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ABSTRACT 

This study was concerned with the development of orthotropic photoelasticity as a viable 
means of experimentally analyzing the stresses in orthotropic material structures. 
Theoretical formulation of the governing equations and verification experiments for the 
theory were . investigated. Material with sufficient transparency and uniformity was 
prepared. 

Theoretical relationships were derived by utilizing the tensorial nature of stress, strain, and 
birefringence in the material. The relations were condensed to provide the equations needed 
for plane-stress analysis. Experiments were carried out on special biaxial stress fields created 
in off-axis uniaxial tensile-stress specimens. Material properties were determined 
experimentally and calculated from a microstructcrre finite-element model. 

The experiments conducted support the theoretical orthotropic photoelasticity formulation. 
A plane-stress problem solution by orthotropic photoelasticity showed good correlation 
with finite-element and elasticity solutions. A model material of fiberglass and ep,oxy was 
produced with a low void content and matched refractive indexes to give adequate 
transparency. Material properties were reasonably predictable from the microstructure 
model. 
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SUMMARY 

Tensor relations were explored to find stress-optic relations which are most easily applied to 
problem solution. The. general relations were formulated and resolved to two-dimensional 
space. Transformation equations for the photoelastic property tensor were developed, which 
resolved the property components in the principal material directions to correspond to any 
coordinate axes that were chosen. 

Symmetries that exist in the material and the combination of tensor components reduced 
the tensor equations to two basic stress-optic equations for two-dimensional space. These 
equations were written in terms of the three plane-stress components: photoelastic 
properties, birefringence, and the isoclinic angle. These two equations may be combined to 
yield one equation in terms of birefringence, stresses, and photoelastic properties; and a 
second equation in terms of isoclinic angle, stresses, and properties. 

A composite material for photoelastic analysis was fabricated from components with a good 
match of refractive indexes. The material was free of voids to produce acceptable 
transparency. The process developed for producing the material began by dry winding 
fiberglass strands onto a flat, steel mandrel. When the winding was complete, the plate was 
evacuated in a chamber to remove the air. The epoxy resin was introduced by backfilling the 
evacuated space in the dry, fiber plate. The composite was cured in a platen press where the 
composite plate thickness was controlled. Room-temperature curing resins were chosen to 
minimize the initial birefringence in the material. 

Prediction of material elastic and photoelastic properties was made by finite-element 
methods. Models of the fiberlmatrix composite consisted of regular arrays of fibers such as 
the square array and hexagonal array. Analyses were made for longitudinal and transverse 
normal stresses and for longitudinal shear stress. Experimental evaluation of the properties 
was conducted on tensile coupons cut from the material sheet. Experimentally determined 
values correlated well with the analytical 'results for both photoelastic and elastic properties. 
Curves were prepared to show the relationship between constituent properties and 
composite properties. 

The stress-optic relations derived from the tensor equations were verified by experiment. A 
special biaxial stress field existed in tensile coupons which had the fiber oriented in a known 
angular direction with respect to the applied load direction. From data taken for 0 and 
90-degree orientation along with data a t  one intermediate angle, the response a t  all other 
intermediate angles was predicted from the theory. Experimental data correlated well with 
the analytical prediction of birefringence and isoclinic angle. 

Some of the conventional methods of normal stress separation in isotropic photoelasticity 
were evaluated for application to orthotropic photoelasticity. Most of the methods did not 
readily apply, but the shear difference method was developed into a form suitable for use 
with the orthotropic stress-optic relations. This equation is of the general form so that it 
may be applied in an arbitrary direction with respect to the material axes. The general 
equation is simplified considerably if it is applied along the principal material axes. 



In order to further validate the theory proposed in this study, analysis of a tensile strip with 
a central hole was conducted photoelastically and theoretically. Models were fabricated with 
three fiber orientations: 0, 30, and 90 degrees with respect to the load direction. Material 
properties (elastic and photoelastic) were obtained from data measured in areas away from 
the hole on the model. Finite-element models and elasticity solutions provided the 
theoretical analysis. The proposed stress-optic laws and the shear-difference methods applied 
to  the photoelastic data yielded the experimental solution. In general, the results agreed 
very wei i. 



INTRODUCTION 

Composite materials are finding increased use where high structural performance is required. 
As the general level of technology is advanced, more demands are placed on the materials 
selected for use in many applications. High strength-to-weight ratios and/or high 
stiffness-to-weight ratios are sought for some of the applications. In recent years, 
development of high-performance fibers and their combination with a suitable matrix or 
binder to fabricate a composite material has produced some of the needed materials. 
Efficient application of composite materials can be managed by utilizing accurate analysis 
and design methods. 

Because of the orthotropic nature of fiber-reinforced composite materials, many of the 
traditional methods of analytical and experimental stress analysis for isotropic materials 
must be reformulated. High-modulus fibers are usually combined with a lower-modulus 
matrix to form a composite material. The fibers are usually aligned in a chosen direction; 
thus, the composite becomes an anisotropic, nonhomogeneous material. On the macroscale, 
the individual fibers are so small that the material normally is assumed to be homogeneous, 
but it is  st i l l  anisotropic. I f  the fibers are aligned so that there are three orthogonal planes of 
material symmetry, the material is termed "orthotropic". Anisotropic response is usually 
not accounted for in traditional methods of analysis. 

Photoelasticity is one of the traditional experimental methods. ~hotoelasticity' has been 
used for many years to analyze stress problems using transparent materials. Models of the 
structure are fabricated from these materials which are mostly plastics. The stress-optic 
relations, stated very simply, linearly relate the principal stress different to the birefringence 
produced in the model when loaded. The material for the model before loading is  both 
elastically and optically isotropic. The basic photoelastic method is applied to plane-stress 
problems. Utilization of the isoclinic angle (principal stress direction) and other equations of 
elasticity with the stress-optic law leads to the complete stress solution. 

The stress-optic relations of standard photoelasticity do not apply to orthotropic materials. 
Materials are termed "orthotropic" because of their elastic orthogonal symmetry. However, 
this characteristic does not preclude use o f '  photoelasticity methods. I t  i s  expected., and 
easily verified experimentally, that these materials are optically orthotropic as well. Since 
t'he material is optically orthotropic, new stress-optic relations are required. 

The stress-optic laws for composite materials must be developed analytically a'nd verified 
experimentally, and must account for this optical orthotropy. The tensorial properties of 
stress and birefringence are utilized in the formulation of the orthotropic stress-optic laws. 
The stress-optic relations are verified by experiments from cases of known uniaxial and 
biaxial stress states. A plane-stress problem of a tensile strip with a central hole.is solved 
photoelastically to demonstrate the validity of the laws. . 

