IS-T-641

A software organization for the control of multiple

processes

Jerry*Hamilton Campbell

Ph.D. Thesis Submitted to Iowa State University, May 1974

Ames Laboratory, USAEC
Iowa State University

Ames, Iowa 50010

Date of Manuscript--May 1974

PREPARED FOR THE U. S. ATOMIC ENERGY COMMISSIO
. N
DIVISION OF RESEARCH UNDER CONTRACT NO. W-7405-eng-82

NOTICE
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subconftractors, ot thes cmployces,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or nsefulness of any information, apparatus,

5

product or process disclosed, or represents that its use ‘i
would not infringe privately owned rights, %% E

!

PISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
A
J

At

2

|

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

ii

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic
Energy Commission, nor any of their employees, nor
any - of their contractors, subcontractors, or their
employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness or usefuiness of any
information, apparatus, product or process disclosed,
or represents that its use would not infringe privately
owned rights. '

Available from: National Technical Information Service
Department A
Springfield, VA 22151

Price: Microfiche $1.45

iii

TABLE OF CONTENTS

Abstract |
" CHAPTER I. INTRODUCTION

Literature Review

Software Organization

CHAPTER II. ALECS PROGRAMMING LANGUAGE

Input/output

Stream-orisnted transmission
Record-oriented transmission

Interrupt Processing

EXPERIMENT condition
ATTENTION condition

Multitasking

CHAPTER III. ALECS COMPILER
Overview’of the Compiler
Lexical 5canﬁer
Syntax Analyzer
Symbol Table Sort
Type Converter
Storage Allocator
Code Generator
Tempset

CHAPTER IV. ALECS OPERATIN: SYSTENM
Transient Work Area
System Control Blocks

Task Control Block
Meta Control Block

10
12

15
17

23

29
32

34
43
46
49
51
54
55
58
60
63
65
1
73

74
76

iv

Transient Area Block

File Control Block

Interrupt Control Block

Experiment Control Block
System Control Programs

SYSTEM task

REQUEST task

Dispatcher

CHAPTER V. CONCLUSIONS AND SUGGESTIONS FOR
FUBRTHER RESEARCH

BIBLIOGRAPHY
ACKNOWLEDGEMENTS
APPENDIX A.
APPENDIX B.
APPENDIX C.

APPENDIX D.

78
79
81
82
84
85
88
90

98

103
106

107 -

111

122 -

125

A software organization for the control

of multiple processes
Jerry Hamilton Campbell

Under the supervision of Roy F. Keller and Charles T. Wright
From the Department of Computer Science
Towa State University
It is the thesis of this dissertation that high quality,

non-dedicated software organizations are achiesvable for small
and medium sized computers, This thesis is supported by tha
description of a software organizatiom (ALECS) which combines
a PL/I based programming language, a modular structured
compiler for this programming language, and an attendaant
operating system to support multiprogramming, real time, and
interactive facilities which are normally found only in much
larger computing systems. In particular, the .language -
extensions made to PL/I in the areas of multitasking,
external interrupt handling, and experimental communication
are presented in detail. The compiler for this programming
language 'is also presented aiong with a detailed description
of the operating system which provides the necessary run tize

support for the object programs generated by the compiler.

CHAPTER I. INTRODUCTION

Perusal of current scientific literature reveals the
tremendous impact of laboratory computers in iiverse fields
such as physics, chemistry, biology, psychology, and
engineering. The increasing availability of high-speed,
low-cost computers has ehcouraged their use for data
acquisition, data reductign, and for control of experimental
devices. Complex instrumentation systems controlled by
digital computers are becoming increésingly common where
tedious and routine operations can be controlled by the
computer. In a situation where there exists a concentration
of appropriate candidates for computer control, it is 5ften
less expensive to purchasz and maintain one suitable,
non-dedicated computing system than several dedicated ones.
The attractiveness of this solution, however, weighs vary |
heavily on the quality 2f the software system for the
controlling computer. Typically, the controlling computér is
either a small to medium sized computer and, unfortunately,
high quality general purpose software organizations héveAnot
been developed for such coméuters.

It is the thesis of this dissertation ghat high quality,
non-dedicated software organizations are achisvable for small
and medium sized computers. This thesis is supportesd in the
following manner: |

1. An existing software organization, impl2m2nted on two

2

separate Digital Equipment Corporation PDP-15 caﬁputers,'

is described in some detail.

2; The generality of this software organization is .
demonstrated by showing that it supports
multiprogramming, real time, and interactive facilities
and is thus sufficient to accommodate the various users'
needs.

3. The transportability of the software organization
is demonstrated by showing that its prograﬁming
language is machine independent, its compiler is
approximately 75% machine independent, and its
operating system's structure makes 1t f2asible to
implement semantically egquivalent operating
systenms.

‘Transportability of the software organization was an
important factor at the time this project was conceiveld. The
TASKMASTER [1] system at the Ames Laboratory Research Reactor
{({ALRR) was eight years old and due to bé replaced because of
the limited expansioh capabilities of its outdated hardware.
The software organization detaiLed in this dissertation was
designed such that it could be a candidate for implementation
when the proposal for a new system at the ALRR was accapted.
It should be noted that great care must be taken in
developing a transportable software drganization to insure

that each compiler generates semantically equivalent code and

that each operating system must execute this code in a
similar semantically equivalent manner. Thers must nét exist
any side effects which cause the execution of a program to
obtain differeat results when executed on different target
machines. .It is a goal of thi§ thesis to show only the
feasibility of a transportable sof tware organization. It
will not be the goal of this thesis to apply formal
techniques to shov semantic eguivalence.
Literatufe Review

Fitzwater and Schweppe [2] developed a consequent
procedure network that supports a multitaskiﬁg facility and
programmer-defined response‘tb hardware priority interruptS.
via a high 1evel‘programming language. - Their language, TASK
65 [3], is a dialect of AGOL 60 and is supported by the
TASKMASTER [1] operating systen. The.consequant procedure
network consists of é set of.procedures which are linked into
a network by the programmer via procedure calls. This in
turn leads to a dynamic tree structure in which the branches
are executed in a nonsequential fashion. The tree grows in
response to procedure requests anid shrinks in respoase to
procedure deletion; This concept has proved very successful,
~especially when applied to small computers.

In addition, special purpose blocks of coade can be
created within a procedure to respond to clock and external

hardware priority interrupts. These blocks p2rmit the user

to perform quasi-synchronous sampling at a variety of clock
rates as well as to respond to asynchronous external
interrupts. TASKMASTER has served its purpos2 well but has
outlivedAits effectiveness primarily because of outdated
hérduare ahd outdated implementaﬁion techniquas. It should
be noted that its conceptual apbroath to laboratory coantrol
of instruments is still extremely relevant and many of the
langu;ge structures developed in tﬂis dissertation are
extensions of those proposed by Fitzwater and Schweppe [2].
Another laboratory computer system of great interest is
ARGOS [4], which was developed by Dr. Paul Day at the Argonae
National Laboratory. It is an extremely good examplé of a
large scale real time computing system. ARGOS is impl;mented
on an XDS SIGMA 5 computer with 56K words of aain- memory,
75Mbytes of secondary disk memory, a 3Mbyte RAD (Rapid Access
Device), and many other typical peripheral devices associated
with standard computing systems. The ARGOS 'system currently
handles 19 on-line laboratory instruments. All of the
programming is done in either FORTRAN IV-H or in SYMBOL, an
assembler language. Most of the real time programming is
done by a small staff of programmers and is domne in SYMBOL.
In addition to real time support of laboratory instruments,
ARGOS supports time-sharing, open shop batch proceséing, and
interactive graphics. ARGOS is an example of a large central

computing facility and its cost is prohibitiv2 for most

typical laboratory applications.

Many commercial real time systems available today
support the execution of FOBRTRAN and assembly language
programs by partitioning main memory into explicit foreground
and background.areas. A software priority level will |
normally be assigned to a program when it is cataloged in a
data set after compilation or éssémbly. A program assigned
‘to the lowest priotity level will execute in the background
area. These will typically be batch processing jobs such as
compilations, assemblies, and cataloging. Normally, only one
background program is in main memory at any time and if the
foregfound area needs to expand to accomodate higher priority
programs, the program in the background area will be
checkpointed to secondary memory. Its execution will resume
at the time the foreground area releases the space it
temporarily acquired from the background area.

Programs cataloged t> be executed in the foreground area
normally are assigned two types of priori;y. If a program is
to be executed in response to a hardware priority interrupt,
it will execute at that hardware interrupt's priority level.
All other programs to be'executed in the forejround area ars
assigned software priority levels. The hardware priority
levels take precedence over the software priority levels.

The software priority levels are used only for scheduling

purposes. Communication betvween programs is normally done

via parameter lists or a system common area. References [5],
[6], [7], [8] should be consulted for a more complete -
description of currently available.commerciai systéms.

Today's typical commercial real time computing.system§
suffer from having to support industry standacd FORTRAN IV
and also require most of the real tinme interrupt handling
routines to be written in assembler language. In addition,
their core resident operating systems are larje since they
must include many general purpose features, such as
peripheral I/0 handlers, some of which may not be used. This
is contrasted to the noncommercial sysfems which can be
tailored to the specific needs of the individuaal iaboratory
and require much less overhead in the operating system;

Software Orgamization

The users®' basic needs are the real time support of
laboratory instruments such as x-ray diffractometers, neutrosn
diffractometers, multi-channel analyzérs, and an isotype
separator. In addition to real time support, they also
desire data reduction, interactive terminal-orientel
communication with on-line instruments, and background data
processing. In short, they need a general purpose software
organization capable.of supporting up to sixAinitial users.

A software organization is defined as consisting of at
least one programmiﬁg language, a compiler (or assembler) for

that language, and an operating system containing the

' necessary run-time envi;onmeutal interface essential for the.
execution of object prograhs generated by the compiler (or
assembler). A high level language was preferred for the user
programming language because it is much easier for the users
to write, debug, and modify their programs using a high level
language versus an assembler languageg\ These arguments are
supported by Boulton and.Reid [9] vhen suggesting PL/I as a
potential process control language and by Sammet [10j in a
brief survey of systems impleﬁentation languages.

The high level programming language selected ias chosen
to satisfy the following reéuirements:

1. Be a block structured procedure-oriented language.

2. Contain standard procedure-oriented languagé'structures
as well as language structures suitable for interrupt
handlihg, generalized I/O capabilities for communicatingl
with any external device, énd some‘form of multitasking
facility. |

3. Be a modular language allowing many elements to be
removed or extended without affecting the viability
of the language.

4, Be a well known and uidély,used language.

The above requirements reflect the needs of a real time,
multiprogramming system and also reflect the needs of the |
users for a natural, easy to use, well known programming

language. PL/I, FORTRAN, and TASK 65 [3] wara the threae

candidates for implementation. PL/I was chos2n as the base

ianguage to be implemented because it best suited all of the

above requirements and was the language prefeéred by the
users.

Once PL/I was chosen as the base programming langﬁage,
the primary goal was to select a workable subset thch coulil
be implementéd on a small computer. Hopkins [11] and Holt
[12] describe the problems involved in defining a proper
subset of PL/I and obtaining a good compiler for this subset.
In light of the comments made by them, a subset of PL/I wvas
created as follows:

1. Restrict the set of operators, data elements, statements,
and storage allocation methods to those suitable for
implementation on small computers.

2. Ensure_the compatability of each of the items selected
above and eliminate the conflicting items.

3. Extend the interrupt handling structure and the I/0
stfucture in as patural and compatible manner as
possible.

Chapter II describes this new language in some detail
with emphasis on those features that represent extensions to
the PL/I language. The compiler for this new language is
then detailed in Chapter III with emphasis there 6n those
features of the compiler that relate to the small computer

environment. Chapter IV details the implementation of an

operating systém which supports the run—timé,executidn of
object prbgrams generated bf the compiler. Emphasis is
placed on the overall logical structure bf tha opérating
system as well as some of the schéduling algorithms dsed‘tq
- support the multiprogiamming, réal time, and interactive |
facilities required by the users of the system; Varioﬁs
conclusions and suggestions for future work in the areas of
system implementation languages and transportable compilers

and operating systems are presented in Chapter V.

10

CHAPTER II. ALECS PROGRAMMING LANGUAGE

This chapter briefly describés the elements of PL/I
which comprise the ALECS (Ames Laboratory Experimental
Control System) programming language and then details the
extensions made in the areas of ihput/output, interrupt
processing, and multitasking. The reader should be familiar
with the PL/I programming language and its syatactical
description as given in the PL/I Reference Manual [13). This
syntactical notation is used to describe certain pfogramming
language elements in ALECS. "For a more complate description
of the ALECS programming language, including the syntactical
description, see tﬂe ALECS Language Reference Manual [14].
The selection of PL/I as the base language lel to the
acceptance of the PL/I character set, rules on identifiers
and comments, and other grammatical elements of PL/I. Mahy
elements of PL/I were deleted or modified due to their lack
of relevance to the purpose of the ALECS language.

ALECS supports both integer and real arithmetic data.
Integer quantities are held as an 18 bit two's complement
binary integer. This corresponds to the PL/I declaration
REAL FIXED BINARY (18,0). Real quantities are held as a 36
bit double word, with a 27 bit mantissa in sijn and magnitude
notation and a 9 bit two's complement exponent. This
corresponds to the PL/I declaration REAL FLOAT DECIMAL (7).

Fixed length bit and character strings are also supported.

11

The length of bit strings must be 18. Thg length of
character strings may be betwveen one and 135 characters.
(Varying length strings are not supported due to the
word-oriented ‘structure of the host,compufer.) The above
restrictions placed on arithmetic and string.data are applied
to the object code at executioh.time. Tha language elements’
themselves are machine independent and it is the
responsibilitj of the code generator (see Chapter III) to
generate arithmetic and string data which afe compatible with
the architecture of the host computer.

Label amd event variables are provided for.program
control. Event variables are used ‘to synchronize the
cohcurrent execution of a number of object ptograms. They
also allow the user to perform asynchronous input/output
operations while other processing continues.

The data aggregates supported by ALECS are eiement,
array, and a ;imited form of structures. Arrays may have one
or two dimensions and both an upper and lower bound for eacﬁ‘
dimension may be specified. Structures are restricted to two
levels: the major level (level one) and the =lement level
(level two). ArraysAof structures are allowed but array and
structure operators are not~alloied. Data in arrays or
structures must be operated upon as elements (e.g. by

specifying subscripts with array names).

12

The above mentioned restrictions serve two purposes.
First, the number of array sﬁbscripts and syructure element
levels were limited to two for storage management purposes.
Efficient user multiprogramming on a small computer is
realized only if the users minimize their storage allocation
at all times. By limiting the size of data aggregates, the
users are encouraged fo use disk storage for large Jata
aggregates and have smaller data bufférs allocated 1in core
storage into which they can read, write, and operate on the
data. Secondly, array and structure operaﬁors are not
supported because they would substantially increase the size
of the system resident array and structure run time routines.
Since these operations can be performed in alternative ways,
it is felt that their omission is not a serious restriction.

The ALECS language supports many of the PL/I statements.
Included are element assignment, BEGIN, CALL, CLOSE,

DECLARE, DELAY, DISPLAY, DO, END, EXIT, GET, GOTO, IF, ON,
OPEN, PROCEDURE, PUT, .READ, RETURN, REVERT, REWRITE, STOP,
WAIT, and WRITE. Some of the statements have been restricted
or extended as explained below to better suit the purpose of
the ALECS language.

' Input/output

This section describes the extensions made to PL/I to
support the input/ocutput of information betwe2n internal

storage and external devices as illustrated in Figure 1.

CORE
MENMNORY

MEMORY
PORT

1

3

SWITCH

CENTRAL
PROCESSOR

Figure 1.

EXPERIMENT
' N -
EXPERIMENT,
1
PA PER TELETYPE XDS 910
TAPE CONTROLLER CPU
READER/ (5) TTY
PUNCH
1/0 .
PROCESSOR I,/0 BUS
DATA
CHANNELS .« o e
MAGNETIC| |DISK EXPERIMENT
TAPE (2) N
DRIVE (2)
CARD FXPERIMENT
READER 1

Hardware layout of laboratory computer systenm.

Some of the fundamental data concepts relating to the

input/output of information are defined as follows:

Definition 2.0 Data Set: A collection of data, external to

a progranm, which
as magnetic disk
physical devices
diffractometers,

Definition_ 2.1

representation

sSource progranm

File:

A program specified symbolic

of a data set.

such as teletypewriters, analyzers,

or magnetic tape) or is generated by

is either stored on a physical device (such

and other similar laboratory instruments.

A file exists only within the

and the symbolic representation consists of

14

the file name and fiie attributes which are applicable during -
transmission of data to and from the data set.

