $2660-61$.

3 Stuteville, D.W., Ehtie, W.S., Das Gupta, S., Chung, J. $-W_{\text {, }}$, and Bonilla, C, F., ${ }^{\text {a }}$ Revision of High Temperature and Criticai Properties of Cesium, submitted to the 6th Sympositum on Thermophysical Froperties, ASME (1973).

4 Pise, V.S., "Vapor Pressure and Critical Point of Rubidium, "M.S. Thesis with C.F. Bonilla, Dept, of Chemical Engineering and Appifed Chemistry, School of Engineering and Applied Sclence, Columbia University, 1969. Also: CU-2660-51.

5 Bilse, V, S. and Bonlila, C.P., "Vapor Pressure and Critical Point of Fubidium," submitted to the 6th Symaposium on Thermophysical Properties, ASME (1973). A1so: $\mathbf{C 0 0 - 3 0 2 7 - 5 .}$

6 Helae Bourdon Tube Co., Newton, Conll., type CN. 16 it. diameter 3000 psi test gajes.

7 Consolidsted Electrodymamics Corp., Monrovie, callf. Type 4-326-0008, corro-sion-resistant high range pressure trans. ducer (5000 pei).
B San Fernando Laboratories, Facoima, Calif., muclear grade CVD tungsten.

9 Hoke, Ime., Cresski21, N.J., 10,000 psi hydraulic valve mode1 3514'F8E.

10 alardser Bellows Corp., S.S. bellows, 2 in. active jength π I. 002 in. OD, 3300 psi rating.

31 Horkins Mrg. Co., Detroit, Mich.
12 Norton Company, Refractories Div., Worcester, Mass. Magnorite fused crushable insulator tubes (99.48 Mgo minimum).

23 Larrain, J. and Bonilla, C.F., "Cross-Conduction' Errors in Thermocoupies," Nuclear Fingineering and Design, Vol. 0 , pp.251-272 (1968). A1s0: cu-2650-42.

14 Weston Instrument Co. Model $1294-0270600$, 4-1/2 place, 0-200 my digitel milivoltmeter.

15 Centorr Associates, Ine., Suncook, $\mathrm{N}, \mathrm{H}, \quad 2500 \mathrm{c}$ graphite tube rurnace.

16 HaImar Electronice, Inc., Columbus, ohio, Model fAl-2475 single phase controller. 17 Terez, $W_{*} R_{*}$. "The Vapor Pressure and the Critical Point of Potassium," M.S. Thesin with G.F. Bonilla, Dept. of Chemical Piggineering and Applidat Chemistry, Sahool of Engineering and Applisa Science, Columbia University, 1972. A1so: coo-3027-9.

18 Bowits, K.J., NASA Technical Note D. 4535, "Yepor Pressure of Potassiun to $2170 \mathrm{~K}^{\prime \prime}$ (1968).
ig Freyiand, W.F. and Hensel, F., "The Wapor Pressure Gurve of Liquid Potassium up to the critical point "Bep, Bunsenges physik. Cheme, Vol. 76, 1619(297z).

20 Crichelli, M.T. gnd Bonilia, C.F., *Heat Transfer to isquids Bolling uncer Pressure, ", T, A, I, Ch2, E. Vo1. 41,755 (1945). 21 obter, O,F, and Bonilla, C.F., "rthe High Temperature Saturated Phase Densities and the Critical Density and Tenperature of cesiun," Proteedings of the 5 th Symposium on Thermophysical propertien, ishtic, pp.468-474 (1970).

22 Ewing, C.T., Stone, J. P., Spann, J. R_{4} ond M111er, $\mathrm{R}_{+} \mathrm{R}_{+}$, Jourmal of Chemical Engineering Deta, Vol. TI, 452 [196矿. ${ }^{23}$ Tharmophysical Froperties of Sodium ${ }^{2}$, ANㅏ-7323, May 196?.

24 Stuil, D. R, a्रnd Sinke, G.D., "Themotynamic Properties of the Elemente," Advances in Ginmistry Series, Vol. 18 , hmerican triemical soclety (Nov ionic). 25 Ewing, C.T., Stone, J. P., Spann, J. R., Stelnkuller, E. W., Wililams, S. D., and Miller, R,R., "High Temperature Properties of Fotassiun," NRL Report 6233. Sept. 1965 . 26 Evans, W,H+, Jacobson, R., Munson, T.A. and Wagnan, $D_{*} D_{*}$; "Thermodynamic Properties of Aikail metais, ${ }^{H}$ Journal of Research National Bureau of standārde; Vol. 55,83 (1955).

[^0]: Single sleeves, or double sleeve r with both wires of the same composition, were employed, to avoid possible cross-conduction error (13)