Research on orthotropic photoelasticity was initiated' by Pih and ~ n i ~ h t ( l ) ;  in which 
fundamental experiments on uniaxial loading were conducted. A composite material of fiber 
glass with an epoxy matrix was developed which is transparent enough to test 
photoelastically. Specimens were machined from flat sheets of material. The first 



experiments were run on uniaxially stressed specimens with selected fiber orientations. 
These tests confirm the expected optical anisotropy. Results from the tests indicate a 
uniaxial-fringe-value curve as a function of the fiber orientation. This curve is very similar to 
the elastic-modulus curve as a function of the fiber orientation. 

A simple proportioning stress-optic law was proposed using principal stresses. I t  was in the 
form: 

where: 

N represents the fringe order, 

t the model thickness, 

f a material constant, 

C1 the material fringe response in Direction 1, 

C2 the material fringe response in Direction 2, 

01 one principal stress, and 

02 the second principal stress. 

The stress-optic law relates the difference between the birefringence ~ ~ C ) ~ I I C A ~  by one 
principal stress and that produced by the second principal stress to the resultant 
birefringence. Experiments in biaxial loading were performed to check the proposed law. 
Small, square specimens with a known fiber orientation were loaded by compression rams 
on all four sides to a known biaxial stress condition. The biaxial stress ratio was varied to 
obtain a range of data for evaluating the stress-optic law. The data f i t  was reasonable, but 
not as accurate as desired. 

Although the developed stress-optic law looked reasonable, the behavior of isoclinics was 
,not explained. The iioclinic angle for a known state of stress was reasonably predictable. 
However, the meaning of the isoclinic was not understood well enough to be used to  solve a 
plane-stress problem. 

- ~ampson(2) proposed a stress-optic relationship based on an analogy to Mohr's circle of 
stress. A Mohr's circle of 'birefringence was constructed. Construction of the circle was based 
on ,the assumption that birefringence components are analogous to stress components. In a 
cartesian coordinate system, the resultant birefringence is given by: 



where: 

N represents the fringe order, 

u a normal stress, 

T a shear stress, and 

f 3 material fringe value. 

Components in the x and y planes are denoted by the subscripts. This stress-optic law 
reduces to the form given by Pih and ~ n i ~ h t ( 1 )  if x and y are chosen along the principal 
stress directions. Sampson suggested that the shear-difference method can be applied along 
an axis aligned with the material principal direction. No experimental data were presented 
to confirm the proposed methods. This work shows the general application of three fringe 
constants, and experimental values for the material used are presented. The 
uniaxial-fringe-value curve for a variable fiber orientation has been developed from these 
data. 

Dally and ~rabhakaran(~1 further refined the stress-proportioning method. The material 
principal axes were chosen for the coordinate axes. Stress components in the material 
coordinate system were used instead of principal stresses. Various strength-of-materials 
models were used to estimate the photoelastic constants. These models provided 
approximate fiber and matrix stresses which were used to compute birefringence. The 
calculated birefringence was used with the average stress components in the material 
coordinate system to formulate the stress-optic relations. Birefringence response to uniaxial 
loading a t  a variable fiber orientation was predicted and determined experimentally with 
good agreement. The meaning of isoclinics was not discussed by these authors. 

~ e r t ( ~ )  introduced the application of tensor relations in the formulation of the stress-optic 
law by adapting the work of ~hagavantam(~1 on crystal theory. In this theory, stress and 
birefringence were shown as second-order tensors so that the photoelastic-properties 
tensor which relates stress and birefringence must be fourth order. Symmetry of an aligned 
fibrous composite was assumed to be representable by the orthorhombic crystal. Symmetry 
of the orthorhombic crystal and simplification of the three-dimensional tensor relations to 
two dimensions yield the stress-optic theory for the plane-stress condition. The 
two-dimensional tensor relations were reduced by use of the Mohr's-circle representation. 
The two resulting equations involve three photoelastic constants, birefringence, and isoclinic 
angle. However, these equations were not in a form that was practically suitable for solving 
general plane-stress problems. No experimental data were presented in this paper. 

Pipes and ~ose(6)  are proposing the use of strain-optic relations to account for the 
orthotropic material behavior. They assume that isotropic strain-optic laws apply, and 
reasonably verify this assumption with tests. Application of the orthotropic stress-strain 
relations determines the stresses. The material used for testing did not have a very high 
degree of orthotropy. I t  remains to be shown that this approach has general applicability for 
other materials. 



Other experimental methods are also being applied to the analysis of orthotropic materials. 
Obviously, strain gages will be satisfactory for pointwise strain measurement if the self 
heating of the gage is  properly resolved on these poorly conducting materials. Daniel, .et 
a1(7) applied moire grids to plane-stress problems to determine surface strains. They were 
also successful a t  carrying the test beyond the linear material range. Dally and ~ l f i rev ich(8) .  
applied photoelastic coatings to composite plates with holes. The most serious problem 
encountered was the Poisson's ratio mismatch between coating and substrate near the 
structural boundaries. 

Theoretical solutions may be obtained in many cases by the theory of elasticity, as shown in 
the book by ~ekhnitskii(g1. Solutions may also be obtained by applying the finite-element 
method. This method is  described in the book by zienkiewicz(l0). 

The study reported in this doc'ument was conducted a t  the Oak Ridge Y-12 

(a) Operated by the Union Carbide Corporation's Nuclear Division for the US Atomic 
Energy Commission. 



ORTHOTROPIC PHOTOELASTICITY 

THEORETICAL DEVELOPMENT 

Birefringent Crystal Theory 

In the approach by ~ha~avan tam(~ ) ,  a physical property can be used to relate two 
measurable physical quantities. Each of these physical quantities may be regarded as a 
tensor of appropriate rank. The tensorial nature of the.applied and response quantities leads 
to an investigation of the theoretical relations by means of tensor equations. Stress and 
birefringence are second-rank tensors, as shown by ~ha~avantam(5). The photoelastic 
property tensor must then be of fourth rank. This condition is similar to the stress-strain 
relations, where stress and strain are second-rank tensors and the elastic property tensor is 
fourth rank. In the general, unsymmetrical, three-dimensional case, there are 36 
independent photoelastic constants. The equation written in tensor (index) notation 
becomes: 

fqij = Q i j k l ~k l  (i and j can equal 1, 2, or 31, (3) 

where: 

Ni, represents the birefringence tensor, 

Qijkl the photoelastic stress-optic properties tensor, and 

ukl the stress tensor. 

The tensor suffixes are frequently contracted for ease of writing and recognition(ll). The 
contraction generally i~sed is: 

where Ai, (i and j can equal 1, 2, or 3) represents a symmetric, second-rank tensor. Then, for 
the stress tensor: 

and, for the birefringence tensor: 

The strain tensor is usually defined differently as: 

"1 1 = E l ,  E22 = €2, €33 = E3, 2'23 = €4, 2'13 = €5, 2'12 = C6 . (7) 



This difference i s  caused by the difference between the definition for "tensorial" strain 
(strain transforming by tensor rules) and the definition for "engineering" strain.' For 
example, the shear modulus, G 12, is given by: 

I t  is noted that the contracted notation makes the quantities no longer in tensor form so 
that if coordinate tran.sformations are required, they must be performed using the original 
tensor notation. 