Definition_2.2 Stream-oriented transmission: A continuous
stream of individual data items, in character form, are.
transmitted to and from an external device. Upon input, a
pie¢e~of data is converted from character form to a
program-specified internal form. Upon output, a piece of
data is'converted from the program-specified interpal form to

character form.

Definition_2.3 Racord-oriented transmission: A collection

of discrete data items (records), where each itenm 1is
transmitted directly between working storage ind the external
device with no data coaversion.

ALECS supports both stream-oriented and record-oriented
data transmission. Stream~oriented transmission is used for
communicating with teletypewriter and teletypewriter-1like
devices, Recérd-oriented transmission is usel for
comnunicating with all other devices supéorted by the ALECS
system. These include standard peripheral devices such as
magnetic disk, magnetic tape, card readet, etc., as well as
all bf the users' experimental devices (see Figqure 1).

The following sections describe the unifora manner in
which each of the above types of data transmissions are
implemented in ALECS. Instead of having a unique, and most

likely ad hoc, set of statements for communicating with a

15

wide variety of experimental devices, it was decided t6
extend the standard PL/I READ and WRITE staterents to handle
all forms of record-oriented data transmission. 1In a similar
manner, the PL/I GET and PUT statémenté are extended td
handle all forms of stream-oriented data transmission with

teletypewriter-like devices.

ALECS supports .stream-oriented data transmission for all
telefjpeuriter and teletypeurifer-like devices using the
list-directed data specification of PL/I and a special
control-directed data specifiéation as described below. For
both the list-directed and control-directed data
specifications, GET is the. only valid input statement and PUT
is the oﬁly valid output statement. The SKIP option takes
effect before transmission of any values defined by the data
specification. Fér example:

PUT SKIP (2) LIST(A,B);
causes two carriage return, line feed sequences to be issued
before printing the values of the variables A and-B.

The control-directed data spécification is used for
communicating with teletypewriter-like devices. For the
current host computer,\this involves the transmission of
8-bit codes between the rightmost eight bits of the host
computers' accumulator register and the teletypewriter-like

device.

16

For exaample:
ADECLARE A(20) BIT(18); . '
A(1)= *000000000010000001*B; /* A(1)= CONTROL A */
A(2)= '000000000010000100*B; /* A(2)= CONTROL D */
GET CONTROL(A) ;
The above example illustrates the reéding of information
from an external teletypewriter-like device into an array A.
To accomplish this, A must be declared as an array of type
BIT(18). The first element of A, A(1), is reserved for and
initialized to a special "start up" bit pattern. Similarly,
A(2) is set to contain a special "stop" bit pattern. The
rightmost eight bits of A(1) are sent to the |
teletypewriter-like device'befére input begins during the
execution of the GET statement. The rightmost eight bits of
A(2) are used to indicate end of transmission whenever input
of this bit pattern.occurs. The third element through the
tventieth element are filled (rightmost eight bits of each
element) on each input from the device. 1Input is terminated
by}the occurrence of the "stop" bit pattern in the ipput
stredw or when input to the twentieth element of the array A
occurs (where 20 is an arbitrary value picked for this
example) ,
DECLARE A(20) BIT(18);
A{1)= *000000000010000001*B; /% A(1)= CONTROL A */
A(2)= *000000000010000100*B; /* A(2)= CONTROL D */
PUT CONTROL(A) ; A
In this example, PUT CONTROL functions just like GET CONTROL

except the rightmost eight bits of array elem2nts three to

17

tventy are sent to the teletypewriter-like device. The
‘purpose of controi-direéted data transmission is to allow all
possible 8-bit codes to.be transmiﬁted to and from
teletypewriter-like devices.

Record-oriented transmission

ALECS supports record-oriented input/output
corresponding ‘to the CONSECUTIVE and REGIONAL(1) file
organizations of PL/I. The PL/I file attributes supportedb
are: FILE, RECORD, INPUT, OUTPUT, UPDATE, SEQUENTIAL,
DIRECT, KEYED, and ENVIRONMENT; Default»&ttributes and
merged attributes are implemented as described in the PL/I
Reference Manual [13]. An EXPERIKENT attribute has been
added to provide rec§rd—oriented transmission of data between
the host computer and external expe:iméntal devices. The
FILE, KEYED, ENVIRONMENT, and EXPERIMENT attributes can onli
be used in the file declaration statement. The remainder of
the attributes can be used in both the file declaration
statement and in the OPEN statement for the file; The PL/I
TITLE option is also supported in the OPEN statement. This
option permits the user to supply the file name for the OPEN
statement at run time instead of having to use the nanme
supplied at compile tinme.

In a data set with CONSECUTiVE organization, records are
organized solely on the basis of their successive physical

positions and are written and retrieved in sequential order

18

Wwith no buffering of records. CONSECUTIVE data sets can
phyéically reside on magnetic disk and magnetic tape. The
following program illustrates the sequential access of
records in a disk data set.
SEQ: PROC;
DECLARE DATA (100) FIXED BINARY;
DECLARE F1 FILE SEQUENTIAL;
OPEN FILE(F1) OUTPUT;
DO I=1 TO 5;
/% CODE TO FILL DATA ARRAY */
WRITE FILE(F1) FROM (DATA) ;
END;
CLOSE FILE(F1); OPEN FILE(F1) INPUT;
DO I=1 TO 5;
READ FILE(F1) INTO(DATA) ;
/% CODE TO PROCESS DATA ARRAY */
END;
CLOSE FILE(F1);
END SEQ; :

In a REGIONAL (1) data set, each region in the data set
contains only one record. Therefore, each rejgion number
(record number) corresponds'to4the relative record position
" within the data set. The KEY and KEYFROM options in the
READ, WRITE, and REWRITE statements are used to supply the
region number at execution time. REGIONAL (1) data sets can

reside only on magnetic disks. The following progranm

illustrates indexed access of records in a disk data set.

19

IND: PROC;
DECLARE DATA (100) FIXED BINARY;
DECLARE F1 FILE DIRECT;
OPEN FILE (F1) UPDATE;

/*WRITE 4 RECORDS TO DISK WITH INDEXES 0,2,4,6%/
DO I=0 TO 6 BY 2;

/% CODE TO FILL DATA ARRAY */

WRITE FILE(F1);FROM (DATA) KEYFROM(I) ;

END; o

/7*¥ READ THE 4 RECORDS THAT WERE WRITTEN ABOVE */
DO I=0 TO 6 BY 2;

READ FILE(F1) INTO(DATA) KEY(I):

/¥ CODE TO PROCESS DATA ARRAY %/

- END;
END IND;

The EVENT optioh'can be used for all record-oriented
input/output operations to allow concurrency of data traﬁsfer
and program execution.

This section has dealt only with the run-time access
methods supported by ALECS. The ALECS Operating éystem
Reference Manual [15] contains a cbmplete description of
DISKORG, the file management subsystem which is used to
creafe, delete, and list all information residing on disk
storage.

An additional file attribute, EXPERIMENT, was added to
the ALECS language. The purpose of EXPERIMENT files is to
provide communication with external devices (see Figure 1)
under user program control. Each external device has an
associated control table which contains the I/0 device

addresses necessary to construct IOT's (Input/0utput Transfer

20

instructions). These IOT's are machine level instructions
which effect the actual transmission of information. The
device control table also contains other descriptive
information which is described in Appendix B.

Unlike most commercial systems [5], [6], [7], (8], where
the device control tables are system resident in main memory,
ALECS' device control tables reside in a-'system library on
magnetic disk and are transferred into main m2mory only wvwhen
the associated experiment is active. The following program
illustrates the facilities available to the user for
communicating with his experiment:

CONTROL: PROC;

DECLARE XRA FILE EXPERIMENT;

DECLARE A FIXED BINARY;

DECLARE B BIT(18) INIT(*100000000000000000'B) ; .
/*OPEN READS DEV. CONTBOL TABLE FROM DISK AND¥/
/*CREATES AN EXPERIMENT CONTROL BLJOCK IN SYSTEMN*/
OPEN FILE (XRA) ; '
READ FILE (XRA) INTO(A) KEY(1); /* READ W ENCODER*/

/% WRITE CONTROL WORD B TO TURN X-RAY BEAM OFF */
WRITE FILE(XRA) FROM(B) KEYFROM(1);

/7% FREE XRA EXPERIMENT CONTROL BLOCK IN SYSTEM */
CLOSE FILE(XRA) ;
END CONTROL;

When the OPEN statement is executed, the device control
table for experiment file XRA is read from disk and its
contents placed in an experiment control block (see Chapter
IV) which is created in systems work space. The READ and

WRITE statements, with the KEY option, are used for

referencing the experiment file. The KEY option is used as

21

an index to the device control table (now cor2 resident in
systems work space) for selecting the desired device address.
This device address selects which port in the experiment is
to be accessed and from it the appropriate read or write IOT
is constructed and executed. Appendix B contains a complets
description of the XRA device control table used in the above
example.

Note that the experiment file functions very much like
the REGIONAL(1) direct access files. Each uniquely
addressable port of an experiment is assigned an index to the
device control table (see Appendix B)., These ports function
as a data set (Definition 2.0) and are accessed using the
same language structures as those used in acceésing
REGIONAL (1) data sets. In addition to handling all
experiment communication, the experiment»file permits I/0
handlers for synchronous devices such as the card readet,
paper tape reader, paper tape punch, and line printer to be
written in the ALECS programming Language. Besides hajing
the I/0 handle;s for these peripherals written in a hiqh
level language, an additional benefit is realized since it is
no longer necessary for these handlers to be system resident.

In a similar manner, it isvposéible to communicate with
other processors or with direct memor& access devices for
block transfers of information. This is illustrated by the

following program:

22

XDS910: PROC;

DECLARE XDS FILE EXPERIMENT (UNIT='910');

DECLARE BUF(20) FIXED BINARY, E1 EVENT;

DECLARE BUF1(100) FLOAT, E2 EVENT;
/¥ OPEN READS DEV. CONTROL TABLE FROM DISK */
OPEN FILE (XDS) ;
READ FILE (XDS) INTO(BUF) KEY (1) EVENT(EY) ;
WRITE FILE(XDS) FROM(BUF1) KEYFROM(4) EVENT(E2) ;

/*STATEMENTS TO BE EXECUTED IN x/
/¥ PARALLEL WITH THE READ AND WRITE */
/% STATEMENTS 4 ®/

WAIT(E1,E2);
CLOSE FILE(XDS) ;
END XDS 910;

The UNIT attribute gives an experiment file the
additional capability of block transfers of data. The device
control table for this type of file will contain the data
channel address. ihe OPEN statement functions as before with
the device controi table being read from disk and a unit
control block being created in systems wock.space. When the
READ statement is executed, the data channel address is
retrieved from the unit control block and a pair of words
(number of words to be transferred, core address of the first
dataAvord) are inserted at the data channel aildress and the
block transfer is initiated. 1In this example, the EVENT
option is used with both the READ and WRITE statements. This
option permits the user to iaitiate block transfers of data
between the host computer and the specified unit and then
continue executing the statements following £he READ and
WRITE statements. Upon completion of each of the data

transfers, the associated EVENT variable is set cdmplete (E1

23

- upon completion 6f the READ and E2 upon complation of the
WRITE). The WAIT statement is then used to synchronize the
completion of the data channel I,/0 and program execution.
The CLOSE statement will not be executed until both of the
~EVENT variables, E1 and EZ; have been set complete. '

In addition, the UNIT attribute supports the development
of a computing hierarchy by providing the capability for
information transfer between the host computer and
1. smaller dedicated computing systems used for data

vgathering, and
2. larger computing systems used for further data reduction
using additional facilities not provided by the host
computer.

In summary, the READ and WRITE sta%ements used for
communicating with magnetic disk and magnetic tape devices
have been extended in a natural manner to also communicate'
with any type of external device (including'other processors)
in either a single word or block transfer mode of
communication.

Interrupt Processing

In PL/I, the ON statement is used to service the
occurrence of an internal abnormal condition. The general
format of the ON statement is

ON condiﬁion fon-unit | SYSTEN;}

The PL/I conditions supported by ALECS are TRANSMIT,

24

ENDFILE, ERROR, and CONVERSION. 1In addition, ALECS supports
real time data collection and interactive computing by
introducing two new conditions: EXPERIMENT and ATTENTION.

The "on-unit" represeants a programmer-defined action to
be executed in response to'the occurrence of the specified
condition. It can either be a single unlabeled statement
(except a BEGIN, DO, END, RETURN, PROCED'URE, or DECLARE) or
an unlabeled begin block. For all conditions, with .the
exception of EXPERIMENT, any statement except PROCEDURE and
RETURN can be used freely within an unlabeled begiﬁbblock.
The restricted statements for the EXPERIMENT condition are
presented later in this section.- If SYSTEM is specified,
then standard system action is taken which consists of the.
imnediate termination of the program containing the ON
statement. Similar action is taken if a condition is raised
for which no on-unit 1s activé.

The on-unit allows the programmer to supply his own
response to the above conditions. The following program will

~illustrate the handling of an ENDFILE condition.

25

READER: PROC;
DCL I FIXED BINARY;
DCL F1 FILE SEQUENTIAL;
DCL P1 ENTRY ((*) FIXED BINARY);
DCL BUF(100) FIXED BINARY;
OPEN FILE (F1) INPUT;
ON ENDFILE(F1) BEGIN;
DCL MESSAGE CHAR(10) INIT (*ENDFILE F1');
PUT SKIP LIST(MESSAGE) ;
GOTO EXIT; END;
-DO I=1 TO 10;
READ FILE(F1) INTO(BUF);
CALL P1(2);
P1: PROC(INDEX) ;
DCL INDEX FIXED BINARY;
DCL A {(100) FIXED BINARY;
DO I=1 TO 100;
A(I)= BUF(I) * INDEX;
_END; .
/* PROCESS BUF %/
‘END P1;
EXIT: .
END READER;
Note that the on-unit is not executed when the ON statement
is executed; Linkage to the on-unit'is established when the
ON statement is executed and the on-unit is executed only
wvhen the ENDFILE condition for file F1 is raised. The
ENDFILE condition will be raised only if the READ statement
tries to access information beyond file F1's current end of
data set. The on-unit thus becomes a special case of an
internal parameterless procedure. The only difference is the
calling mechanism, namely an interrupt instead of an explicit

subroutine or function reference.

26

"READER: :
(F1)
BUF
I
EXIT

F1: on-unit

(MESSAGE J

gj:

INDEX

A
L _J

Figure 2. Contour structure of the READER progranm.

Any nonlocal names used in an on-ﬁnit belonq.io the
environment of the procedure or block in which tae ON
statement for that on-unit was executed. This results from
the fact that an ON statement is executed as it is
encountered in the statement flow, whereas the on-unit i§
executed only when the associated comndition, or interrupt,
occurs. Figure 2 illustrates this by supplying a contour map
for the previous READER program. The variable MESSAGE is
known only within the scope of the on-unit. The variables
INDEX and A are known only within the scope of procedure P1.
However, the variables F1, BUF, I, and EXIT lie in the
outezmostvblock, procedure READER, and are accessible to both

the on-unit F1 and procedure P1. Note that the variables
L 1

27
-declared within the on-unit F1 and procedure P1 are knovh
only in the block in which they are declared and are.not_
acéessible to each other or to the outermost block, procedure
READER.

For all conditions except EXPERIMENT, the above:
mentioned interrupt is a software interrupt resulting from
the raising of an internal condition. Cohtrol is dispatched
to the on-units by the scheduler. This will be presented in
further detail in Chapter IV. The linkage established by
executing an ON statement in a given program (thus activating
the on-unit) remains in effect throughout that program and
all subprograms initiated by that program unless it is
overridden by the execution of.another ON statement or REVERT.
statement or implicitly by the termination of'the progran
coniaining the active on-unit.

During the execution of the on-unit, when the end of the
on-unit is encountered control returhs to the point'from
which the on-unit was invoked. This will ﬁbrmally be to‘a
WAIT statement for all conditions except EXPERIMENT. Also,
‘"control may be transferred out of an on-unit by.a GOTO |
statement for all conditions except EXPERIMENT. For the
EXPERINMNENT condition control must returm normally through the
end of the on-unit for the restoration of the previous

machine environment and interrupt state.

28

The two new conditions, EXPERIMENT and ATTENTION, will
nov be ‘described in detail. In the ALECé system, there is no
explicit partition between foreground and background prograns
. (described in the introductory literature review of
commercial real time systems) because an ALECS program can
contain both types of code. Whereas in the commercial
systems an entire program is linked to a hardware interrupt,
in ALECS only the EXPERIMENT on-unit is linked to the
hardware interrupt. The rest of the body of code in the
program is executed at the software priority level (there is
no explicit background priority in ALECS). Therefore, all
programs and on-units (exceét EXPERIMENT) are scheduled at
software priority levels and the EXPERIMENT on-units will
execute at the four levels of hardware priority available on
‘the host computer, The advantage of having the hardwarg
priority code reside in the same program with software
priority code is the ease of passing information, and
control, to the software priority level from the hardware
priority level. This is easily accomplished since the local
variables that are declared in the software priority code are
all available to the hardware pribrity code. This makes it
possible to write a very small interrupt handling EXPERIMENT
on-unit which performs only the necessary real tinme
functions, and then have it schedule the rest of the response

to be executed at the lower software priority level.