The generalized Hooke's law, when written in index notation, is: 

Oij = Cijkl'kl , Or: 

€ - -  = s.. c~ kl (i, j, k, and I car1 equal 1, 2, or 3) , 

where: 

Cijkl represents the elastic stiffnesses, and 

Sijkl the elastic compliances. 

In contracted notation, Equations 9 and 10 become: 

~q = Cqrer, a'nd 

eq = Sqrur (q and r can equal any number from 1 through 6) . 

Expanding Equation 9 for i = j = I: 

Contracting the stresses and strains and using their symmetries: 

~ x ~ a n d i n g  Equation 11 and comparing terms: 



Carrying this expansion and comparison through gives: 

Expanding Equation 10 for i = j = I: 

Contracting the stresses and strain: 

Expanding Equation 12 and comparing terms: 

€1 = S11u1 + S1202 + S1303 + S1404 + S1505 + S1606, then: 

Carrying through this expansion and comparison results in: 

Sijkl += Sqr (q and r Can equal 1, 2, or 3) 

2Si jk l+= Sqr (q can equal 1, 2, or 3; r can equal 4, 5, or 6) . 

4Sijkl + Sqr (q and r can equal 4, 5, or 6) 1 
The relations between birefringence and stress, and birefringence and strain, may also be 
contracted. The stress-optic relations and the strain-optic relations may be written: 

Nij = Qijk10k1, and (23) 

Nij = Pijkl€kl (i and j can equal 1, 2, or 3), (24) 

where Pijkl represents the strain-optic property tensor. The other terms are as defined 
previously. 



By contracting, Equations 23 and 24 can be written: 

Nq = Qqror, and (25) 

Nq = Pqrer (q and r can equal any number from 1 through 6) . (26) 

From Equations 11, 12, 25, and 26, the stress-optic and strain-optic properties can be 
related through the elastic stiffnesses or compliances. The resulting relations are: 

Qqs = PqrSrs (p, q, r, and scan equal any number from 1 through 6). (28) 

Expanding Equations 23 through 26, and comparing terms as before, results in: 

2Qijkl -* Qqr (when q = 1 to  6; r = 4, (29) 

Pijkl 3 Pqr (q and r = 1 to 6) 

It is  important to note that Pqr and Qqr do not have the full symmetry that Cqr and Sqr 
have, ie: 

For the general unsymmetrical case, then, there are 36 independent photoelactio con3tonts. 
. . 

A large number of the two-dimensional problems encountered are likely to  be plane-stress 
problems. TI~ereFore, only the stress-optic relations are completely developed and used in 
this work. When the stress-optic relations of Equation 25 are written in matrix form, they 
become: . 



As . proposed by ~ e r t , ( ~ )  the general fiber-reinforced composite material with 
unidirectionally aligned fibers may be considered similar to an orthorhombic crystal which 
has three principal material directions. This assumption ,reduces to 12 the number of 
photoelastic constants in three-dimensional space. Equation 31 then becomes: 

Two-Dimensional Photoelastic Property Tensor Relations 

The stress-optic relations may be simplified further by considering only two-dimensional 
problems and thus eliminating the third dimensional terms. In the 1-2 plane, then ,~~ua t ion  
32 becomes: 

Transformation of Photoelastic Tensor 

The photoelastic stress-optic property tensor may be transformed to another set of 
coordinates by the rules for tensor transformations. In indicia1 notation, the rule for 
transformation of a first-rank tensor (a vector) is given by: 

where: 

Vi' represents the transformed vector, 

aij the transformation coefficients for a vector, and 

Vj the original vector. 

For rotation about the 3 axis through Angle 0 ,  aij is: 



where: 

[a] represents the transformation matrix, 

m = cos 6 ,  and 

The transformation rule is generalized for higher-rank tensors such as the fourth-rank 
transformation: 

Q!. ~ j k l  = aimajnakoalpQmnop 1 

where : 

Q/j  represents the transformed fourth-rank tensor, 

ai m...alp the transformation coefficients for a vector, and 

Qmnop the original tensor. 

As stated previously, the photoelastic property tensor i s  of fourth rank and thus transforms, 
as in Equation 36. The transformation must be applied to the uncontracted tensor, however, 
so that the original tensorial nature is  maintained. 

~ e a r m o n ( l ~ )  presents a composite equation in tabular form for the general fourth-rank 
tensor transformation. Table 1 shows this form of the transformation relations. In the table, 
the numerical entries in the boxes are the subscripts of the original tensor (say, mnop of 
Qmnop in Equation 36). The lower-case, subscripted a's are the direction cosines from the 
transformation matrix. This table and the general fourth-rank tensor transformation 
represent 81 equations, each with 81 terms. For example, the coefficient of the 03313 term 
in the equation for a transformed component of Qijkl (say, Q i  231 ) is a132a23a31. 

For the tensor quantities used here, the number of equations and terms is  reduced due to 
their symmetries. When the original coordinate system i s  aligned with the principal axes for 
an orthorhombic crystal, Table 1 may be simplified, as in Table 2. Table 2 represents the 
transformation equations for the elastic stiffnesses, Cijkl, the elastic compliances, Sijkl, the 
stress-optic coefficients, Qijkl, and the strain-optic coefficients, Pijkl. 

When the rotation is about one of the principal axes, further simplifications occur. I f  the 1-2 
axes are rotated through Angle 8 about the 3 axis in a positive direction, then: 

where: 

m = cos 8 and n = sin 0.  



Table 1 

COMPOSITE EQUATION FOR TRANSFORMING A GENERAL, FOURTH-RANK TENSOR 

Table 2 

COMPOSITE EQUATION FOR TRANSFORMING AN ORTHORHOMBIC, FOURTH-RANK TENSOR 

Expanding Table 2 and using contracted indexes, the elastic stiffnesses and elastic 
compliances may be transformed, as in Table 3. 



Table 3 

ELASTIC STIFFNESS A N D  COMPLIANCE TRANSFORMATION EQUATIONS 

Transformation Eq_uation. 

%I S12 S22 '66 

( c ~ ~ )  (c12) ( c ~ 2 )  (4c66) 

For example, from Table 3: 

S j 1 = m4s1 1 + 2rn2n2s1 + n4sZ2 + m2n2~661  and: (38) 

Expanding Table 2 and using contracted indexes for the stress-optic and strain-optic 
coefficients, yields Table 4. 

For example, from ,Table 4: 

q = m 2 n 2 ~  1 1 + n 4 ~  ' + m4Q2 + m 2 n 2 ~ ~ ~  - and ' (40) 



Table 4 

STRESS-OPTIC AND STRAIN-OPTIC COEFFICIENT 
TRANSFORMATION EQUATIONS 

Transformation Equations 

Oil ( p l l )  O12 (p l  2) a,, (P21) Q22 (P22) %6 (2P66) 



Stress-Optic Law for Orthotropic Materials 

The birefringence tensor in Equation 33 .is given by i t s  components in the coordinate 
system, coinciding with the principal material directions (1, 2, 3 axes). In the general case, 
the reference coordinates may be arbitrarily chosen. In the polariscope, only the 
birefringence components in the plane normal to the light path have any effect. Orientation 
of the principal birefringence components in the plane is  given by the isoclinic angle 
observed in the polariscope. By the second-rank tensor transformation, then, after selecting 
the 3 axis to be coaxial with the polariscope, Equation 33 becomes: 

N~ cas2 g + Nq sin2 4 Qii Qi2  0'16 ox 

[Npsin'@+Nqco<id = [Q), Q i 2  Q > d  [a,]' 

where: 

p and q represent the principal birefringence directions, and 

@ the isoclinic angle in the polariscope referenced to the x axis. Qi; is  
defined in Table 4 (i and j can equal 1, 2, or 6). 

The birefringence components, as defined by ~ha~avantam,(~)  are:. 

I I 
Np = - and Nq = - 

n p2 nq2 

where n represents the index of refraction. 

The observed quantity in the polariscope i s  the relative retardation, which is  proportional to 
(np - nq). The first two expressions of Equations 42 may be combined to yield: 

and the third expression of Equation 42 gives: 

From Equation 43: 



since the refractive-index changes under stress are small compared to the index magnitude, 
and no i s  the average index of refraction of the unstressed material. Substituting Equation 
46 and lumping some of the constants together, Equations 44 and 45 become: 

N cos 24 = C l o x  - C20y. + C y x y  , and (47) 

N sin 24 = - 2[C40x + C50y + C6rxy1 , (48) 

where: 

2 
N = (nq - np)--, I 

"0 
3 

C l  = ( Q i l - Q 2 1 ) ,  

C2 = (Q i2 -Q i21 ,  

C5 = 062, and 

From Table 4: 

Equations 47 and 48, along with the relations just given (49), form the basic, 
two-dimensional, stress-optic theory for orthotropic materials. 

For the case where the coordinate system (x,y) is aligned with the material principal axes: 



This development results in the following form for the stress-optic relations: 

N cos 20 = C1 *ox - c2*oy , and (51 

* 
N sin 241 = - 2C6 Txy , (52) 

where the' asterisk denotes properties in the material principal coordinates. Thus, for the 
general plank-stress problem; the photoelastic stress-optic relations can be applied with three 
basic properties: Cl*, C2*, and C6*, since, in other coordinate systems, the properties (C1 
through C6) can be obtained from Equations 49 and 50. 

Physical interpretation of these properties is straightforward. I f  ox is the only nonzero stress 
and the x axis is aligned with the fiber direction in the composite (0 degree), then C1* i s  the 
slope of the stress-birefringence curve. It would be ex~ected: and has h ~ ~ n  sho\.wn 

' experimentally, that the isoclinic angle, @ equals 0 degree. The birefringence is  linearly ' 

proportional to the material thickness, and the familiar photoelastic term (the material 
fringe value) is  introduced here. The fringe value for this loading condition is: 

where: 

t represents the thickness, and 

f l  the material fringe value for uniaxial stress alor~y the fiber direction. 

where f2 represents the material fringe value for a uniaxial stress transverse to the fiber 
direction. 

For these two cases, the applied uniaxial stress has been coaxial or transverse to the fiber 
direction (the x,y coordinates). Thus, there was no shear stress, I f  the fiber is aliqned a t  
some intermediate angle with the applied uniaxial stress, there w ~ l l  be a shear stress, T ~ ~ ,  

and the isoclinic angle will generally be between 0 and 90 degrees. In order to determine the 
shear constant, C6*, the uniaxial stress is  applied a t  some angle, 8, to the fiber direction. 
Then, from Equation 52, 2C6* i s  the slope of the shear stress-birefringence curve multiplied 
by sin 24I. The principal shear material fring'e value is: 



Ttie stress-optic relations may now be written in terms of material fringe values when the 
coordinate system coincides with the material principal axes. Equations 51 and 52 become: 

N cos 24 = t (: - z) , and 

Two other forms of the stress-optic relations may also be obtained. By squaring both sides 
of Equations 56 and 57, and adding: 

~ = t  (m - -  is obtained. 

Dividing Equation 57 by Equatton 56 gives: 

- - 27xy 

It is  noted that these forms of the stress-optic relations may be applied only when the x and 
y coordinates coincide with the material principal directions. 

In summary, there are two equations with three unknowns (o,, oy, and rXy)  and two 
measured quantities ( N  and 41, with three photoelastic properties (f 1, f2, and f12). Other 

- 
relations must be used to determine the separate stress components. l hese relations are 
developed in a later section. 

THEORETICAL PREDICTION O F  PROPERTIES 

In order to utilize the equations of mechanics or photomechanics; in most cases, the values 
of all the material properties must be known. In the case of isotropic materials, the number 
of properties is usually small and they are easily determined by tests. Fiber-reinforced 
composite materials, however, generally have more properties due to'orthotropy. Properties 
vary with the fiberlmatrix volume fractions as well as the constituent material properties. 
Generally, the continuous fiber-reinforced composites are transversely isotropic (isotropic in 
the plane normal to the fiber direction) or orthotropic (with rhree orttluyursal axes of 
material symmetry). In either case, usually the two-dimensional problems of interest have 
two orthogonal axes of material symmetry. 

The number of properties and their variation requires an extensive testing plan to fully 
evaluate the property values. Therefore, it is desirable to be able to predict the property 
values with a mathematical model and verify it with a limited number of tests. 



Finite-Element Model for Normal Stress 

The model that has been most successful for predicting the elastic properties of composite 
materials is  the periodic array of fibers in a matrix. One arrangement used to model the 
composite is the square array of fibers, 
illustrated in Figure 1. In this array, the 
maximum fiber volume fraction i s  78.5%, 
but this value is  not of much significance 
since most composites do not reach this 
value. This square array may be elongated 
to a rectangular array i f  it seems appropriate 
to model the particular composite under 
study. 

.- - 
I he most effici'ent packing of fibers can be 
realized with the hexagonal array, as 
outlined in Figure 2. The maximum fiber 
fraction in this array i s  90.6%. In actuality, 
neither of these idealized arrays exactly 
model the real composite, so the effective- 
ness of the model must be judged by i t s  
correlation with experimental data. 

Figure 1. SQUARE ARRAY OF PARALLEL, CONTIN- From a regular array' a typical repeating 
UOUS FIBERS IN A MATRIX FORMING A COMPOSITE 

section (as in Figures 1 or 2) is chosen to  MATERIAL MODEL. 

represent the model. In this section, a finite 
element quadrilateral mesh i s  generated, as 
indicated in Figure 3 for the square array. Outline of the fiber i s  clearly indicated, and the 
connectivity of the mesh across the fiber boundary implies a uniform bond between the 
fiber and matrix. 