29

The EXPERIMENT condition provides the facility fdr a
programmer-defined respdnsg upon the occurrence of an
external interrupt. The format is:

ON EXPERINENT (filenanme) (on;unit}
The programmer must first have executed an OPEN statement for
the experiment file. As previously described, when an
experiment file is opened its device control table is read
from disk and placed in an expetiqent control bléck in
systems work space. This device control tablz contains the
interrupt trap address for itsvassociated experiment. When
the ON EXPERIMENT statemeni isbexecutedl the interrupt trap
address is retrieved from the the experiment control block
and the on-unit address is placed in the interrupt trap
address. At this point in time, the experiment is on-line
and all interrupts henceforth will be processed by the
on-unit.

The programmer must be aware that the on-unit will be
executed at some pre-defined hardware priority interrupt.
level and his response should be as brief és possible. This
will guarantee other users executing at lower hardware and
software priority levels that they will not be locked out for
lengthy periods of time. The CALL, WAIT, DELAY, PUT, GET,
OPEN, CLOSE, ON, PROCEDURE, RETURN, and REVERT statements are

not allowed within the scope of the on-unit. Also the READ,

30

WRITE, and REWRITE statements for files other than 2xperimeat
files are not allowed. These restrictions have been imposed
to encourage the user to minimize his response from within
the on-unit and schedule the bulk of the responseAto be
executed at the software priprity level outsiie of the scope
of fhe on-unit. The follovipg example illustrates the
concepts that have been presented concerning real time
response via programmerfdefined on-units. \

COUNT: PROC; A
DECLARE START BIT(18) INIT(*000000001000000000°*B) ;
DECLARE TIME FIXED BINARY, CNT FIXED BINARY;
DECLARE XRA FILE EXPERIMENT, DONE EVENT;

OPEN FILE (XRA);

ON EXPERIMENT (XRA) BEGIN;
DECLARE I FIXED BINARY;
I=ONCODE;
IF I=1 THEN DO; /% COUNT INTERRUPT*/
READ FILE(XRA) INTO (CNT) KEY (5);
COMPLETION (DONE)='1'B;
END;
END;
DO WHILE('1'B);
GET SKIP LIST (TIME); IF TIMEKO THEN RETURN;
/¥ SET COUNTER */ :
WRITE FILE(XRA) FROM(TIME) KEYFRONM(O):
/* START COUNTING */
WRITE FILE(XRA) FROM(START) KEYFROM (1);
/% WAIT FOR DONE TO BE SET COMPLETE IN INTERRUPT
ROUTINE */
WAIT (DONE) ;
COMPLETION(DONE)='0'B;
PUOT LIST('TIME' ,TIME,'COUNT=*,CNT);
END;
END COUNT,;

The above example shows how EVENT variables can be used
to synchronize the data processing with the interrupt

‘handling on-unit. As described in detail in Appendix B, the

KR

WRITE statement with the KEYFRON(6) option .sets the cdunter
time base to the value that is input via the GET statement.
. The WRITE statement with the KEYFROM (1) option starts the
counting operation. The program COUNT is then put in the
wait state until the counting operation is complete. Upon
Completion of the counting operétion (i.e. the cbunt runs
down to zero); an interrupt is triggered by the experimental
interface. The interrupt response consists of control
passing to the EXPERIMENT on-unit at a hardware priority
level of two via the interrupt trapllocation(octal word 44 of
main memory) which was initialized by the exe;ution of the Oﬁ
statement. The ONCODE built-in function is used to access
the contents of the interrupt register as described in
Appendix B. The data scaler is then read in the on-unit in
response to the count interrupt. The EVENT variable
assdciated with the count complete interrupt is then set
complete and the on-unit is exited. The system scheduling
algorithm, described in Chapter IV, checks the EVENT variable
on which COUNT is waiting. When the EVENT variable has been.
set complete, COUNT is scheduled to resume execution at the
COMPLETION statement following the WAIT statement. Note that
this portion of the program COUNT is scheduled and 2xecuted
at the software priority level.

Also, for further flexibility the experiment file can be

passed as a parameter via a CALL statement to other progranms. |

32

The other programs can execute ON statements for the
experiment file, thus stacking the previous linkages. This
provides a very dynamic facility for the‘handling of external
interrupts since the user is not restricted to the processing

of an interrupt by only a single progranm.

Another extension of the ON block is defined és follows:
ON ATTENTION on-unit

This céndition allows the programmer to code an on-unit which
can be activated from a teletypewriter terminal. A user, via
the system control language described in Appendix C, can seqd
an inquiry to his currently executing program. If ﬁhe systenm
finds his ATTENTION block active then the on-unit is
scheduled for execution whenever control returns to the
enclosing program. Note that no interrupt occurs and the
on-unit is executed at the software priority level. This
condition brovides the user with a very flexible means of
dynamic interaction with his executing programs. This is
extremely important for users who wish to dynamically alter
the course of their experiments (for example to initiate
automatic shutdown in case of a malfunction).

The following program illustrates the usz of the
ATTENTION on-unit for dynamically altering the coursé of

program execution.

33

PROG: PROC;
DCL ANS CHAR (3);
DCL A FIXED, B FLOAT, C FLOAT;
ON ATTENTION BEGIN,;
PUT SKIP LIST(*DO YOU WANT TO TERMINATE®) ;
GET LIST(ANS) ; :
IF ANS='YES' THEN STOP;
PUT SKIP LIST('DO YOU WANT TO RESTART') ;
GET LIST(ANS) ; . ‘
IF ANS='YES' THEN GO TO START;
END ATTENTION;
START: A,B,C=0; /% INITIALIZE VARIABLES */
/¥ EXECUTABLE STATEMENTS */
END PROG;
During the execution of the above program, the user at any
time can initiate an entry into the ATTENTION om-unit by
using the system control language as described in Appendix CZ.
The ALECS operating system then schedules eéxecution of the
on-unit at the software priority level (as described in
Chapter IV). The on-unit in the above'program responds with
the messages to the user. The user's response to these
messages dictates whether the program PROG and all of its
subtasks will be terminated and removed from main memory or
vhether the flow of control will be transferred to the label
START for restarting the execution of PROG. If the user
replies with "NO" to both of the above messages, then the

flow of control will exit the on-unit and PROG will continue

normal execution.

34

Multitasking
Memory management becomes very important when the amount

of main memory is limited. One approach to solving this
problem is the modularization of user programs into block
structures. Certain concepts relating to block structures
héve been defined in a variety of ways throughout the
literature. The following definitions will be used in the
course of this dissertation.
vith an associated local environment.

Definition 2.5 Internal procedure: A block that is headed by

a PROCEDURE statement, and is contained within another block.
Definition_2.6 External procedure: A block that is headed by

a PROCEDURE statement, terminated by an END statement, and is

not contained within another block.

s s e e Wl el g it b

storage for variables upon entrance to the block in which the
variables are declared. The storage is freed when the block
is exited. |

Definition_ 2.9 Static storage allocation: .Allocation of
storage for variables when the external procedure (or task)

in which they are declared is allocated storage. The storage

is freed upon the termination of the external procedure (or

35

task) .

Definition 2.10 Procedure statement: This étatement defines
the primary emtry point of a procedure block and specifies
the parameters, if any, that are global to the prqcedure
block. It may also specify the attributes of a value thatvis
to be returned by the proceduré block if it is an internal

procedure invoked as a function.

Definitiog_g.11 Process: An external procedure or an on-unit
which represent tﬁe basic unit of decomposition of program-
text which is executed under control of an op2rating systen.
A process is represented by a stateword which defines both
the current state of execution and the address space by uhiéh
it cén be identified. This. stateword is described in detail
in Chapter 1IV.

The traditional way to modularize a program.is'to
segment the program into procedures declared locally within a
.main program (Definition 2.5). This method represents a
savings in storage space if stétagé is allocated dynamically.
However, the code representing the procedure bodies will be
in main memory as long as thelencompassing extefnal procedure'
is in main memory. |

A second,.and simila;,_approach to program
modularization is the segmentation of a program into blocks
(Definition 2.1). Variable storage is allocated upon entry

" to a block and remains allocated only for the duration of the

36

execution within the block, thus equalling the savings gained
by local procedures. Block structures are not as flexible as
local procedures as they cannot be invoked from many
different places within the encompassing blocks as can local
procedures. The blocks are exequted.only ﬁhen sequential
control arrives at the beginning of the block. (Dijkstra
[16], [17]) and others recommend block structured languages
(ninus the GOTO statement) as a means of writing more simple,
concise, and correct programs.)

A third approach to modularization is to allow a user to
call procedures that are declared externally to.his main
program (Definition 2.6). This approach has the advantages
of the first method and has the additional advant;ge that the
code for the procedure bo@yAitself need- not dccupy‘main‘
memory while the procedure is not being executed. A
disadvantage of this method is the necessity of loadiﬁg the
procedure code each time the procedure is called. 1In
computing éjstems where meﬁory is a limited resource, this
trade-off between longer execution time (because of each
additional load) versus larger memory allocation must favor
an increased execution time when several users are
multiprogrammed by the operating system. This is true since
the processing unit of the computer is many orders of
magnitude faster than those of associated I/0 devices (disks,

tapes, and experiments). Therefore, while one user is

37

wvaiting for a program or data to be transferred into.main_,
memory from scme I/0 device, the_processing unit can be
executing other users progranms.

all of the above approaches give the user explicit
control dvet the storége used by his program. A fourth
approach to progran modularization is to allow the programmer
(in certain instances) to turn control of his storage over tb
the operating system. This is typically done by relaxing the
sequential nature of progranm flbw by no ionger requiring
procedures to be executed in the exact ordér in which they
are called. In particular, a user ma; execute several
procedure calls and then effectiﬁely turn control over to the
operating system to execute the procedures in an order that
best serves the storage demands of the overall computing
system. Procedures that are called in this manner aﬁe'
generally referred to as tasks (Definitiog 2.7). Since é
task is a special case of an external procedure, it will be
allocatedAstorage only while it is executing.

It is of utmost importance that storage management be
implemented as efficiently and as reliably as possible,
especially in the case where the amount of storage is
limited. Whenever possible, this management should be done
by the operating system rather than by the user. .This helps
prevent the usurpation of storage by a user. Memory

management in ALECS is removed as an item of direct user

38

concern. The schema used is twofold. First, ALECS supports
only the STATIC storage allocation of PL/I -(Dafinition 2.9).
Thus, any task that is loaded into main memory will always.
have sufficient storage to complete execution. Dynamic’
storage allocétion of variables (Definition 2.8) is not
supported because the author feels that it is more iﬁpottant
to quarantee the completion of execution of each loaded task
by preventing the users from usufping additional large chunks
of main mémory during execution.

Second, memory management is accomplished via the
implementation of a multitasking facility to support the
dynamic loading of tasks. Under the multitasking facility,
main memory is dynamically allocated by the ALECS operating
system. When a task request is made, the operating systém
will see how much main memory it has available and where the
task will best fit in the avaiiable storage. If insufficient
storage is available, the request will be rescheduled by the
operating system and the storage réquest made again at a
later time. The fo;mat of the task call statement is:

CALL task-name[(argument [,arqument]...)]
| [TASK] [EVENT (event-nanme)];

Only one task-name can be associated with a task. Thus,
each task has only one entry point. The task-name is the
only variable that has EXTERNAL scope. Whenever a task-name

is invoked using the CALL statement, the associated task is

39

loaded into main memory by the operating‘system from the
user's library om disk storége. If the task-name is not
foﬁnd dufing the library search, then‘the task vhicﬁ'issued
the request is terminated. Once the task is loaded into main
memory, all variables declaced within the task are known and
accessible only within that task. Therefore, all
compunication with other tasks must be via ths argument list
in the CALL statement.’

The CAiL statement provides two types of intertask
linkages. §ggg§gﬁig; linkage suspends execution of the
calling task until the called task has completed its
execution and its allocated memory is freed for other use.
Control then returns to the calling task a£ the in;truction
following the CALL statement. The TASK and EVENT options
must not be specified for a sequential task call. For
example, task T1 wishes to call task T2 and have it execute
sequentially:

T1: PROC; ‘
DECLARE T2 ENTRY(, ,)

CALL T2(ARG1, ARG2, ..., ARGN);
I=1;

END T1;
Upon completion of the task T2,,execution will continue at

the assignment statement following the CALL statement.

execution of the called task, or tasks, in parallel with the

40

calling task. In a multitasking system with one central
processor, all nonsequential tasks effectively proceed in
parallel with their calling task but share resources that
must be used serially. thhs, these tasks become serial for
fhe duration of their contention and use of systen resohrces,
buf retain their asynchronous nature as their -scheduled
execution is completely{independent; ‘An example of an
asynchronous task call is the following:

| T1: éROC; :

DECLARE T2 ENTRY(, ,)
DECLARE E1 EVENT;
CALL Té(ARG1, ARG 2, ..;, ARGN) EVENT(E1);
WAIT(E1);
I=1;
END T1;

If a task, say T1, wvwishes to call task T2 asynchronously
then the EVENT option must be used. The eient-name E1 is
associated with the completion of the execution of T2. It is
used to synchronize the completion of T2 with the execution
of the calling task T1. A WAIT statement, with E1 as an
argument, must be issued in the calling task T1. Execution
will continue at the assignment statement following the WAIT
statement only when T2 has completed execution, which in turn
causes the associated event-name E1 to be set complete. If
the calling task T1 should complete exécu£ibn vithout issuing

a WAIT statement for the event-name E1, then all currently

executing tasks initiated by T1 are immediately terminated.

41

This solves the retention or deletion problem which could
arise if the subtasks were allowed to continue.execution (see
Wegner [18] and Bercry [19]). Appendix D éontains an example
of asynchronous task execution.

The same syntax that is used for sequéntiai tésk
linkage, that is with no EVENT optidn, is also used to invoke
- internal procedures declared within a task since they both
involve sequential flow of control. It is the programmer's
responsibility to decide whether to create the code for T2 as
an internal procedure, or to make it an independent task.
There are no distinct and explicit guidelines for hinm to
follow. He must weigh very carefully the following criteria:
1. The number'of times T2 is to be invoked.

2. The size of T2's object code generated by the éompiler;

3. The possibility that othér tasks might be able to use all
or part of T2.

4. The trade-off between longer execution time versus the
pofential savings in the amount of main memory allocated
during the execution of the parent task.

This thesis contends that thg programmer should segment
a program into independent tasks as often as possible sipce
the goal of system storage management can best‘be achieved
with the tasking approach to block structure. .In summary, 2a
task has previously been defined as a special case of an

external procedure. The difference between a task and an

42

\

external procedure becomes Qery important when impleﬁented on
a small computer.,

A system which sﬁpports external procedures must allow
the user to allocate sufficient storage for all of his
external procedures at load time. The user will normally
execute his external procedures using some form of overlay
structure if his program consists of more than one external
procedure. This will result in the saving of storage, but
his complete region will have to be'allocateq to him at the
time of the initial load.

Using tasking, no storage is aliocated until a task
request is made. At this point, the operating system will
see how much memory it has available and where the task will
best fit in the available storage. If insufficient storage
is available, the task request can be rescheduled and the
storage request made again at a later time. ‘Hhen a task
completes its execution its allocated memory space is

immediately released. Thus, the multitasking facility can be

used to provide efficient memory management.

43

CHAPTER III. ALECS COMPILER

The ALECS compiler is written in PL/I (using the ALECS

subset) and resides on an IBM 360/65 at the Iowa State

University Computation Center. The compiler is written in a

high level language because it could be constructed faster

than one written in assembly language, it is much easier to

debug and maintain, and more time can be spent developing and

tuning the logic of the compiler as opposed to the

optimization of registers and code as in an assembly language

compiler.

The cdmpiler itself is designed along traditional lines.

Gries [20] and Freiburghouse [21] provide excellent sources

for details concerning compiler design for PL/I-like

languages. The: design decisions and choice of techniques

were influenced by the following objectives:

1.

"Design a compiler, for a PL/I based language, that

is syntactically machine independent and provides a
facility for easily interfacing to the semantically
machine dependent portion. This permits a compiler for
many different subsets to be generated'with 5 minimal
amount of effort. It alsobpermits transportable
programs since a compiler for manf different target
machines can be easily generated by rewriting only the
machine dependent portion. |

Design an open-ended compiler capable of handling the

4y

new features'necessary for supporting a systems
implementation language based on the ALECS language.