- Since the section is removed from a symmetric field, the displacements of the boundaries 
must be uniform in order to maintain compatibility. These boundary conditions are easily 
applied in the finiteelement stress-analysis method. The assumed displacements are 
indicated in Figure 3. As described later, combinations of these displacements are used to 
produce the desired loading conditions. 

Finite-Element Analysis for Normal Stress 

The analysis is performed by supplying this model and boundary conditions to a 
finite-element computer code (given in Appendix A) along with appropriate properties of 
the constituent materials. For a given set of boundary conditions, a state of stress and strain 
exists in the model. Photoelastically, when the model is stressed, the fiber and matrix have 
different photoelastic responses a t  every point in the model because, in general, the stress 
field is  not uniform. 

For a given loading condition, the stresses at each point produce a birefringence which must 
be integrated over the total light path through the model to obtain the overall effect. A 
differential area, dA in Figure 3, which represents the point has a birefringence of: 



where: 

dN represents the differential birefringence, 

d Z the incremental thickness in the direction of observation or the light path, 

(p - q) the difference between the principal stresses in the RT plane, and 

f the material fringe value of the material in the differential area, dA. 

lntegrating Equation 60 gives the birefringence produced through the thickness a t  any given 
value of R. Since a point observable by eye covers a large number of fibers, the birefringence 
as a function of R may be replaced by i t s  average value. lntegrating with respect to  R and 
dividing by Rmax (Rmax = 1 for the square array) gives this average. The macroscopic 
birefringence i s  given by: 

The finite-element program yields constant values of stress, material fringe value, and 
birefringence within each element. Thus, the integration can be replaced by a summation for 
all the elements. Equation 61 becomes: 

where: 

N represents the average fringe order produced by an average stress state in the 
material, 

m refers to an element, and 

M represents the total number of elements. 

As mentioned, the model i s  displacement controlled. When the model is subjected to  known 
displacements, in general, a nonuniform stress exists along each boundary of the model. The 
average of this stress distribution must equal the applied stress in a macroscopic sense. By 
applying the correct displacements at the model boundaries, average stress states can be 
produced which may be used to calculate the elastic properties. 

Several displacement combinations are used to determine the elastic properties in 
conjunction with the orthotropic stress-strain relations. In order to obtain three-dimensional 



Figure2. HEXAGONAL ARRAY OF PARALLEL, 
CONTINUOUS FIBERS I N  A MATRIX FORMING A 
COMPOSITE MATERIAL MODEL. 

Deformed Boundary 

------ 

Figures. FINITE ELEMENT QUADRILATERAL MESH FOR A TYPICAL 
REPEATING SECTION FROM THE SQUARE ARRAY. 



properties, the cross section in Figure 3 is not a plane model, but the cross section of an 
axisymmetric ring. R and Z displacements may then produce any state of normal stress 
desired (T strains are produced by average R displacement). The radius-to-thickness ratio is  
very high so that stress variation with R (due to cylindrical geometry) will not be significant. 

The finite-element computer program is set up so that the sequential displacement loading 
steps required to determine all the normal stress constants are performed. The orthotropic 
stress-strain relations for normal stresses are given by: 

where: 

E represents the normal strain, 

E the modulus of elasticity, and 

v Poisson's ratio. 

R, Z ,  and T are subscripts that indicate the component values. 

For example, the Poisson's ratio, VRZ, is the E Z  strain divided by the E R  strain produced 
when a OR stress is applied. Also, use is made of the reciprocal relations: 

where the subscripts represent any R, Z, or T coordinates. 

The first load step applies boundary displacements (UR,- U R ~ ) ,  SO that: 



where the numerical subscripts refer to the load step number, and "e" i s  the applied strain. 
This expression produces three equations from Equation 63: 

(e l l  ER = ( 0 ~ 1 1  - VRZ(UZ)I - VRT(OT)I I (664 

O= - V Z R ( O R ) ~  + ( o z ) ~  - VZT(UT)~, and (66b) 

O = - V T R ( O R ) ~  - VTZ(OZ)~  + ( u T ) ~  . 

The second step applies displacements so that: 

( ~ ~ 1 2  = (e)2, ( '~12 = 0, (€TI2 = 0 . 

The three resulting equations are: 

0 = ( o R ) i  - ~ R Z ( O Z ) ~  - v R T ( ~ T ) ~  , 

(e)2Ez = - V Z R ( U R ) ~  -!= ( U Z ) ~  - ~ z T ( c ' T ) ~  , and 

Equations 66c and 68c may be combined to give: 

( U T ) ~  ( 0 ~ 1 2  - ( 0 ~ ) 2 ( 0 ~ ) 1  
VTR = , and 

( U R ) ~  (0212 - ( o R ) ~ ( o z ) ~  

The third step applies: 

which results in: 

Then: 

Equations 66a and 68a may be combined to yield: 



( o z ) 2 ( 0 ~ ) 1  - ( o R ) 2 ( 0 ~ ) 1  
ER = , and: (74) 

Equation 68b then gives: 

Also, from the third step, the material fringe value in the T direction (fiber axis) with the Z 
direction of observation is: 

where ( N T R ) ~  represents the average fringe order from Equation 62 with the direction of 
observation along the Z coordinate in  Load Step 3. Similarly: 

where (NTZ)3 represents the average fringe order from Equation 62 with the direction of 
observation along the R coordinate in Load Step 3. Since the plane-stress problem with the 
fiber axis in the plane is considered here, only R and Z-direction observations need be made. 

Step 4 applies: 

which results in: 

The material fringe value for the R direction in the R-T plane is: 



where ( N R ~ ) 4  represents the average fringe order from Equation 62 with the direction of 
observation along the Z coordinate in Load Step 4. 

Step 5 applies: 

( ~ ~ 1 5  = (e)5, ( '~15 = - v z R ( ~ ) ~ ,  ( ~ ~ 1 5  = - v z T ( ~ ) ~  , 

yielding: 

(OR15 = ( 0 ~ 1 5  = 0 ,  (83) 

and the material fringe value for the Z direction in the Z-T plane is: 

where ( N Z ~ ) 5  represents the average fringe order from ~ ~ u a t i o n  62 with the direction of 
observation along the R coordinate in Load Step 5. 

Through the procedure just outlined, all of the elastic and photoelastic properties for 
normalmstress loading are determined. The model of the fiber array is not required to be 
transversely isotropic in this procedure. The rectangular array i s  not transversely isotropic 
while the square array is  isotropic. If the model i s  transversely isotropic, obviously the R 
and Z directions of observation are identical so that only Load Steps 1, 3, and 4 are required 
to determine all the properties. 