3. Design a compiler capable of bootstrappinj itself onto
other target machines.‘ By writing the compilér in its
own subset, it then beconmes pogsibie to perform the
bootstrap using the host IBM 360,65 version.

The original version of the ALECS compiler was written
using META-PI {22]. However, the META-PI compiler-compiler
proved unsuitable for generating a full blown KLECé compiler.
Aside from the fact that all of the semantic operations are
performed by primitive functions that can not be described at
the meta level, the ALECS compiler generated by META-PL
became too large when all of the primitivé fuactions, symbol
table functions, and code generation functionms were included
in the oﬁe pass compiler. It then became obvious that the
compiler was going to have to be a multi-pass compiler.

The advantages of a multi-pass compiler are many. The
only disadvantage is the increase in compilation time, but
due to the nature and purpose of ALECS, this is not a serious
drawback. A great deal of flexibility is obtained from a
multi-pass compiler. For instance, by segmentin§ the
compilation process into a set- of modules, the compiler can
be more easily bootstrapped onto the target machines. Since

the goal of ALECS is to provide a software-organization for

small computers, the compiler must be segmented into many

45

small pieces io ef fectively bootstrap it onto a small
computer. Also, the larger machine independent segments can
be separated from the smaller machine dependent seqhents.
Thus, to generate a compiler for a different target mé;hine,
only the smaller machine dependent portions have to be
altered. Approximately 75% of the compiler consists of
machine independent modules and 25% consists of machine
dependent modules.

| One of the original objectives in designing the combiler
was to make it open-ended so that additional language
features could be integrated into the existing ALECS
compiler. Th; motivation behind tpié’was diractly related to
the need for the future development . of a system
implementation lapguage. Using ALECS}aé\tpe base language,
the intention is to deveiop a language in which a large
portion, if not all, of the ALECS operating system can be
written. Thus, the ALECS operating system, as well as the
~ ALECS programming language, can novw become to a great extent
machine independent. To obtain an ALECS operating system for
a new target machine, the machiné dependent modules of the
ALECS compiler must be reurittgn to generate'code for the new
target machine. The operating system'can then be
bootétrapped onto the new target machine by reconpiling it
using the newly created compiler. The reader should not be

‘mislead into believing the operating system can be

46

bootstrapéed without making some changes. There will
undoubtedly be certain machine dependent portions of the
operating systems which must be recoded, in the high level
language, for each particular target machine.
Overview of the Compiler

The compiler translates an ALECS source progran into
relocatable binary machine code which is output on punched
cards by the IBM 360,65 computing systen. Each'punched
object deck is transported to the host computer where it is
loaded into an executable data set in a user's directory on
disk storage. The contents of these daté sets (the object
modules) are then available fo be loaded; relocated, and
executed within the ALECS operating system (see Chapter IV).

Pigure 3 contains a flow diagram of the compiler
organiiation in the order in wvhich each module is executed
during the coﬁpilatioﬁ process. Each module of the compilet
consists of a set of procedures which perform a logical
function of cbmpilation (such as syntax analysis). The
compiler is executed using an overlay structure and each
module is executed only once pe;‘cémpilation; This modular
organization greatly facilitates the}debquing and
maintenance of the compiler since qach module performs only
one specific function. Once the error has be2n isolated to a
particular- module it then becomes relatively easy, using

various built-in traces, to find the problem and fix it.

47

/source
program

LEXICAL
SCANNER

SYNTAX
ANALYZER

SYMBOL
TABLE
SORT

TYPE
CONVERTER

STORAGE
ALLOCATOR

CODE
GENERATOR

TEMPSET

final object
text and
relocation
records

Figure 3. Modular structure of the ALECS compiler.
The following sections give a brief description of each
module of the ALECS compiler and the function it performs.

Emphasis is placed mosfly on the techniques used with

48

inmplementation features discussed only wvhere relevant. Some

points to be stressed are:

1.

The compiler's modula; structu#e with each module
performing a function of thé compilation process.-

The lexicai scanner module, which converts each

entity of the input text into ifé appropriate internal
representation and places the converted entity into its
respective morpheme table. A numerical pointer to each
table entry is placed into the output vector which is
then passed to the other compiler modules upon completion
of the scanner. The rest of the compilation process,
from the syntactical parsing of the source program to the
generation of the object brogram, works only with this
vector of numerical pointers..‘Thisveliminateé all of

the overhead involved with an internal representation
consisting of the actual entities themselves, such as
Ccharacter strings, floating point numbers, and bit
strings. |

fhe lexical scanner, using a simple statement recognition
algorithm encoded into a translation table, determines
fhe type of every legal statement‘as it is converting the
source program into the internal representation. This
eliminates backup in the syntax analyzer as it performs
a top down syntactic analysis on tle source progranm.

The compilation process is segmented into

49

machine independent and machine dependent modules. The

lexical scannar, syntax ana;yzer, symbol table sort,

. type converter, and tempset are all machine independent.

.0nly the storage allocator and the code benerator are

machine dependent.

Lexical Scanner

The lexical scanner is essentially a preprocessor which

takes the source progran,

in character form, and translates

it into a vector of numerical pbinters. Morpheme tables are

created containing the fixed point numbers, floating point

numbers, bit strings, and character strings. All other

character entities are placed in an identifier table. There

is also a permanent table containing all of the operators and

delimiters in the ALECS language. Each table has a unique

range for its associated numerical pointers. They are as

follows:
-32768
-32767
-32000
-21000
-14000
-7000
0
400
500
12000
13000
15000
22000

TO
"
"
n
n
n
"
"
n
"
"
"

-32001
~21001
- 14001
-7001
-1

399
499
11999
12999
14999
21999
32767

STATEMENT MARK
RESERVED

TRIPLE POINTERS
BIT TABLE
CHABACTER TABLE
FLOAT TABLE :
OPERATORS AND DELIMITERS
BUOILT-IN FUNCTIONS
SYMBOL TABLE
INTERNAL LABELS
TEHPORARY STORAGE
FIXED TABLE
IDENTIFIER TABLE

TEST: PROC; :
DECLARE A FIXED, B FLOAT;
‘B=3.14159; A=B + 4;

PUT LIST('ABC');

50

END;
CHARACTER NUMERICAL COMMENTS
-14000 ABC POINTERS .
. -32768 STHT MARK
. 17 LABEL
1 STMT NUMBER
. 22000 IDENTIFIER
-7001 23
-32768 STUT MARK
21 PROCEDURE
FLOAT 1 STMT NUMBER
EEETC 22001 IDE
-7000 3.14159 2 N
. -32768 STHT MARK
6 DECLARE
* 2 STMT NUMBER
. 22002 IDENTIFIER
-1 22003 IDENTIFIER
A 22004 IDENTIFIER
20,
FIXED 22005 IDENTIFIER
==s== 22006 IDENTIFIER
15000 O 2
15001 1 ~32768 STHT MAPK
4 2 ASSIGN
. 3 STHMT NUMBER
. 22007 IDENTIFIER
10 =
. -7000 FLOAT
21999 20
-32768 STMT MARK
2 ASSIGN
IDENTIFIER " 4 STHMT NUMBER
22000 TEST 22008 IDENTIFIER
. 10 =
22001 PROC 22009 IDENTIFIER
22002 DECLARE 1500; ;IXED
22003 A 2u
22004 FIXED -32768 STMT MARK
22 PUT
22005 B S STMT NUMBER
22006 FLOAT 22010 IDENTIFIER
22007 B . 22011 LDENTIFIER
21
22008 A -14000 éHARACTER
22009 B 53)
22010 PUOT , -32768 STHT MARK
22011 LIST 1; ggg’r NUMBER
22012 END 272012 TDRENTIFIFR
. . 24 M
. -32768 STMT MARK
50 END PROGRAM
- 7 STHMT NUMBER
32767 0 NULL

Figure 4.

Internal representation

OPERATOR
OR
IMITER

LIMI
LL

(=] |}

L

AVAV I Be=M] #\ # 1 + 2|0

| - J
Vo= AV

e b8 = N

of a progranm. -

WONONEWNO

51

After an entity is placed in its proper table its associated
numerical pointer is placed in the output vector. From this
point on, all processing of the source program is doné using
this vector of numer ical pointers (see Figure 4).

In addition té fransforming entifies'into an internal
form, the lexical scanner also performs a statement
recognition function. In particular, the scanner identifies
the type of each statement and inserts a statement mark,
statement type, and statement number into the output vector
along with the internal representation of each statement.
Since the ALECS grammer is not left factored, the intent here
is fpr the lexical scanner to make the syntax analyzer
deterministic by resolving all backtracking problems. Basic
error checking and a limited amount of error correction are
also performed by the lexical scanner.

Syatax Analyzer

The syntax énalyzer accepts as input the vector of
numerical pointers generated by'the lexical scanner. The
'syntax analyzer is encoded in PL/I as a set of procedures
(some of which are recursive), each of which corresponds to a
syntactic unit of the language. These proceddres'are
organized tb pecrform a deterministic top down énalysis of the
source program. - (This analysis is deterministic because the
* statements are typed by the lexical scannef.) When the

analyzer encounters a statement mark in the input stream, it

52

picks up the immediately following eﬂtity as the statement
type and transfers control to the PL/I encoded grammar for
that statement.

As each statement is parsed, it is transformed into a
set of modified "triplets". The triplets'are"generally of
the form:

(operator, operand)
or
(operator, operandl, operand2)
and in some cases are of the form:
(operator, N, operandl, ..., operandl).

The meaning of the operators in. the triplets closely
corresponds to the PL/I source operators., The operands
.generally refer to a declaration of some variable, constant,
or to another triplet and are represented by numerical
pointers to their respective morpheme tables, The output
vector shown in Figure 5 is the set of modified triplets
output by this module for the given source program. The
numerical values for the operators shown in Figure 5 are
replaéed by their respective mnemonics as an aid to

understanding this example.

OUTPUT VECTOR

TEST: PROC;
DECLARE A FIXED, B FLOAT;
B=3.14159; A=B + Uu;
PUT LIST('ABC') ;
END; :
CHARACTER
-14000 ABC
. TRIPLE
. POILNT ER
. -32000
-7001 -31999
-31998
FLOAT -31997
-7000 3.14159 -31996
. -31995
. -31994
. -31993
-1 -31992
-31991
EIXED -31990
15000 O -31989
15001 1 -31988
. 4 -31987
21999
IDENTIFIER
22000 TEST
22001 PROC
22002 DECLARE
22003 A
22004 FIXED
22005 B '
22006 FLOAT
22007 B
22008 &
22009 B
22010 PUT
22011 LIST
22012 END
32767
Figure 5.

TRIPLES

(STATEMENT, 1)
(LABEL, 22000)
(STATEMENT, 1)
(PROCEDURE,
(STATEMENT, 2)

~ (STATEMENT, 3)

(ASSIGN, 1, -7000,
(STATEMENT, 4)
(ADD, 15002, 22009)
(ASSIGN, 1, -31992, 22008)
(STATEMENT, 5)

(PUT, -14000)

(STATEMENT, 6)

(END, 22000)

22007)

Syntax ahalyzer output vector of triplets.

54

The analyzer also constructs a symbol table as it
processes the DECLARE stateménts of the ALECS progfamming
language. This symbol table is tﬁe data base used to contain
all d=clarative information., . The symbol tabls for the given
sourcé program is shown in Figure 7. |

Upon completion of tﬁe syntax analyzer, the source
program has been completely parsed. All variables in the
DECLARE statements have been placed in the symbol table: The
'rest of the source pr;gram, excluding the DECLARE statements,
have been translated into a set of triplets which are thén
passed to the type converter for’further processing. -

Symbol Table Sort -

This module sorts the identifiers placed in the symbol
table by the syntax analyzer. All conflicts between
contextual and explicit declarations are resolved. All
variables must be declared as implicit declarations are not
alloved. This decision was made to help eliminate a large
number of programmer errors that occurred when the users
first began writing programs in the ALECS programming
language. Symbol table information is merged where
appropriate and multiple copies of the same name are chained
via an environment pointer. Since there is no run-tinme
allocation of variables; fhis environment chain is used to

access the correct variables in the type converter.

55

Type Convertei

This module accepts as input the vector of triples
generated By the syntax analyzer and the sorted symbol table
resulting from the symbol table sort module. The type
converter proceeds sequentially through the triples vector
and processes the operands of each operator. The type of
each operand is determined by its numerical table pointer if
the operand represents a bonstant. If the operand represents
a variable, the numerical pointer to the identifier table is
used to retrieve the identifier name from_the'idenfifier
table. This name is then usedlto perform a symbol table
lookup to fina its associated unique name in the sorted
symbol table. If a multiple'declaration for a name has been
made in the source program, the environment poihter set up by
the symbol table sort is used to determine the scope for
selecting the correct symbol tableAentry;

Once the symbol table entry for the identifier name is
found, a numerical pointer to this symbol table entry
replaces the identifier table pointer obtained from the inpat
vector. This symbol table pointer is then placed in the new
triples output vector (Figure 6). After the storage
allocator (see next section) processes the symbol table and
assigns addresses to all entries in the symbol table, the
output vector is passed to the code generator which in turn

uses this symbol table pointer to obtain the variable's

56"

address during the gemeration of the‘object program. This
process is explained in further detain in the followidg
eections on the storage allocator and the code generator.
Each internel operator that is generated by the syntéx
aﬁalyzer is represented by a body'of code in the type
converter. In many instances, multiple operaters are
processed by the same body of code. Once the type of eech
operand is determined, all necessary conversions are
generated in accordance with the demands of the operator.
For instance, the operands for an arithmetic operator must be
of the same type. If they are of different type, then the
type converter will generate a conversion operator followed
by an operand pointer into the new triple vectof. For an
arithmetic operatbr, if one.operand is of type FIXED and the
other type FLOAT, then the operand of type FIXED is converted
to type FLOAT (see Figure 6). If an operand is of type BIT
or CHARACTER, it is firsﬁ converted to type FIXED. (Note
also that the operand of type CHARACTER must convert into a
legitimate integer number.) Consult the ALECS Language
Reference Manual [14] for type conversions involving other

operators.

TEST: PROC;

57

DECLARE A FIXED, B FLOAT;

B=3.14159; A=B + 4;
PUT LIST ('ABC');

END;
CHARACTER OUTPUT VECTOR
-14000 ABC ‘
. TRIPLE ‘TRIPLES
. POINTER _______
. -32000 (STATEMENT, 1)
-7001 -31999 (PROCEDURE, 500)
-31998 {STATEMENT, 2).
FLOAT -31997 (STATEMENT, 3) :
-7000 3.14159 -31996 (ASSIGN, FLOAT, -7000, 502)
. -31995 (STATEMENT, U4)
. ' -31994 (FIX TO FLOAT, 15002)
. _ -31993 (ADD, FLOAT, 502, -31994)
-1 -31992 (FLOAT TO FIX, -31993)
-31991 (ASSIGN, FIXED, =-31992, 501)
FIXED -31990 (STATEMENT, 5)
15000 O ~-31989 (PUT, -14000)
15001 1 -31988 (STATEHMENT, 6)
. 4 -31987 (END, 500)
21999

Figure 6. Type converter
The output from this
(see Figure 6) similar to

analyzer, except that all

output vector of modified triplets.
module is another vector of triples
the ones output from the syntax

of the necessary conversion

operators have been inserted. Also, since each identifier's

type is determined, all array references, pseudo variables,

built-in functions, procedure and task calls have been

isolated and separated from one another by reassigning the

internal operator code for each entity. The form of some of.

the operands are changed as the identifier pointers are

58

replaced by their symbol table pointer and insgrted into the
new‘triple vector. All numerical pointers to the conétant's
tables are passed through unaltered as are the statement
mark, statement tyée, and statement number that were created
by the lexical scanner. This new triple vector will then be
processed by the code generator.
Storage Allocator

This module is machine dependent and accapts as input
the symbol table output from the symbol table sort and all of
the morpheme tables, excluding the identifier table,
generafed by the lexical scanner. The purpos2 of ihe étbrage
allocator is to reserve storage for all variable declarationms
and constants which will be referenced during the execution
of the object progranm. vsince STATIC is the only storage
allocation that is supported in this implementation, storage
for the variable declarations is resepvéd at :ompiie time.
No additional storage will be allocated at execution timé. A
point to be stressed here is that only STATIC storage
allocation is supported in this implementation because of the
limited resources imposed by the architecture of ghe host
computer (discussed in Appendix A). By rewvwriting thié
machine dependent module, other types of storage allocation
such as AUTOMATIC, CONTROLLED, and BASED can be implemented
for a suitable host computer as they are already implemented

in the machine independent portion of the ALECS compiler.