The model for a square array of fibers may be mathematically transformed from a basic 
model for a 50% volume fraction t~ber to cover a range from a 20 ro 78% fiber vulu~rltt. Tlle 
transformation is accomplished by linearly increasing or decreasing the radial dlsrance from 
the fiber center for all nodes within the fiber boundary; and, simultaneously, linearly 
decreasing or increasing the radial distance for nodal points outside the fiber boundary. This 
action eliminates the need for generating a new model for each fiber volume fraction. 
Finite-element meshes for various fiber volume fractions are illustrated in Figure 4 to show 
the transformation. 

Calculated results are presented graphically, showing the functional relationships between 
properties of the fiber, matrix, and composite. These curves are prepared for the material 
constituents used in Material 2, identified later (Page 50). The modulated square-array 
model is  analyzed in the finiteelement computer program. Constituent-material properties 
are the input, and the composite elastic and photoelastic properties are the output of the 
program. Figure 5 gives the computed moduli of elasticity parallel and transverse to the 
fiber direction as functions of the fiber-volume fraction. As expected, the longitudinal 
modulus, El, i s  practically linear, which agrees with rule-of-mixtures theory. The transverse 
modulus i s  lower because of the lower modulus of the matrix. However, it i s  always higher 
than the matrix modulus. The curves terminate a t  78 volume percent fiber because the 
model is bounded by that value. The major Poisson's ratio, "12, in Figure 6 is also very 
linear; again, in agreement with the rule of mixtures. The curve is  very slightly shifted with 
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Figure 5. ORTHOTROPIC MODULI OF ELASTICITY 
FOR FIBER-REINFORCED COMPOSITE MATERIALS 
AS A FUNCTION OF THE FIBER VOLUME FRAC- 
TION. 

(e) ~t 70%. (f) ~t 7%. respect to the rule-of-mixtures prediction so 

Figure 4. MODULATION OF THE 50 PERCENT FIBER 
that the agreement between the two sets of 

VOLUME FRACTION SQUARE ARRAY MODEL FOR values is  not perfect. The photoelastic 
FIBER VOLUME FRACTIONS FROM 20 TO 78 material fringe values parallel and transverse 
PERCENT. to  the fiber direction are given in Figure 7. 

The curves in Figure 7 show a somewhat 
similar response with respect to the fiber volume fraction as those of the moduli in ~ i ~ u r e  5. 
However, neither value is  predictable by rule of mixtures. Experimental data are presented 
in a subsequent section (Page 43). 

Finite-Element Model for Shear Stress 

In-plane shear loading analysis will complete the calculated properties needed for analysis of 
two-dimensional problems. The sequence of analysis is very similar to the analysis described 
for normal stress. The composite is modeled as a regular array of fibers in a matrix, either 
square or hexagonal. A typical repeating section, as indicated in Figures 1 or 2, is  chosen as 
the model and is approximated by a finite-element mesh: The mesh for shear loading is 
made up of a triangular element in order to be compatible with the computer program used. 
Again, displacement boundary conditions are imposed to maintain the geometric 
compatibility of the repeating sections. 
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Figure 6. MAJOR POISSON'S RATIO FOR FIBER- Figure 7. NORMAL STRESS MATERIAL FRINGE 
REINFORCED COMPOSITE MATERIALS AS A VALUES FOR FIBER-REINFORCED COMPOSITE 
FUNCTION OF THE FIBER VOLUME FRACTION. MATERIALS AS A FUNCTION OF THE FIBER- 

VOLUME FRACTION. 

Finite-Element Analysis for Shear Stress 

A finite-element program originally assembled for steady-state heat transfer is modified to 
analyze the shear-loading problem (given in Appendix Bj. I t  is shown rhar rhese art! 
representable by the same mathematical problem. 

The governing equations for pure shear loading are established from elasticity theory. 
Because of symmetry, the average longitudinal shear stress will cause a uliiform axial 
displacement along the boundary on which it acts. The problem is defined by the 
displacement field: 

where u, v, and w are, respectively, the x, y, and z displacement components. For this 
problem, the only nonzero stress components are then: 

where: 

T represents the shear stress, and 

G the shear modulus of the material. 



Equilibrium equations in the x and y directions are automatically satisfied, while 
equilibrium in the z direction requires that: 

To further define the problem, the boundary conditions are established so that only one of 
the shear-stress components is applied for a particular loading case. The body is  assumed to 
be loaded at infinity by a uniform shear stress; however, in the micro scale, this condition i s  
represented by a uniform edge displacement. The boundary conditions become, for T,, 

loading: 

w = w0 along x = a 1 
w = 0 along x = 0 I 

aw 
G - = 0 along y = 0, y = b 

a Y 
J 

After solving the problem, the shear-stress loading is  determined by averaging the calculated 
shear stresses along the boundary x = a or x = 0. 

Rather than set up a computer program especially for this problem, it is  noted that the 
mathematical problem is  identical to that of the formulation for steady-state heat transfer. 
Boley and ~ e i n e r ( l ~ ) . ~ i v e  the equation as: 

where: 

k represents the thermal conductivity, and 

T the temperature. 

A finite-element program for evaluating this heat-transfer equation is  modified to solve the 
shear-loading problem. A comparison of Equations 87 and 89 shows the analogous variables. 
These are: 

The boundary conditions for the heat-transfer program corresponding to the shear-loading 
problem are: 



T = TO along x = a . 1 
T = 0 along x = 0 

aT -= 0 (insulated boundary) along y = 0,b 
a Y 

J 
The shear stress corresponds to the heat flux: 

Some of the photoelastic quantities which have no counterpart in the heat-transfer problem 
and some other desired output are added to the existing program. 

Curves are obtained for the shear modulus 
and principal shear photoelastic constant. 
Again, these curves are calculated from the 
constituent material properties of Material 
2. The shear modulus, plotted in the graph 
of Figure 8, is seen to remain very low for 
the whole practical range of fiber fractions. 
The principal shear fringe value is  given by 
Figure 9. The fringe value is defined by 
Equation 55. The fringe value does not 
remain low as did the shear modulus for 
increasing fiber-volume fractions. 

By the methods described in this section, all  
the properties needed to solve the two- 
dimensional problem may be calculated 
from constituent properties. I f  the correla- 

k~@ire 8. PHINCIPAL SHEAH MUUULUS kUW klUkH- tion between experimental and calculated COMpOslTE AS A 

values is  reasonable, the amount of testing FUNCTION OF THE FIBER VOLUME FRACTION. 
for property determination is greatly 
reduced. Comparisons with experimental data are presented in the section entitled: EX- 
PERIMENTAL EVALUATION OF MATERIAL PROPERTIES AND STRESS-OPTIC 
LAWS. (Page 43). 

MATERIAL FABRICATION AND MODEL PREPARATION 

The foremost requirement for a material for photoelastic work is  that the material be 
transparent. In order to produce a transparent, fiber-reinforced composite material, each 
phase of the manufacturing process must be carefully controlled. 



Selection of Constituent Materials 

Fiberglas. One of their glass fibers, desig- FIBER-REINFORCED COMPOSITE MATERIALS AS A 
FUNCTION OF THE FIBER VOLUME FRACTION. nated "W-1" clear glass, was used in some 

One of the most readily available fibers is  fiberglass. Fiberglass comes in many forms, but 
the form most suitable for fabrication of unidirectionally reinforced material is called 
"roving" or "yarn". When the fiberglass is 

early composite materials work. The form 
of strand available is a 2040filament bundle which forms a relatively large strand for 
winding purposes. The composition of this glass is  almost identical to the more common 
"E" ylass. "E" glass is as clear, but has a faint greenish tint. "E" glass is available in a variety 
of forms and sizes. 

formed, a bundle of monofilaments are 12" 

drawn simultaneously to form a threadlike 
string called a "single-end strand", which is 

loo0 collected on a high-speed cylindrical drum 
to form a "cake". All of the roving or yarn - 
is then formed from this cake. Single-end .f 

$ 800 roving is simply rewound from one cake .i 

onto a tube in an amount convenient for f 
sales purposes. Twenty-end roving is formed fj 

For this study it is concluded that "E" glass with the sizing removed is the best material to 
use. Typically, al l  glass yarn and rovings have a coating on the fiber known as the "finish" or 
"sizing". Finishes are defined as a coating designed to remain on the glass and promote 
bonding with a particular type of resin; sizings are defined as a coating designed to prevent 
fiber abrasion and breaking during handling processes such as cloth weaving. After weaving, 
the sizing i s  removed and a finish is applied. For highly transparent composites, the finish is 
undesirable because it may not be optically clear and/or the index of refraction may not 
match that of the fiberglass. The fiberglass material used in this study is single-end 
(2040filament) "E" glass yarn with one twist per inch and a starchloil sizing. The Owcns- 
Corning product is  identified as ECG- 150-110-1 .OZ, a standard product for Owens-Corning. 
The yarn bundle is small enough to wind a fairly uniform composite. 

- 

- 

- 

The other material required to make the composite bonds the fibers in position and forms a 
rigid material. It is  called the "matrix material". The best matrix for most applications is  a 
liquid resin (either polyester or epoxy) which will flow and fill the spaces between fibers 

by gathering the single ends from 20 cakes '$ 
into one strand and rewinding onto a tube. 
Yarn is  the same as roving except that it is 5 400- 
twisted during the rewind operation. This .! 
step makes the. fiber easier to handle when 2 

weaving into cloth. ZOO - 

There are also many different glass compo- 
sitions, not all  having the same degree of o 

I I I I 
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optical clarity. The fiberglass used in this Fiber Volume Fraction (%) 

study is obtained from Owens-Corning Figure 9. PRINCIPAL SHEAR-FRINGE VALUE FOR 



before hardening. It is also desirable for it to have a low viscosity and a reasonably long pot 
life (time before gellation begins). Several other characteristics of the matrix are very 
important for producing transparent material. 

For a low initial birefringence, room-temperature-cure resins with low shrinkage are r e  
quired. In this study, only epoxy resins were seriously considered because their shrinkage 
is  less than that of polyester, and more experience had been gained with epoxies. When the 
fiberglass strand is impregnated with the matrix and the curing begins, any difference in 
temperature from room temperature produces a differential expansion between the fiber 
and matrix because the expansion coefficients are different. Matrix shrinkage causes a 
similar effect and adds to the thermal component. In traditional isotropic photoelasticity, 
the material usually has negligible initial birefringence. In fiber-reinforced composite 
materials, the initial birefringence is very difficult to eliminate and must usually be 
accounted for in the analysis. 

In order to achieve good transparency, the fiber and matrix indexes of refraction must 
match very well. The light path travels through several hundred Fiberlrnatrix interfaces in a 
composite that i s  0.100 to 0.200 inch thick. Thus, a small difference in the refractive index 
progressively distorts the path and diffuses the light. Refractive indexes were determined for 
eight epoxy resins which were suitable for use in other respects. The refractive indexes for 
these epoxies ranged from 1.512 to 1.587, while the fiber index was 1.548. 

Maraglas 658 epoxy with Maraglas 558 hardener mixed 100150 parts by weight, 
respectively, was the matrix that was selected for use. The resin is produced by the 
Marblette Corporation. Maraglas 658 is a room-temperature-cured, crystal-clear epoxy 
casting resin with a low exotherm. The cure time is  24 hours. The refractive index is 1.557, 
which matches that of the fiber to within 0.6%. 

Winding Method 

The most important factor in fabricating a transparent composite is the elimination of voids 
or air bubbles. Differences in the refractive index make the composite more translucent; 
but, if the voids are not eliminated, the composite is opaque. 

In a typical filament-winding process using simple impregnation devices, minute air bubbles 
form in the resin andlor in the spaces between the fibers. These voids may occupy less than 
5% of the material volume and yet st i l l  render the composite opaque. Special processes are 
required to reduce the void content to less than 112% for reasonable transparency. These 
special processes normally involve use of vacuum in some way. . 

One fabrication method for..producing low-void composites is  vacuum winding. There are 
several ways to  apply the vacuum. As expected, the best results are achieved by the most 
difficult method. 

The simplest approach uses only a vacuum impregnation device. The impregnation device 
has inlet and exit orifices for the fiber strand to pass through. The resin is in a cup inside the 
evacuated tank. The strand enters and is  dry while being evacuated of air for a short length. 
It then passes through the resin to be wound onto the mandrel surface. Good, low-void 



composites may be fabricated in this manner. The primary disadvantage of this method is 
that the winding speed needs to be slow so that the dry strand has enough time to evacuate 
before being impregnated by the resin. Also, fiber abrasion and consequent "fuzzballs" tend 
to clog the orifices and make it difficult to maintain smooth operation. 

The next approach places the spool of fiber inside the emcuated tank. With the spool in a 
vacuum, the whole spool of fiber may be evacuated for a time before starting to wind. This 
action allows faster winding speeds. The tank is compartmentalized since any resin splatter 
on the spool makes it difficult to pull the strand off the spool. This process works ve 

were produced by this technique. 
7 effectively as long as fiber breaks are minimal. Rings produced for residual stress studies(14 

Enclosing the whole process in a vacuum chamber accomplishes the remwal of all air 
sources which may contribute to voids in the composite. This approach would seem to be 
the ultimate method. However, additional complexities are involved. The winding machine 
is remotely controlled for all steps in the process. Mold releases on the mandrel as well as 
lubricants on the machinery require a long outgassing period. A large vacuum chamber is 
expensive and not readily available in most cases. Also, when a fiber breaks, the part is 
usually ruined because the chamber is opened to restart the strand and the reevacuation 
time is too long. Some winding has been done this way with good results, but the effort 
required hardly seemed justified. The finished parts to date are no better than parts 
produced by the other methods, although the potential part quality is better. 