59

TEST: PROC;
DECLARE A FIXED, B FLOAT;
B=3.14159; A=B + 4;
PUT LIST('ABC');

END;
CHARACTER ADDRESS
-14000 ABC 30
-7001
ELQAT ADDRESS
-7000 3.14159 26
-1
EIXED ADDRESS
15000 O 23
15001 1 24
. 4 25
21999
ABBREVIATED SYMBOL TABLE
SYMTAB IDENT- STHT ATTRIBUTES ENVIRONMENT ADDRESS
POLNTER _IFIER_ __NUMBER ______________POINTER _____________
500 TEST 1 LABEL, ENTRY 0 0
501 A 2 FIXED 0 20
502 B 2 FLOAT 0 A 21

Figuré 7. Address assignment for the symbol and morphemé
tables.

The storage allocator sequentially processes the symbol
table. Each entry of the symbol table is assigned.an address
in reserved storage according to its declarative information
inserted by the syntax analyzer (see Figure 7). All entries

in the object program are initialized to zero unless

60

explicitly initialized in the DECLARE statement. After the
symbol table is processed, the constants in the morphenme
tables are then assigned addresses (see Figure 7) -and the
conQerted constants {(from IBM 360/65 internal notation to:the
host computer's internal notation) are then placed in the
reserved storage.

The output of this module consists of reserved storage
'for all variable declarations and constants which will be
referenced during the execution .of the object program. The
storage addresses that are assigned to each symbol table
entry and constant's fable entry will be used by.the‘code
generator to generate the rest of the object progranm.

Code Generator

Thié module accepts as input the vector of converted
triples f;om the type converter. The storage reserved for
all variables and constants by the storage allocator is
generated as the first part of the object program.l The
addresses assigned to these variables and constants by the
storage allocator are used to resolve all of the operand
addresses appearing in the input vector. This moduie is
machine dependent and will rely heavily on fhe target
machine's characteristics for the generation of code for each
ope;ator in the 1list of triples. As each operator is
processed, its semantic ruleé, as defined by the PL/I

Reference Manual [13] and applied to the target machine, are

61

used to generate the object code. The semantic rules for

each operator are directly encoded into the code generator.

In addition, the code generator also performs the following

functions:

1. Establishes "relocation.records"lcontaining relocation
information on each object word generated. Since the
object code will normally be generated with a zero
origin, the relocation records can be used by a loader
to add a bias to the relocatable object words.

2. All unresolved addresses, such as forward referencing of
labels and the use of temporaries are ent2red into a
table to be resolved later by the tempset module as it
makes one more pass through the genérated code.

Storage for all temporaries referenced during the code
generation process is generated at the end.of the object
program'by tempset.

3. A history of the contents of the internal registers is
kept to prevent exceséive loading and storing of values.

The output vector in Figure 6 is the input vector to the
code generator. Fiqgure 8 shows ;he object prdgram generated
for the source program 1in Figﬁre 6. The CAL mnemonic in

Figure 8 is a supervisory call to the operating system for

execution of a system routine., These system routines proviie

out-of-line mécro facilities for the object program generated

by the ALECS compiler.

OBJECT
ADDRESS

- 000000
~000001
000002

000010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036
000037
000040
000041
000042
000043
- 000044
000045
000046
000047
000050
000051
000052
- 000053
000054
000055
000056

Figure 8.

OBJECT

000033
000047
000033

000070
000007

000070 .

000016
000070

- 000025

000070
000000
000000
000000
000000
000000
000001
000004
476402
311037
000032
000003
010203
010013
000026
011013
000021
200025
010025
010006
000021
010026
040020
012001
000041
140005
200003
740200
010613
200004
740200
010601
010217

CAL
CAL

LacC
CAL
CAL

CAL
DAC
CaL

DzH
LacC
SZA
CAL
LAC
SZa
CAL
CAL

62

ASSEMBLER LISTING

MNEMONICS__RELOC__COMMENTS

0033 R START EXECUTION
0047 R EPILOG ADDRESS
0033 R PARAMETER PTR
0070 R TEMPORARY DOPE
0007 VECTORS FOR FIXED,
0070 R FLOAT, AND BIT CHAR-
00 16 ACTER CONVERSIONS
0070 R " '
00 25 n
0070 R SUBSTR TEMPORARY
0000 ' DOPE VECTOR
0000 A (VARIABLES)
00 00 B '
0000
0000 0 (CONSTANTS)
0001 1 '
0004 4
64 02 3.14159
10 37
0032 R
0003
0203 "ABC?
0013,X FLOAT LOAD
0026 R 3.14159
10 13,X FLOAT STORE
0021 R B
0025 R LOAD A
0025,X FIX TO FLOAT
0006, X FLOAT ADD
0021 R B)
0026,X FLOAT TO FIX
0020 R STORE IN A
2001,X PUT LIST
0030 R *ABC?
0005 R EPILOG
0003 R " '

"
0613, X "
0004 I "

L 1]
0601, X "
0217,X n

Listing of object progran.

63

The transportability of the compiler»relies on the fact
that up to this point all of the ALECS language is available
for code generation. The compiler writer must now weigh the
characteristiqs of the target machine with the requirements
specified by the users to create a code generator which
reflects these considerations. A code generator for ALECS
sSubsets can be written supporting just the basis statements
of ALECS, Such as expressions, IF, DO, etc. and leaving out
such statements such as ON, READ, WRITE, etc. One must
always keep in mind that whafever part of the language is
chosen for implementation, a run-time system must be
implemented to support execution of the 6bject program. The
morewsophisticated the language, the larger and more complex
the run—-time system.

Tenpset

This module resolves all unresolved addresses
encounte;ed by the code generator. (The functions provided
by this module could also be performed by the code generator
provided the'code generator doesn't become too large and
proper techniques are used to resolve all addresses.) The
unresolved addresses are saved in a table by the code
generator and one pass is made through the.table and through
the object code simultaneously. All entries in the table are
processed and the appropriate addresé is entered in the:

object program. At the same time, an assembler language

64

listing of the object program is generated using appropriate
mnemonics for the operation codes along with an attribute
listing (sihilar to the one generated By the PL/I compiler)
and a listing of all the erfor messages. issued by the ALECS -
compiler. = The comélete objecf deék, along vith its
relocation records And any additional information concerning
length and formal parameters, is now available to be executed
or saved on some storage mediuﬁ. Since the ALECS compiler
currently resides on an IBM 360/65 computer at the Iowa State
University Computation Center, this module punches column
bina:y object decks. These objegt decks are thén transported
to the host computer where they'are placed in the user's

program library.on magnetic disk storage.

65

CHAPTER IV. ALECS OPERATING SYSTEN

ALECS demonstrates the feasibility of implementing a

powerful operating system for multiprogramming, real tinme,

and interactive use without being expensive either in

equipment or in human effort. ALECS runs on hardware costing

as little as $55,000 and approximately two man years was

spent on the operating system's software. At the same time,

ALECS offers a number of features most of which are not found

in similar commercial computing systems and are seldom found

even in larger operating systems. In particular, ALECS

includes:

1.

A disk-resident operating system minimizing the amount 5f
main memory required by the system.

A system command language providing both dynamic
user-system and user-process communication on a

per-user basis.

The ability to initiate -asynchronous and real time
processes.

A4 hierarchial file system incorporating directory shariag
amoung users.

The run-time support for a PL/I based high level
language.’

The capability of expansion for multiprogramming up to

twenty core-resident users.

66

7. The ability to communicate with any type of external
device, including other processors.

8. Absolute user protection from himself and all other users
of the»sfstem, thus insuring a h;gh degree of system
reliability. |

The following definitions are given before introducing
the structure of the operating systen.

Definition 4.0 Operating system: The set of control

programs, reentrant service routines, and system control

blocks that manage the computing system's resources.

Definition_4.1 Control programs: Bodies of code which use
system control blocks as their data base to allocate,'.
schedule, and dispatch all of the computing syStem‘s
resources.

Definition 4.2 Reentrant service programs: Standard

routines which assist in the execution of a process without
contributing directly to the contfol of the system (for
example, arithmetic routines and array and structure mapping
routines).

Definition 4.3 System control blocks: Basic information
structures which contain information completely describing

all processes and devices currently under control of the

operating systenm.

67

128K
. User Programs
32K
8K Transient Work Area
Systems Hork Space
6K Scheduler :
Interrupt Handers (Disk, Magtape,
Clock, Teletypewriter)
. I/0 Handlers
0 Reentrant Service Progranms

Figure 9. ALECS operating system storage layout.

Figure 9 illustrates the overall storage layout of the
ALECS operating system. The operating system uses 8K of main
memory and 12K of disk memory. Similar cohmercial computing
systemns use anywhere from 16K to 32K of main memory plus
additionai disk memory. Of the 8K main memory, 1K is
allocated for a transient work area. The disk resident
portion of the operating system is loaded and exeéuted in
this area. Another 1K is allocated for systems work séace.
4ll system control blocks are allocated stoiaqe in this area.
The remaining 6K is allocated to reentrant service prograns,
I/0 handlers, and interrupt routines. All of these are
standard elements of most operating systems and are not

relevant to the discussion of the operating system in this

.68

dissertation. A detailed description of them can be found .in
the ALECS Operating System Reference Manual [15].

After detailing the functions of the transient vdrk area
and describing‘the various system control blocks, the
remaining portion of tﬁis éhapter will be,devo;ed to the
system control programs. These programs are bodies of code
logically linked together to allocate, schedule, and dispat:h
all of the computing system's resources and are the nucleus
of the ALECS operating system. -Of signifiéant importance ié
their overall logical structure and their use of the systém
control blocks to support the multitasking, iuterrupt
processing, and interactive funcﬂions.

Unfortuﬁately, it is difficﬁlt to discuss the system
control blocks without having already discussed the systen
control programs, and vice versa. Therefore, the réader»may
want to briefly scan the contents of this chapter and then
reread it for further detéils. Also, to familiarize the
reader with sdme of the important features presented in the
following sections, a brief conceptual overview of the ALECS
‘operating system is presented as .an aid to unierstanding the
logical structure of the systeﬁ.

Processes are created by the ALECS operating system wh2n
the user, via the system control language described in
Appendix C, requests that a root task be loadéd into main

memory, relocated, and executed. The execution of the root

69

task can result in other processes being created by the
system. The root task can call chet tasks and the systen
must then load, relocate, and schedule these for execution.
These tasks, which will be referred to as subtasks, can also
issue task calls. The task tree formed by these task calls
dynamically grows and contracts. In addition, processes such
as EXPERIMENT on-units can be created during the execution of
these tasks to respond to external priority interrupts. To
keep track of all procesées after they are cr2ated by the
system, three lists are created. &Each list contains address
pointers to various control blocks which contain the status
information necessary for:determining, at any time, the state
of execution of each process.

The dispatcher (or scheduler) continually processes
these three lists via the use of five address pointers
(statewords) permanently resident in the ALECS system (these
are shown in Figure 14). Control is passed to the dispatcher
every time the execution of a process is suspended or the
process completes its execution. The dispatcher determines
where control is.to be sent next by processing the three-
listg. The list of pointers associated with the status of
the various segments of the transient work area is always
processed first, For each seghent of the transient work area
vhose status is dispatchable, control is given to the service

program residing in that segment.

70

After the status of every segment of the tramsient work
area has been checked, the list of pointers’in the priority
queue is processed. The priority queue is used to
temporarily raise the scheduling priority of tasks doing
teletypewriter I/0. | |

The third list is a doublf linked list of chaian pointers
threaded through control blocks representing all tasks that
have been created by the system. After processing the other
two lists, the dispatcher processes each task control block
on the chain in a round robin manner. If the task's status
is dispatchable, control is given to that task. If the task
is waiting for event variables to complete, an event chain
originating in the task control block is processed. If all
event variables are set complete, control is given to that
task.

To sum up this brief overview, control cycles
continuously through the dispatcher as it processes the thrsze
lists. Upon detecting a process whose status is
dispatchable, nonpriority control is given to that process.
Upon completion, or suspension, of that pfocess control is
passed back to the dispatchef where it looks for another"
dispatchable'process, thereby multiprogramming the use of the

central processor.

71

Transient Work Area

A portion of the ALECS operating system ﬁonsists of
service programs that support built-in functions, character
data conversion, file open and close, task load and |
completion, and the initiation of on-units at the time.an ON
statement is exacuted. These routines are not executed often
enough to justify their presence continﬁally in main memory.
Instead they are placed in disk storage and are called into
the transient work area portion of main memory for execution.
In this way, the size of main memory dedicated to the
operating system can be substantially reduced.

When a reference to a disk resident routine is
encountered during the execution of a task(a system call is
executed and control is passed to the transient manager (one
of the systen control‘programs). The transient manager
initiates a disk read request for the desired routine
providing it is not already in the transient work area. As
soon as the routine has been read from disk it is scheduled
for execution by the dispatcher.

Before discussing the replacement strategy used by the
transient.manager, a word should be said about ghe mode of
execﬁtion. A necessary requirement of the host computet is
the'ability to execute these disk-resident programé using
either relocation hardware or a set of base registets. The

ALECS system uses relocation hardware (user mode) described

72

in Appendix A. By having the ébility to input these sérvice
routines intovany one of the segments in the transient area,
a very efficient replacement strétegy can be used to select
the segment into which the program can be read.

“The replacement strategy is based on the least recently
used (LRU) principle. When the transient uofk area is full
and a neﬁ routine is requested from disk, the transient
manager first checks to see if any nonresident nonreentrant
routines are in the transient work area (approximately 10% of
the disk resident routines are not reentrant). If one such
routine is found in the transient work area then its segment
is made available. 1If no such routine is present in tﬁe
transient work érea then an LRU policy»is uéed to select the
routine to be "pushed". If all routines in the transient
work area have been referenced duting the same time frame:.and
the least recently used routine cannot be determined, then
the use count determines which segment will be freed. The
goa; of this policy is to make temporarily résident a toﬁtiue
that is being referenced often in relation to sonme period of.
time.

System Control Blocks
The system control blocks are uséd as th2 data base‘foc
the ALECS operating system. These blocks hold all of the
supervisory and control information for all processes under

control of the ALECS operating system. The important thing

73

to observe when viewing the contents of the various control
blocks is that their contents are machine independedg. Each
'word in the control blocks represents either a bit data type
~or an integer address- (or address pointer). This is an
important factor in transporting the ALECS operating systenm
to another computer. If the operating system were writtenm in
a high level language, a large portion of the system beconmes
directly transportable. If writténvin assembler language,
then the sfstem control programs must. be rewritten, being
extrenmely careful to transport the complete logical process.
This is simplified by the fact that the contents of the
system control blocks, which contain all of the supefvisory
and control information, are machine independent.

Thé variéus system control blocks are the Meta Control
Block (MCB), Task Control Block (TCB), File Control Block
.(FCB), Interrupt Control Block (ICB), Experiment Control
Block (ECB), and the Transient Area Block (TAB). The three
most important blocks, the TCB, ICB, and TAB will be

discussed in greater detail than the'other control blocks.

74

This control block is the key data structure of the
-operating system. A TCB is created for every task to be
executed by the ALECS operating_System. The pewly created
TCB is then placed on the dispatcher chain pointer that links
it with all other TCBs in the system. The TCB is usegrﬂ} the
dispatcher to support the multiprogramming of tasks as
described in the section on system control programs. All
other control blocks created during the éxecution of a task
are chained to that task's TCB. Thus, by proéessing the
dispatcher chain pointer, all control blocks in the systen
are readily accessible. This becomes very important when-
abnormal conditions arise during the execution of procesées.
The control blocks are then used by the systém control
programs to take corrective actions (such as removing the,
processes from main memory). This use of the controllblocks
is discussed in further detail in the section on systen
control programs. In addition to the control bloék and
dispatcher chéin pointers, the TCB also contains supervisory
information such as the mode, status, resume address, and
core address of its associated task (see Figure 10). Upon
completion of execution of a task, its associated TCB is used
to free the main memory allocated to the task and to free the
systems work space containing all control blocks (including

the TCB) associated with the task.

75

ICB . hcB
WORD CONTENTS WORD CONTENIS
0 Identificatiop code, 0 Identification code,
parent TCB pointer root TCB pointer
1 MNode 1 Teletype unit number
2 Statﬁs 2 Sysiem flag
.3 Resume address 3-9 User library name
4 MNCB pointer 10-15 TITLE informatioﬁ for OPEN

5-6 Event or clock words
7 ICB pointer

8-10 Task name
11 FCB pointer

12 Task completion event
variable address

13-14 Register storage area
15 Cotask pointer
16 Subtask pointer
17 Parent task pointer
18 Left dispatcher chain pointer
19 Right dispatcher chain pointer
20 On block resume address
21 Main memory task addresé
22 Memory allocation bit map

23-31 Environment save area

Figure 10. Task Control Block and Meta Control Block.

76

Meta Control Block

A Heta:Cohtrol Block (see Figure 10) is created only for
the root task of a job. The user, at his teletypewriter
terminal, requests the execution of the root, of initiai,
task via the system control language désctibed in Appepdix':.
The system creates the MCB ét the éame time it creates the -
TCB for the root task. The user's directory name, obtained
via the system control language, is then inserted into the
MCB. Any task called by the root task will only héve'a TCB
created for it. Note that each task's TCB is chained to its
parent task's TCB. The MCB pointer is passed from the parent
task's TCB to each called task's TCB so that £he
teletypeuritef unit number contained in the MCB can be used
for all teletypewriter I/O operaﬁions initiated by any of the
user's tasks. |

The MCB also contains system access information which
allows ceftain system tasks to have access priviledges that
are denied the normal users for security and protection
purposes. This information is used primarily by the I/0
handlers to allow system tasks to read and write records to

disk data sets and ignore any record length errors that may

get raised during an I/0 operation.

10
11

12

13-31

1Also includes TCB pointer.

Identification code!l
Mode

Status

Resume address

MCB pointer

Event or clock words
Next ICB chain pointer
Type of ICB

Temporary storage
Interrupt location

FCB pointer

Address of on-unit code

Environment save area

77

10

11

12

13

4

15

16-17

18-19

20

21

22

CONTENTS

Identification code
Mode

Status

Resume address

MCB pointer

Event or clock words
Address of invoking CAL
TAB pointer

Disk status word

Disk address

TCB pointer

Transfer area address
Event variable address
Channel gqueue pointer
Record length

TAB status code

Local event variable
Relocation factor

Last time referenced

Use count

Figure 11. Interrupt Control Block and Transient Area Block.

78

e . —— — — ——— — " —— ———

The TAB is a 24 word block created at the end of each
segment of the transient area. It contéins all of the
information needed by the transient area managjer to schedulz
ihe allocation of each segment, such as the identification of
the disk resident routine (TA routine) currently in the
segment, the status of the segment, the last clock timé in
which the segment was reférenced, and the number of times the
routine in the segment has been used (see Figure 11).

The TAB also contains a relocation factor that is uéed
by the TA routines for accessing parameters in the task which
invoked them. As described in thé transient_work area, the

TA routines are executed in. user mode via relocation

-hardvare. To obtain the absolute address of parameters to be

passed to the TA routine, a relocation factor for each
segment is inserted in each TAB by the transiant manager.
This relocation faétor is used along ‘with the address of the
invoking CAL instruction to_obtain'the parameter's address
relative to the segment which contains the TA routine}for
that particular CAL instruction.

Each segment has its own status and each is séheduled
for execution by the dispatcher when its status is
dispatchable. When the TA routine completes execution it
returns control to the transient manager which temporarily

stores any results obtained during the execution of the TA

79

routine in the TCB of the invoking task and changes the
status of the TCB from wait on transient area to dispatchable
with restoration of registers from the temporary storage area
{see Figure 15). .

File_Control Block

A FCB is created for each magnetic tape and disk file
opened during the execution of a task. The OPEN macro
initiates a library lookup of the file name using the
directory name located in the MCB. Upon finding fhe data set
in the user's directory, the OPEN macro reads the data set
discriptor from disk and places its contents into the néuly
~ créated FCB. The data set discriptor is very similar in
contents to the FCB shown in Figure 12. During the execution
of all file I/0 operations, a pointer to the'FCB (inserted
into the file declaration oﬁ the objectlprogram«by OPEN) is
used to obtain all of the necessary file information to
perform the I/0 operation.

If an end of file or end.of data set is detected during
the I/0 operation, the associated bits are set in the I/0
status word (see Figure 12) and the condition is also set in
the mode word of the TCB. When the dispatcher processes the
mode word in the fCB, it will search the ICB chain to find an
on-unit set up to process the type of condition raised. This

is explained in the next section on the ICB.

80

DISK_FCB
WORD CONTENTS
0

Identification code
I/0 status word

Disk address

2
3 TCB of task that openéd file
4 Core address 6f transfer area
5 Event variable address
6 Channel gueue pointef
7 Record length
8-10 File name
11 FCB chain pointer
12 Disk address of data set descriptor
13 Disk addiess of'beginning of data set
4 Disk address of end of data set
15 Disk address of end of file
IAPE_ECB
WORD CONTENIS
0-11 same as for disk FCB
12 Error count
13 Tape unit number

Figure 12.

File Control Block.

81

Interrupt Control Block

An ICB is created upon execution of an ON statement for
the TRANSMIT, ERROR, ENDFILE, CONVERSION, and ATTENTION
conditions. When the ON statemeat is executed, the ICB is
created and placed on the ICB chain. Thévfirst ICB is
chained off of the TCB of the task in which the ON statement
is executed. Upgn execution of additional ON statements in
the task, the additional ICBs are chained using the ICB
pointer in the ICB at the end of the current chain. When oae
of the above conditions is raised during the execution of a
taék, the condition type is set in the mode word of the TCB
(see Figure 15). The next time the dispatcher processes the
TCB, it sees that a condition has been raised and fhe ICB
chain (starting with the pointer in the TCB) is processed to
locate an active ICB which is associated w;th the type of
condition réised (see the dispatcher for complete details on
the processing of conditions).

The ICB also contains a FCB pointer for the processing
of ENDFILE conditions. When an ENDFILE condition is raised,
the FCB pointer is used to obtain the necessary information
to determine whether the ENDFILE condition corresponds to the
file represented by that FCB. If the ENDFILE condition is
detected in the FCB, then the dispatcher schedules the
associated ICB for execution. If the ENDPILE coandition has

not been raised, then the dispatcher.coutinues processing the

82

ICB chain»to locate another ICB that is of type ENDFILE and -
checks its associated FCB for the ENDFILE condition as
previously descussed. A description of the contents of an
~ICB can be found in Figure'11.i -

Experiment Control Block

An ECB is created for each EXPERIMENT file opened during
the -execution of a user's task. -The newly created ECB is
placed on the FCB chain originating in the TCB of the task ip
which the EXPERIMENT file is obened. The OPEN macro that
creates the ECB also reads the device control table
associated with the EXPERIMENT file name and places its
- contents in the ECB. Appendix B explains in detail the

functions of the ECB.

12-23
24
25
26
27
28
29
30
31
32-47

Figure 13.

83

CONTENTS
Identification code, TCB pointer

Address of experiment base.block in systen
Address of instruction following the on-unit
TCB of task that opened the experiment file
Address of interrupt trap location
Experiment ready SKIP IOT

Upper bound on the number of I/0 "addresses"
Shutdown IOT

File name

FCB chain pointer

Environment save area

Interrogate IOT

ONCODE address

Beginning address of on-unit

Interrupt ignore address

TCB under which ON statement is invoked
Disk address of the device control table
Experiment shutdown IOT

Pointer to supplement block

I/0 "addresses"

’Experiment Control Block.

84

System Control Programs

Of primary interest Are thé system control programs
which allocate, schedule, and dispatch all of the computing
system's resources such as the centrai processor, hain |
memory, peripheral I/0 devices, and user tasks and their
data. These system control programs, along with the sysﬁem
control blocks; form the nucleus of the ALECS operating
system. Figure 14 illustrates the logical structure of the
operating system and the rest of this chapter.will detail the
various functions performed by the system control. programs.
These control programs consist of the SYSTEM task, REQUEST.
task, transient area manager, and the dispatcher. The
transient area manager has already been discussed in the .
sectioh describing the tfansient ubrk.area. The SYSTEM task
and REQUEST task are discussed before the dispatcher since
the dispatcher is the’control program which logically ties

all of the other control programs together.

85

CCBP pointer
DSPHR pointer
PQUE pointer
STCB pointer

- MCBl=XTCB CTAB pointer
Transient Work Area
/ SYSTEN '
: task
Segment 1
TCB
Dispatcher TAB for Segment 1
chain
pointers
Segment 2
user
////task‘Z _
: N IAB for Segment 2
TCB .
Segment 3

ICB FCB user TAB for Seagamepnt 3

root task

Segment 4

ICB FCB ECB - |ITAb for Segment 4

Figure 14. Logical structure of the ALECS
operating system.

SYSTEM task

The SYSTEM task is created at SYSGEN time and
permanently resides in main memory. It's function is to
monitor the teletypewriter control table, to l1isplay massages

on the console, and to collect statistics and monitor the

86

execution of the rest of the operatipg systen. The.SYSTﬁu
task's TCB is permanently on the dispatcher chain and is
scheduled for execution by the dispatcher.A When the system‘.
is idle; éontrol cycles through the SYSTEM task.

Each user logs into the system via a teletypewriter
terminal (or compatible device) by pressing the‘atténﬁion key
which, in turn, generateé an interrupt that is processed by a
 teletypewriter interrupt routine. This routine maps a bit,
corresponding to the terminal from where the interrupt was
triggered, into the teletypewriter control table. When the
SYSTEM task finds this bit $e£ as it scans the teletypewriter -
control table, it issues a task call for the REQUEST task.
The REQUESf task handles all user-systen communication via
the system control language described in Appendix C; The
REQUEST task is described in the next section.

Another function of the SYSTEN task, displaying messages
on the console, is uéed to support the ALECS DISPLAY
statement as well as issuing mount and dismount nessages for
magnetic tape files. When a magnetic tape file is opened
during the execution of a user's program, the disk resident
open routine seizes an available tape unit and inserts a tape
mount message in the DISPLAY queue. Execution of the open
tbutine is suspended until the SYSTEM task types the message
on the consolé. The user must then mount a tape on the

specified unit and then respond using the ATTENTION mode

817

described in Appendix C. This results in the SYSTEM task's
ATTENTION on-unit being executed the next time the dispatcher
gives control to the SYSTEN task. The ATTENTION on-unit then
communicates with the user and asks for the following
information:

1. Name of tape data set.

2. Unit on which the tape is mounted.

3. File nunmber.

This.information is then passed to the open rbutine and it
continues execution by creating an FCB for the file. ALECS
supports multiple files on magnetic tapes and tﬁe file number
is used by the open routine td space over files and positiop‘
the tape at the specified file number. This allows for
efficient use of magnetic tape and is extremely valuable when
a system hang occurs. An end of file mark is writtan on the
current data tape and a new file is started following the old
one.

The SYSTEN task collécts various statistics on the per
ceht utilization of the operating system for any specified
time periods. The SYSTEM task is also used for monitoring
various system tables and to perform diagnostic functions.

At periodic intervals the SYSTEM task sends a request to th2
XDS 910 processor. The operating system in the XDS 910

processor verifies the message and then sends a request back
to the SYSTEM task which in turn is verified. This provides

a periodic error check of the hardware interface between the

88

tWwo processors.
REQUEST task

The REQUEST task is called by the SYSTEM task and
handles all user-systen communicatioq via the system control
language described in Appendix C. TheAsystem contrdl
language allows the user to provide information to the
REQUEST_task for scheduling the execution of his root task,
scheduling the execution of an ATTENTION on-unit, or
scheduling the termination of'the root task and all tasks
invoked by the root task.

If the request is for the execution of a root task, the
user supplies his directory name and task data set name. The
REQUEST task then does the following:

1. Creates an MCB and TCB for the root tésk'in
systems work space.

2. Inserts the directory name and teletype unit number into
the MCB and inserts the task name into the TCB.

. 3. Calls the disk resident task 1oad,routineAwﬁich
performs the directory lookup, allocates main memory,
loads the task (object program) from its disk data Set,
relocates the task using the relocation records located
in the disk data set, and gives control back to the
REQUEST task.

4, ‘The'REQUEST task completes the initiaiization of

the TCB by placing the TCB on the dispatcher

.the

89

chain.
A message is typed on the user's terminal giving
the status (disbatchable) of thé task, its MCB address
(user ID), and its main memory location.
The status word in the T CB is set to executable
and the REQUEST task completes its execution and its
main memory allocation is freed. |

If the réquest is for execution of an ATTENTION on-unit,
REQUEST task then does the following:
Has user input the MCB address (user ID) that

was typed when the root task was scheduled for execution
(see Appendix C).
Uses this MCB address to obtain the roo£ task's
TCB address ftom the HCB.
Obtéins mode word from the TCB, sets the ATTENTION
bit in the mode word, and places the updated mode word
back into the TCB and the REQUEST task completes
execution. -
The dispatcher eventually detects the ATTENTION ﬁode
and schedules the ATTENTION on-unit in the root task
to be executed (this is discussed in more detail in the
next section).

If the request is for termination of the root task and

all tasks invoked by the root task, then the BEQUEST task

proceeds with steps 1 and 2 described above for the ATTENTION

90

request. At step 3, instead of setting the ATTENTION bit in
-;he mode word, the ABEND bit is set, the mode word is placed
back into the TCB,'and the REQUEST task completes execution.
The'dispatcher will eventually deyect the ABEND bit in the
mode word énd will check to see if tﬁe TCB contains any
subtask or cotask pointers. If any are found, then the ABEND
"bit is set in the mode words of their TCBs. The ABEND biﬁ is
thus spread throughout the task tree until it is set in the
TCBs which represent the leaves of the tree (i.e. have no
subtask pointers). The dispatcher gives control to the
EPILOG of each abnormally terminated task after all pending
I/0 operations are complete, Remember, a task cannot be
terminated (completed) until its subtask$ have completed
execution to prevent the dangling reference problems posed in
Chapter III. |

The current dispatcher (or scheduler) is based on a
preemptive, time sliced, combination priority-round robin
algorithm. The functions of the dispatcher are:
1. Schedule the execution of the TABs whose status

are dispatchable. |
2. Process the priority queue by giving control, on a

first in-first out basis, to all tasks whose TCB

pointers'are in this queue. A

3. Use the dispatcher chain pointers (a doubly linked

91

list threaded through all of the TCBs) to monitor the
mode and status words bf all TCBs in a round robin
manner.

The ALECS system is preemptivé as several‘tasks can be
in various stages of execution. Also, one task's execution
can be suspended while another task of higher priority ié
executed in response to external hardware interrupts. Ohce
loaded into main memory, a task always resides in one of th2
status assignments'shown in Figure, 15. This status is always
located in its TCB and the recognition, assignment, and
management of this status is a function of the ALECS system
éon;rol programs.

Each time the diséatcher is entered it services the TABs
and TCBs whose modes are normal and status' are dispatchable
(see Figure 15). It processes the TABs, the priority gueue,
and the TCB dispatcher chainmn in that order. The TABs are
serviced first since they are an integral part of the tasks
already executing"in main memory and their resources are’
limited. Giving the TABS top priority ensures that the
number of tasks waiting to execute disk residsnt routines
doesn't grow too large and block main memory allocation. The
priority queue is accessed via PQUE in Figure 14 and permits
some tasks to execute at a priority higher than the normal
priority. Currently, only tasks doing teietypewriter I/0 are

assigned the higher priority.

92

STATUS_WORD

6

7
8-10

11-17

BEANING
Dispatchable,restore complete environment
Dispatchable,;estore only registers
Dispatchable

Wait on teletypewriter I/0

Delay

Wait on event variable

Wait for transient area routine to complete

Root task loaded,REQUEST task not completed

O=condition, 1=ABEND

0=ABEND task tree,1=ABEND task only
0=ABEND-condition not found,1=igﬁore if no condition
0=ABEND on on-unit return, 1=continue execution
1=ATTENTION condition raised

1=I/0 interrupt pending

O0=system ABEND,0=user ABEND

1=task in EPILOG (ABEND),raised in TAB (condition)
Type of condition or ABEND |

Subfield code

Figure 15. Contents of control block status and mode words.

93

By using a "least time to go" scheduling strategy [23]
for interactive tasks, the teletypewriter response time is
significantly-improved without affecting the axecution of
normal priority tasks. All tasks begin execution at the
normal priority. When a task passes control to the
teletypewriter I,/0 handler, the handler places the current
~ control block in the wait status, issues the teletypewriter
command, and gives control to the dispatcher via DSPHR. Upon
'completioh of the teletypewriter I/0, the teletypewriter
interrupt routine resets the status of thé Control_block to
dispatchable and inserts a pointer to the control block into
the priority queue. The dispatcher will service this gueue
before the normal round robin processing of the dispatcher
chain, thereby temporarily raising the priority of this task.
Whenever this task releases control to the operating system
‘and enters a wait state for any reason other than
teletypewriter I/0, his TCB remains on the round robin
dispatcher chain and it n2 longer has a higher priority.

The reasons behind the decision to implement a priority
scheduling scheme for interactive tasks are as follows:

1. Most users issue teletypewriter I/0 messages in

bursts, normally between 5 to 8 input/outputs per line.
2.. These bursts only require a few milliseconds at most

between messages, meaning the task has a very low

execution time to wait time ratio during these bursts.

94

3. Since almost all teletypewriter I/0 invblves more than
one opération, the "lesast time to go" strategy Qreatly
"improves the interactive response time and also improves
overall system throughput by scheduling the
teletypewriter I/0 operations at a higher priority
such that their lengthy wait status (normally in the
order of seconds) overlaps with the execution of the
normal priority tasks.

This priority queue‘is also used to implement the
ER;ORITY option of the CALL statement. This option is made
available to the users only after they have justifi=zd a neeil
for it. This prevents indiscriminate use of the higher
priority which could seriously degtade systen thrqughput for
the normal priority users. For this reason the PRIORITY
option was not discussed in Chapter 1I.

The normal priority consists of round robim processing
of the TCBs' dispatcher chain. When a TCB is in a
dispatchable status, the TCB pointer is inserted into the
current control block pointer (CCBP in Figure 14). CCBP
always contains a pointer to the process that is currently
éxecuting under control of the ALECS operating system. CCBP
contains a TCB pointer when a task is executing, an ECB
pointér when an EXPERIMENT on-unit is executing in response
to an external interrupt, and ICB pointer when all other

types of on-units are executing, and a TAB pointer when one

95

of the transient routines are executing. Multiprogramming is
supported by passing4control to another process ‘wvhen the
current process 1s either completed or placed in the wvait
status.

After using the current CCBP fo'place a TCB in}wait
status, the WAIT routine turans control over to the dispatéhar
- via DSPHR (see Figure 14). The dispatcher processes the
dispatcher chain until it finds another TAB or TCB in the
dispatchable status. This new TAB or TCB pointer is then
placed'in CCBP and the dispatcher turas control over to the
process representad by the control block pointer in CCBP.
Thus, at all times the state of the system is known simply by
obtainiﬁg the pointer in CCBP (one of the statewords in
Figure 14) and monitoring the conténts of its associated
control block.

This schene also'allows the context of the machine to be
switched when time slicing the éxecution of a pfocess.‘ As
each process is given control, the current time slice count
{negative constant whose value can be dynamically changed) is
placed in thé clock word of its TCB. Upon th2 occurrence of
each clock interrupt, the clock interrupt routine increments
this count by one. When this count reaches zero, the clock
interrupt routine uses the pointer in CCBP to reset the
current control block status to two (see Figure 15) and savesv

the state of the machine in the control block's environment

96

save area. This task will then resume execution after the
dispatcher has made a complete-cycle‘around the dispatcher
chain. Timé slicing occurs only if CCBP points to a TCB or
ICB since processes represented by the other types of control
blocks cannot be time sliced. Upon completion of the context
switch, the clock routine debreaks;its priority 1level and
gives control to the dispatcher. If no time slice occurred,
the clock routine gives control back to the point of
interruption after incrementing the clock count in the TCB.

For a TCB ip delay status, the dispatcher updates the
clock count in the TCB and schedyles the task for immediate
execution if its delay has expired. If the status is wait on
event variables, the dispatcher processes the event chain and
immediately schedules the task for execution onlylif all
event varialbles on the chain are complete.

A nonzero mode word (see Figure 15) is used tb signal
that a specified condition has been raised during the
execution of a task. When the value of the mode word is
negative, the associated task is only allowed to complete any
'optstanding I/0 operations and is then terminated.A The ABEND
(or abnormal termination) portion of the dispatcher processes
all control blocks marked for ABEND. As has beeﬁ explained
previously, before a task can be terminated, all ;aéks
initiated by it must be marked for ABEND and also terminated.

The dispatcher does this using the cotask and subtask

97

pointers in the terminating task's TCB.

When the value of the mode word is greater than Zero, a
condition ﬁas been raised and the dispatcher searches the ICB
chain for the appropriate on-unit. If one is active,‘it is
scheduled for immediate execution by placing its control
block pointer in CCBP and giving control to the on-unit.

‘If no on-unit is active (i.e. not on the ICB chain) bits
in the mode word (Figure 15) will indicate to the dispatcher
whether to ignore the condition, ABEND the task, or ABEND the
whole task tree. | |

The interactive facility of the ALECS systenm is
implemented as follows. The user, via his teletypewriter
terminal, uses the system control language (Appendix C) to
communicate with the REQUEST task as previously described.
The REQUEST task sets the ATTENTION bit in the TCB mode wvord
(see Figure 15) of the user's root task. W#hen the dispétcher
encounters this bit set in the mode word, it searches the ICB
chain for an ATTENTION on-unit. (The ATTENTION oh—unit is
placed on the ICB chain by executing an ON ATTENTION
statement as described in Chapter III.) Upon finding an
ATTENTION on-unit, the ICB péinter is placed in CCBP and

control is given to the ATTENTION on-unit.

98

CHAPTEB'V. 'CONCLUSIONS AND SUGGESTIONs
FOR FURTHER RESEARCH

A high gquality, nQn—dedidated software organization for
small and medium sized computers has been developed. In
particular, the ALECS software organization detailed in this
dissertation combines a poverful high level programming
language, a moduiar structured compiler for this language,
and an attendant operating system to Support
multiprogramming, real time, and interactive facilities,
which are normally found only in much larger computing
systeams. ALﬁCS is a general purpose software orgénizatioh
that is sufficient to accommodate the various needs of the
users of a laboratory computing systen.

‘The fundamental ianguage structures developed to satisfy
‘the user's needs are (1) the natural extension of
record-oriented data transmission to include the EXPERIMENT
file and device control table for experiment, peripheral, and
multiprocessor communication, (2) the user written EXPERIMENT
on-unit for servicing external hardware interrupts, (3) the
ATTENTION on-unit which permits the user to dynamically aiter
the course of program execution, and (4) the multitasking
facility supporting asynchrbnous execution of user tasks. Of
most importance is the natural manner in which these
extensions. were made to the PL/I programming language to

produce an advanced programming'language for general purpose

99

computing on small computers.

Of equal importance to the language structures is the
compiler needed for translating programs written in the ALECS
language into object programs suitable for exscution on the
host computer. A significant area of interest is the modular
structure of the compiler, which permits the machine
independent modules of the ALECS compiler to be separated
from the machine dependent modules. Since approximately 75%
of the compiler is machine independent, only the remaining
25% need be rewritten, in the PL/I programming lanquage, to
implement the ALECS programming language for a nevw host
computer. Another significant feature of the compiler is the
decomposition of the source program into a set of numerical
pointers that map into the various morpheme tables which
contain the actual data representations. The type of each
statement of the source program is determined during this
decomposition so that a deterministic top down syntax
analysis can be efficiently pérforméd with the elimination >f
backup problens.

The significance of the ALECS operating system lies in
the simple, yet elegant, data structures that are used to
distribute control to all processes created by the systenm.
The contents of the data structures and the manner in which
control is distributed directly reflects the definitions of

the language structures of the ALECS programming language. A

100

set of four system control programs use these data\stfuctﬁres
“to support the multiprogramming, real time, and interactive
needs of the users. | '

The ALECS software organization hés proved quite
successful in its one year of existence. A totai of 172
- tasks are durrently allocated on disk in eight different user
directories., Their average size is slightly less than 768
words (or three page allocations of memory). Statistics show
that 80% of these currently allocated tasks are less than 1K
in size and these have accounted for 99% of the tasks that |
have been exécuted by the ALECS operating system to this
~date. From these statistics it appears that the multitasking
facility is providing an excellent memory management
facility, Since there are ninety six 256-word page
allocations available to the users, and 99% of the tasks
currently being executed use 4 page allocations or less, the
ALECS system is capable of supporting approximately 24
concurrent tasks before main memory becomes full;

Having completed the design and implementation of the
ALECS software organization, one now is afforded the
opportunity to use thi§ work és the basis for extensive
research in the area of systems implementation languages for
small computers. The first thrust might involve a study of
the ALECS operating system to determine what additional

language structures need to be incorporated into the ALECS

101

programming language to make it a systens implementation
language. The major problems to’hé solved are (1) what data
"types and data structures are hééaed to represent the systen
data base, (2) how can these data struétutes be efficiently
accessed by the system control programs, and (3) what new
contfol structures need to be developed to make the system
control progranms as efficient as possible?

These new languagé structures must then be incorporatei
into the ALECS compiler. - Upon completion of the compiler, an
ALECS operating system could then be generated using the 1
ALECS system implementation language. In addition, if it

Aproves desirable to transport the ALECS software organization

]

to a new host computer, only the machine dependent portion of
the ALECS compiler and operating system need be rewritten.
This will result in a substantial savings compared to
generating a complete software organization from scratch.
Unfortunately, the transportability issue has been
temporarily put aside because a duplicate hardware
configuration has been purchased to transport the ALECS
sof tware organization to the Ames Laboratory Research Reactor
where it uilleperate in a multiprocessor environment. There
still exists a neéd for solving the problem associated vith.
generating semanticaily equivalent code generators and

semantically equivalent operating systems. The Vienna

Definition Language (VDL) [24] is the best example of a

-

102

,
formal semantic model and could be used in providing a
correct implementation for a new code generator. However,
VDL suffers from the necessity to describe all state
transitions as a global transformation on the total model
state, which makes it difficult to identify the true extent
of the stdte’change and worst of all makes thes description >f
an operating systeﬁ very bulky. Success in developing a
formal model of an operating system probably will require a
more coherent form of system structure as well as the

developement of better formalisms.

10.

103

" BIBLIOGRAPHY

Campbell, J. H. and B. Hellard. "A guide to the
TASKMASTER real time multitasking control system."
National Technical Information Service, USAEC
Report No. IS-3042, 1972. ‘

Fitzwater, D. R. and E. J. Schweppe. "Canseqdent
procedures in conventional computers." AFIPS Fall Joint

—— s e i Bk S S L S S e S —

Computer Conference Proceedings 24, (1964), 465-476.

Fitzwater, D. R. and D. E. McFarland. ¥"TASK 65- a
consequent procedure real time computer language."
National Technical Information Service, USAEC
Report No. IS-1280, 1965. :

Day, P. and J. Hines. "ARGOS: an operating system for
a computer utility supporting interactive instrument
control." Operating Systems_Revied 7, No. 4

{October 1373), 28-37.

—— — e - —— —— — - — — ——— - —— - Gl G e ——

Computer Systems, 210-600303-001, {(November 1971).

Disc_Momitor_ System. Datacraft Corporation, A261600-02,
{February 1973).

Real Time Disk OQOperat
General Corporation,

ing Ststem _User's_Manual. Data
09

3-00075-01, (1972) .

RSX Plus Beal Time_ Executive BReference Manual. Digital

Equipment Corporation, DEC-15-IRSXA-A-D, (1972).

Boulton, P, I. P. and P. A. Reid. ™A process-control
language.™ IEEE Transactions on_Computers C-18, No. 11

(November 1969), 1049-1053.

Sammet, J. E. "A brief survey of languages used in
systems implementation."™ Proceedings_of_a_SIGPLAN

No. 9 ‘(October 1971), 2-19.

11.

12,

13.

4.

15.

16.

17.

18.

19.

20.

104

Hopkins, M. "Problems of PL/I for system programming."

Systems Implementation 6, No. 9 (October 1971), 89-91.

Holt, R. C. "Teaching the fatal disease (or)
Introductory computer programming using PL/I."™ Report
RCH-1, Dept. of Computer Science, University of Toronto,
(December 1972).

PL/I_Reference Manual. IBM System Reference Library,
File S360-29, Form C28-8210-3.

Campbell, J. H. and G. F. Covert. ALECS_Language

Reference Manual. National Technical Information

Service, USAEC Report No. IS-3339, 1974.

Campbell, J. H. and G. F. Covert. ALECS_Operat
n

System Reference_Manual. National Technical I
Service, USAEC Report No. IS-3340, 1974.

ing
formation

Dijkstra, E. W. "Notes on structured programming."
T.H.E. Report No. EWD-248, 70-WSK-03, 2nd Edition,
(April 1970). ’

Dijkstra, E. W. "GOTO statement considered harmful."
Letter to the Editor, Communications of the ACH.

(March 1968), 147-148.

Wegner, P. "Data structure models for programming
languages.™ PASODSIPL, SIGPLAN_ Notices (February 1971).

Berry, D. M. *"Block structure: retention or desletion?"

(May 1971).

Gries, D. Compiler Construction_for Digital Computers.

New York: John Wiley and Sons, Inc., 1971.

~

21,

22.

23.

24.

« 105

Freiburghouse, R. A. "The multics PL/I compiler."

T i g S T . S S S A T e ‘e s . o TS G S e i S i S S T T . D S T Gl s T S ol > S S "

(1969) , 187-199.,

O'Neal, J. T., Jr. "“META~PI: an on-line interactive
compiler-compiler."” AFIPS Fall Jdoint_ Computer

Conference Proceedings 33, (1968), 201-218.

Lubran, J. F. and J. D. Roberts. "Some observations
on 'least time to go' scheduling.”" The_Computer

Journal 15, No. 1 (February 1972), 32-36.

Wegner, P. "The Vienhna Definition Language."
ACM_ Computing Sutveys 4, No. 1 (March 1972), 5-63.

106

ACKNOWLEDGEMENTS

I would first like to expfess my appreciation to my wife
Aundrea for her many sacrifices during the last four years
and for her help in the final preparation of this
dissertation. I also wish to extend a special thanks to
Professor Roy Keller for his many helpful suggestions and
assistance in the structuring of this dissertation. To
Professor Robert Stewart for his friendship, counseling, and
guidance throughout my graduate program my sincerest thanks
and appreciation. I would also like to thank Professor
Robert Jacobson for providing the hardware facilities on
which ALECS is implemented and for his unswerving confidence
in the development of ALECS.

I would also like to extend a special ackmowledgment to
two very close friends who méde the implementétion of ALECS
. possible. To Dr. Chatles Wright, my special thanks for the
courses he developed, for providing this project with some of
the bhest students in the Computer Science curriculum, and for
his extensive critique and assistance in the preparation of
this dissertation. And last, but certainly not least, to MNr.
. George Covert my sincerest gratitude and thanks for his major
contributions to the design and implementatiop of ALECS and

who, as a devils advocate, is second to none.

107

APPENDIX A.

Some of the pertinent hardware characteristics of the
host computer, a Digital Eqﬁipmeut Corporation PDP-15
computer, are presented below. The PDP-15 is an 18-bit fixed
word length, general purpose, binary digital computer
coﬁsisting of three autonoﬁous subsystems: central |

processor, input/output processor, and memory.

| The central processor contains arithmetic and coﬂtrol
logic and suffers tremendously from being upward compatible
to the PDP-9 computer. The hardware arithmetic is very
limited (wiihout the addition of a floating point processor)
and all arithmetic besides fixed point addition and |
subtraction must be supported by out-of-line re-entrant
softwa;e foutines resident in the opetating.system. The
memoty-register operations are extremely limited with all
memory-register load and store operations forced to go
through the accumulator to get to the other registers (index
and limit). An Extended Arithmetic Element (EAE) can be .
purchased to add an 18 bit multiplier-quotient fégister (8Q)
to improve the performance of the re-entrant software
arithmetic routines as well as provide a 36-bit‘shift
register (in combination with the accumulator register).
Most of the instructions execute in either 800 nanoseconds or
1.6 microseconds. Since the instruction set is somewhat

limited, most of the object code generated by the ALECS

108

compiler is calls to out-of-line routines that are either in
the disk resident portion or the main memory portion of the
operating system. This keeps the amount of code generated by
the compiler to a minimum, but increases the 2xecution time
of the object progranm.

The input/output processor contains two subunits, the
data channel controller and the addressable I/0 bus (for
program controlled transfers). There are eight data channels
available each supporting single'and multicycle block
transfer of data, memory increment, and add-to-memory
functions. The I/0 processbr operates with a one microsecond
cycle time on a "cycle stealing" basis with the central
processor during contention for memory. It transfers 18 bits
of parallel data on a common bidirectional I/0 bus either
directly to and fronm memory.(yia the data channel) or to and
from the accumulator register (via program controlled
transfers). System peripherals that transfer blocks of data,
such as the magnetic disks and magnetic tape drives, use the
data channel. MNost experiments use program controlled single
word data transfers. Eight levels of automatic priority
interrupt (API) are available in four hardvare and four
software levels. Each harduare'priority level can have up to
eight devices associated with it for a maximum of 32 hardware
priority assignments. There is also a prograam interrupt

facility available which uses a skip chain of programmed

109

instructions to test the various device flags (very
inefficient). For any real £ime system, the API option is a
necessity. When an I/O operation completes, the device's
assigned'API interrupt is triggered by the device's
contraller. The triggered interrupt causes execution of the
associated interrupt trap location which normally contains a
direct transfer to the dévice's service routine.

The memory organization, although expandable to 128K,
poses somewhat of a problem because of the addressing
architecture of the PDP-15 computer. IndirectAaddrasSing is
supported in 32K block increments. Indexing must be ‘used td
address outside of a 32K block of words. An instruction can
directly address 4K of main memory. Therefors, all of the
programs executed under control of the ALECS operating sYstem
must be no greater than 4K in size. A memory relocation
register is available but is not suitable for use in
executing user programs. Using the relocation hardware, a
program up to 32K in size can be executed, but no interrupts
can be processed while executing under thé relocation
hardvare. Rather than develop a special scheduling scheme or
process all interctupts in the system (as DEC software does),
the relocation hardware is used to execute the disk resident
portion of the operating system. This allows disk resident
system routines to be loaded into various available areas of

the operating system and be executed immediately with no

relocation needed.

Because indirect addressing can only be used in 32K
increments, all system routines must use indexing to> retrieve
parametars associated with the out-of-line calls to these
various system routines. This permits the ALECS sYsiem to

support up to 128K of main meﬁory.

111

APPENDIX B.

This section provides (1) the necessary information the
user will need when specifying the design of his experiment
interface and (2) a description of the device control table
along with the statements in the ALEC's language which use
the device control table for experimental communication. As
far as the ALECS system is concerned an experiment consist§
of:

1. A singie hardware.interrupt with a unique core location
associated with itf

2. An interrupt register which is to be read after the
hardware interrupt occurs. The contents of this
interrupt register will serve to specify the
exact cause of the interrupt.

3. Any number of I/0 address lines for experimental
communication,

Since an experiment basically involves the transmission
of data to and from the computer, it behaves very much like
other I/0 devices such as disks, drums, and magnetic tape
units. In fact, these devices satisfy éll three requirements
of an experiment and can be cénsidered as system-oriented
experimental devices. Also, files (or logical structures)
are usually associated with these system devices. ctarrcying
this one step further, it seems only natural that the concept

of a file be associated with a user's experimental device.

112

Record-oriented transmission is used and the experiment
appears to the system to be a set of discrete records. That
is, no conversion is performed on the data during
transmission to and from the experimental device.

To accommodate a wide variety of experimental devices, a
special device control table is created for each experimental
device to be controlled using the ALECS system. This control
table, described in Table 1, is placed in a system data set
on disk. The user must declare the data set that contains
his device control table as an EXPERIMENT file in the task
(or tasks) in which experimental communication will take
place. This is done as follows:

DECLARE XBA FILE EXPERIMENT;
where XRA is the data set name which csntains the device
control table for the x-ray diffractometer experiment (see
Table 2). Next, the user must open the data set as follows:
OPEN FILE(XRA) INPUT;

The OPEN macro of the ALECS system creates an Experiment
Control Block (ECB) in systems work space. Then the contents
of the XRA data set are read into the ECB and the ECB is
attached to the Task Control Block (TCB) of the task in which
the OPEN occurred. After the data set has been opened} the

experiment is placed on-line by the ON statemesnt as follows:

113

ON EXPERIMENT (XRA) BEGIN;
DECLARE INT (0:21) LABEL INITIAL(IO0,I1,I2);

/¥ SET I TO INTERBUPT IDENTIFIER */

I=0ONCODE;
GO TO INT(I);
I0:

/% CODE TO PROCESS EXPERIMENT SHUTDOWN */

I1:
/% CODE TO PROCESS COUNT COMPLETE */

I2:
/¥ CODE TO PROCESS OMEGA STEP COMPLETE */

END XRA;

When control enters the ON statement, it is passed to
the system. The interrupt trap address is retrieved from the
ECB (word 0 of the device control table) and the interrupt
link to the on-unit is established. At this point the
experiment is on-line. The system then issues the experiment
ready I0T (word 1 of the device control table). If the
experiment is not ready, the task is abended (removed from
core). If the experiment is ready, then control is sent to
the statement following the end of the on-unit. The on-unit
itself will'only be entered upon the océutrence of its
associated hardwaré interrupt. When the hardvware interrupt
that is linked to the EXPERIMENT on-unit is triggered, the
current state of the machine is saved and word 2 of the
device control table is executed, The resultant identifier
value (see Table 6) is then placed in a special ONCODE cell
which is associated with every on-unit. The contents of this

cell can then be accessed by the ONCODE built-in function

114

during the ex=cution of the on—unit._ It is important to note
that the ideﬁtifier value (Table 6) associated with each
interrupt function is an integer valué instead of a bit
vélue. To respond to each type of interrupt, the programmer
can use a LABEL array (see above example) to transfer control
immediately to the code set up to process each interrupt.
This is much more efficient, both time and space wise, than
testing a bit identifier to detect the cause of an interrupt.
The standard function that is executed upon entrance to an
on-unit is ﬁhe reading of the experiment interrupt register
to obtain the interrupt identifier value. However, for
system devices such as the card reader, paper tape reader,
etc., this function reads the device status register.

Experimental communication is carried out via the READ
and WRITE statements: |

READ FILE (XRA) INTO(I) KEY(J);
WRITE FILE(XRA) FROM(I) KEYFPROM(K);

The actual communication is carried out as follows. The
value of the_integér ekpression in the KEY, or KEfFROH,
option is used to select the I/0 address from the devipe
control table (see Table 2). A value of 0 will select the
I/0 address in word 8 of the device control table, a value of
17 will select the I,0 address in word 25 of the device

control table, etc.

115

The range of the KEY, or KEYFROM, value is:

0< value £ contents of word 3 of
device control table

The I/0 address selected by the Qalue of the KEY, or KEYFROY,
expression is exclusively "ORed"™ with 700012 for a READ
operation or with 700004 for a RRITE operation (see Table 3).
Exclusive rather than inclusive "OR" is used so that IOT's
other than»reads or writes can be obtained by careful
compositioﬁ of the bits that make up each I/0 address. The
general format of the IOT instructiom is given in Appendix A.

The experiment data set is closed as followss:

CLOSE FILE (XRA) ;
This statement loads the accumulator with the shut-down word
(word 4 of the device control table), issues the fermiuation
IOT (word 5 of the device control table), restores the
interrupt frap location to the ignore state, and releases the
systems work space allocated to ihe ECB. Control then passes
to the statement following the CLOSE statement.

The on-unit is treated by the éompiler as a procedure
internal to the task in which it appears. Any names used in
the on-unit belong to the environment in which the ON
statemént for the on-unit was executed. Hove#er, unlike
normal procedures, the on-unit gets executed only when its

associated external interrupt occurs.

Table 1.

116

The device control table

Address of interrupt trap location.

The IOT for testing to see if the experiment is
The IOT that is used to interrogate the experiment
interrupt register to obtain the ONCODE value.
This must be a read IOT or am operate instruction

which sets a value in the accumulator register.

The upper bound for the KEY value in referring to the
I/0 addresses (see below).

The word loaded by the termination (CLOSE) IOT in

The IOT (or a NOP) issued when the file is CLOSED.

WORD CONTENTS

0

1
ready.

2

3

4
word 5.

5
6-7 Unused.

8-31

Up to 24 I/0 "“addresses" for use in constructing
IOT's to use in communicating with the experimental
device.

Tab

117

le 2. XRA device control table

10
1
12
13
14
15

D CONTENTS

700501

700512

400000

700524
0
0

500
520
540
560
600
620
640
660

DESCRIPTION

API interrupt trap address
Skip on experiment ready

Read interrupt identifier register
into accumulator register for ONCODE

Upper bound for "key"™ value. This
is the maximum number of I/0 addresses
associated with the x-ray diffractometer.

Word loaded for termination IOT

Shutdown IOT issued when the file is closed
Not dsed

Not used

I/0 "addresses" used to form IOT's
in the READ and WRITE statements
used for communicating with the x-ray

dif fractometer experiment (see Table 3).
17

118

3

Table 3. X-ray diffractometer IOT's.

Device addresses 05
06

Value' I/0 Coamand Function

0 700512 Read interrupt identifier register
1 700532 Read omega encoder

2 700552 Read 2 theta encoder

3 -700572 . Read phi encoder

4 700612 Read chi encoder

5 700632 Read data scaler

6 700652 Read data over-flow

7 700672 Not used

0. 700504 Write control word 1 (see Table 4)
1 700524 Write control word 2 (se2 Table 5)
2 700544 Write omega step register

3 700564 Write two theta step register

4 700604 Write phl step register ‘

5 700624 Write chi step register

6 700644 Write counter time base

7 700664 Not used

S ————— —" . T S S - s T S B S S i S s s Y e Qs S S S S i D VD A Y > S A s i W el G e e W D —— -

119

Table 4. Control word 1.

BIT FUNCTION
0 Stop motors, stop count, x-ray beam off
1
2
3
4
5
6 Set data preset
7 Set time preset
8 'Set scan mode
9 Clear scan mode
10 Set omega encoder to datunm

11 Set two theta encoder to datunm
12 Set theta encoder to datum

13 Set chi encoder to datum

14 Start omega motor

15 Start two theta motor

16 Start theta motor

Start chi motor

-
~J

Table 5.

120

Control word 2.

WONOUNEWN 2O

- -
- O

12
13
14
15
16
17

Close x-ray

gate

Open x-ray gate

Set aux
Clear aux
Start count
Stop count

Set upper beam splitter
Clear upper beam splitter
Set lower beam splitter
Clear lower beam splitter
Set left beam splitter
Clear left beam splitter
Set right beam splitter
Clear right beam splitter

121

Table 6. Interrupt sources for the x-ray diffractometer

_ IDENTIFIER FUNCTION
0 Experiment shutdown
1 Count conmplete
2 Omega step complete
3 Two theta step complete
4 Phi step complete
5 Chi step complete
6 Omega high, limit switch on
7 Omega low, limit switch on
8 Two theta high, limit switch on
9 Two theta low, limit switch on
10 Theta high, limit switch on
11 Theta low, limit switch on
12 Chi high, limit switch on
13 Chi low, limit switch on
14 Omega high, limit switch off
15 Omega low, limit switch off
16 Two theta high, limit switch off
17 Two theta low, limit switch off
18 Omega high, limit switch off
19 Omega low, limit switch off
20 Chi high, limit switch off
21 Chi low, limit switch off
22 '

122

APPENDIX C.

The system control languége is used to communicate with
the ALECS operating system via any teletypewriter terminal.
The user initiates the communication by pressing the
attention key (control A). As described in Chapter IV, the
REQUEST task responds with the message

"REQ, ATTENTION, or ZAP2"
The user responds in one of three different manners. In the
following description of the three respbnses, EOT (&ontrol D)
is used to terminate each input line by having the REQUEST
task process the character string that is in the input
buffer.

The REQ option is used as follows:

COMPUTER USER

: (Control A)
REQ,ATTENTION, OR ZAP? REQ (EOT)
TYPE IN USER DIRECTORY NAME? XRAY (EOT)
TYPE IN USER TASK NANE? COUNT (EOT)

USER ID IS 20500

CORE ADDRESS IS 30000

TASK DISPATCHABLE
This option asks for the user directory name and the name of
the root task to be executed. The "TASK DISPATCHABLE"
message is typed by the REQUEST task after the root task has
been loaded into main memory, relocated, and scheduled for
execution. The USER ID is used in both the ATTENTION and ZAP

options described below and should be saved until the task

completion message has been issued.

123

The ATTENTION option is used to schedule the execution
of an ATTENTION on-unit in the root task. It is used as

Afollows:

COMPUTER . USER

(Control A)
REQ, ATTENTION, OR ZAP? ATTENTION (EOT)
TYPE IN USER ID? 20500 (EOT)

The REQUEST task sets the ATTENTION bit in the mode word of
the root task's TCB (as described in Chapter IV). The
ATTENTION on-unit is scheduled for execution the next time
the dispatcher encounters the root task's TCB on the |
dispatcher chain.

The ZAP option is used to immediately terminate the
execution of the root task and all tasks called by the root

task or its subtasks. It is used as followus:

COMPUTER USER
{Control A)

REQ,ATTENT ION, OR ZAP? ZAP (EOT)

TYPE IN USER ID?. .20500 (EOT)

The REQUEST task sets the ABEND bit in the mode word of the
root task's TCB (as described in Chapter 1IV). The
dispatcher, when pfocessing the TCB's mode word, will set the
ABEND bit in the TCB's of all tasks called by the root task,
thereby terminating all the executing taéks.linked to the

root task (see Chapter IV).

124

When the root task completes execution, a task
completion message is typed as follows:

TASK COUNT COMPLETED
COMPLETION CODE= 000000 ULb= 20500 CORE= 30760

The completion code is used to determine the state of the
task at the time of completion. For abnormal termination,
the completion code can be used along with the termination
core address to determine the exact cause of the abnormal

termination.

125

APP ENDIX D.

The following set of programé were writtsn to illustrate .
the multitasking facility of ALECS. Also illustrated in the
programs is the use of event variables to synchronize task
execution. The root task, RECUR, calls tasks TSK1, TSK2, and
TSK3 asynchronously. Event variable EV1 is passed to TSK1
and TSK2 to synchronize their execution. The event variable
E2 associated with the completion of TSK2 is passed to TSK3
to synchronize the execution of TSK2 -and TSK3. After each
task is called asynchronously, control is turned over to the
ALECS operatiqg system as RECUR is placed in the wait state
until the event variables E1, EZ, and E3 that are associated
with the completion of TSK1, TSK2, and TSK3, respectively,
are all set compléte.

The order of execution of TSK1, TSKZ, and TSK3 is
completely random, with event variables EV1 and E2 passed as
parameters to provide'the desired synchronization among the
three tasks. Eéch task outputs a message after it gets
control and upon exit so the dynamic order of egecutiqn can
be observed using either a video terminal or a teletypewriter
terminal. TSK2 waits for event variable EV1 to 5e set
complete by TSK1. TSK3,‘using a monitoring check of event
variable E2 will not execute until TSK2 has completed its
execution. TSK1 calls itself recursively (aléhough not

re-entrantly) B number of times. The value of R can be

126

dynamically changed using the ATTENTION on-unit in the root
task RECUR. Upon recursing R number of times (and having R
number of TSK1 tasks in main memory), event variable EV1 is
set complete and the R TSK1 tasks complete their recursive
execution; AAt the same time, TSK2 is given control and:
completes execution. Upon its completion, TSK3 will detect
that event variable E2 is set complete and it will fall out
of its monitoring loop. Note that each time through the
monitoring loop the variable K is incremented and then a
DELAY is issued for K clock units. Upon completion of all
three tasks, the value of K is output in RECUR before RECUR
reinitializes and starts the whole process again.

The execution of BECUR and its subtasks is stopped by
entering the ATTENTION on-unit and setting SWITCH to a value

greater than one.

127

RECUR: PROC;
DCL N FIXED INIT (10) ,R FIXED INIT(4),
I FIXED,J FIXED,K FIXED,II FIXED;
DCL E1 EVENT,E2 EVENT,E3 EVENT,EV1 EVENT;
DCL TSK1 ENTRY (FIXED,EVENT, FIXED,FIXED);
DCL TSK2 ENTRY (FIXED,EVENT,FIXED) ;
DCL TSK3 ENTRY (FIXED ,EVENT,FIXED);

ON ATTENTION BEGIN;

PUT SKIP(2) LIST('SWITCH=');

GET LIST(II);

PUT SKIP LIST ('DELAY="'),

GET LIST(N);

PUT SKIP LIST (!RECURSE="');

GET LIST(R);

IF II<2 THEN DO; J=0; GOTO LOOP; END;

ELSE GOTO EXIT; '

END;

LoOP: I,K=0;
CALL TSK1(I,EV1,II,R) EVENT(E1) ;
CALL TSK2(J,EV1,II) EVENT(E2);
CALL TSK3(K,E2,II) EVENT(E3);
WAIT(E1,E2,E3); .DELAY(N);
PUT SKIP LIST('I,J,K=',1I,Jd,K);

- GOTO LOOP; :

EXIT:

END RECUR;

TSK1: PROC(I,EV1,II,R);
DCL II FIXED,I FIXED,R FIXED,EV1 EVENT;
DCL TSK1 ENTRY (PIXED ,EVENT,FIXED,FIXED) ;

PUT SKIP LIST('TSK1 ENTERED',I) ;"
I=I+1;
/% CHECK FOR END OF RECURSION */
IF IR THEN CALL TSK1(I,EV1,II,R);
ELSE COMPLETION (EV1)='1tB;
PUT SKIP LIST(*TSK1 EXIT!');
END TSK1;

128

TSK2: PROC(J,EV1,II);
DCL J FIXED,II FIXED,EV1 EVENT:

PUT SKIP LIST ("TSK2 ENTERED');
/* WAIT FOR TSK1 TO COMPLETE */
WAIT(EV1) ; COMPLETION(EV1)='0"'B;
J=J+1; PUT SKIP LIST('TSK2 EXIT');

END TSK2;

TSK3: PROC(K,E2,II) ;
DCL K FIXED, E2 EVENT ,II FIXED;

PUT SKIP LIST(*TSK3 ENTERED?') ;

LOOP: , ,
IF COMPLETION(E2) THEN DO;
PUT SKIP LIST (' TSK3 EXIT') ;

RETURN; END;

ELSE DO; DELAY(K); K=K+1;

GOTO LOOP; END; '
END TSK3; '