A completely different scheme for producing material is called "dry winding", with vacuum 
impregnation after the winding is finished. Dry winding is better suited for producing flat 
material. It is better to wind cylinders by wet winding (with resin) because dry windings lose 
tension, bulk up, and wrinkle during winding. Bulking results in a low fiber content, while 
wrinkling, due to tension relaxation when successive layers are applied, results in material of 
poor quality. Even though flat windings bulk up across the flat surface due to the lack of 
winding pressure against an infiniteradius-of-curvature surface, the material can be pressed 
to a uniform thickness in order for it to be of uniform consistency. Since the resin in a 
wet-wound plate is further "advanced" (meaning advanced on the polymerization cycle, 
making it more viscous), dry winding with vacuum impregnation is recommended. The flat 
material used in this study was produced by dry winding. 

-A  flat mandrel with round edges provides the winding support. The yarn is wound around 
the 'mandrel. Fifty to 75 grams of tension on a single-end yarn (204 filaments) i s  applied to 
pull the fiber straight. The mandrel has a very short "H" cross-section design where the sides 
are used to enclose the winding and provide mechanical stops for thickness control in 
pressing. A view of the mandrel is given in Figure 10. 

The sizing is "burned off" the yarn after winding on the mandrel. (The starchloil sizing is 
effectively removed by heating to 650° F for 24 hours.) This high temperature requires the 
use of a stainless steel mandrel to prevent surface oxidation. The mold release on the 
mandrel is a high-temperature type--Peninsular Silicones, Inc, M R-22 Silicone. It is a liquid 
applied by wiping, brushing, or spraying. The mold-release curing cycle is 60 minutes at 
4000 F and 10 minutes at 600° F. After sizing remwal, the fiberglass is vacuum 
impregnated. 
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Figure 10. H-SHAPED STAINLESS-STEEL MANDREL FOR WINDING DRY, UNIDIRECTIONAL, FLAT MATERIAL. 

Impregnation Procedure for Dry Winding 

The mandrel with winding is assembled with Other components, as s&en in Figure 11, to 
fsrm a vacuum chamber around the Wndimg. The U-shaped top and bottom pieces 
which have tube ports am hl,W th$ ends of the mandrel. Plexiglas plates are fim m r  

- 
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Figure 11. COMPONENTS OF THE ASSEMBLY USED TO VACUUM IMPREGNATE DRY FIBERGLASS WINDING 
w l m  EPOXY RESIN. 



the sides of the mandrel to complete the chamber. Any small cracks at the joints are sealed 
with a putty-like material called "duct seal". Hoses are connected to the tube ports. One 
hose goes through a resin trap to the vacuum source; the other hose is used to feed the 
epoxy resin. 

The resin hose is clamped off and the vacuum applied. The dry winding is evacuated for an 
arbitrary minimum of 12 hours. This length of time is usually convenient for processing. 
Longer times have not seemed to yield any better results. 

At this point, the resin is  fed through the hose into the chamber. The chamber is filled and 
allowed to remain on vacuum until the fiberglass is impregnated. A view of the impregnation 
in progress is given in Figure 12. When dry, the fiberglass winding is white and opaque; when 
completely impregnated, the winding is green tinted and transparent. When impregnation is  
complete, the Plexiglas plates and steel U caps are removed. 

Steel plates are positioned on each side against the impregnated winding in preparation for 
pressing. The assembly is loaded into the press and the desired pressure (up to 250 psi) is 
applied. The pressure is maintained to squeeze out any excess resin. To produce a composite 
of the desired fiber volume fraction, shim stock of the proper thickness is placed between 
the H-mandrel sides and the pressing-plate edges. The shims serve as mechanical stops to 
produce the desired composite thickness. A photograph of the assembly in the press is 
presented in Figure 13. The resin cures in the press for 24 hours at room temperature. The 
composite material sheets are then removed. 

Model Preparation 

The photoelastic model is cut from the flat sheets. Because it is a two-phase material with a 
hard and soft phase, the machining process is difficult The best result is usually obtained 
with a grindingtype process. Most other processes leave a ragged, loose, fiber edge. 

Diamond-coated tools have provided the most successful cutting edges. Straight edges are 
cut by a diamond-coated metal disc, mounted on a surface grinder, as seen in Figure 14. 
Diamond-coated core drills are used to bore holes. In all the machining processes it is 
necessary to keep the tool from loading up with the soft phase (epoxy resin) because this 
buildup prevents a clean cutt~ng action. In most cases, water coolant is used to lubricate and 
cool the material and to prevent tool loading. The fiberglasslepoxy composite can .be 
machined by these methods to yield a clean, smooth surface. 

Part of this study involved testing for tensilestress response as a function of the fiber 
orientation angle with respect to the tensilestress direction. Tensile specimens were cut 
from the flat sheet following layouts made to efficiently utilize the material. Where possible, 
all the specimens were cut from one sheet of material. The sheet was clamped by two 
DeSta-Co clamps onto a micarta plate on the surface grinder shown in Figure 14. Micarta 
serves as back support to prevent fiber splintering. Multiple passes distribute the cutting 
forces and generate heat, and prevent machining-edge stresses. 

Another part of the study analyzed the photoelastic patterns produced in a tensile strip with 
a central hole. Straight edges of the strips were machined in the same manner as the tensile 
specimens. Holes were drilled by the diamond-coated core drill. 



F i ~ r e  12. VACUUM IMPREGNATION IN PROGRESS. 
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F i ~ r e  13. VACUUM-IMPREGNATED PLATE IN THE PLATEN PRESS FOR CURE. 



Figure 14. CURED FIBERGLASS PLATE HJ THE SURFACE GRIPJDER FOR SPECIMEN CUTTING. 



EXPERIMENTAL EVALUATION OF MATERIAL PROPERTIES AND STRESS-OPTIC 
LAWS 

One part of the experimental program used uniaxial tensile specimens to generate the 
required data for evaluation of the developed theory. The specimens of various fiber 
orientation were loaded in the loading frame in the polariscope. Photoelastic data and strain 
measurements were recorded for property determinations and theoretical evaluations. 

Test Methods and Equipment 

The polariscope used is Polarizing Instrument Company's Model 402, seen in Figure 15. It is 
a circular polariscope with a collimated light. The quarter-wave plates may slide out of the 
field to convert it into a plane polariscope. 

Some of the other components and auxiliary equipment can be seen in Figure 16. The 
loading frame in the original setup is  for dead-weight loading of the specimens through a 
lever arm. Since a large number of specimens were tested in this research, another loading 
device was adapted. An air-cylinder loading arrangement with a load cell provided more 
efficient operation. The cylinder, exerting the load in place of the dead weight, was much 
quicker and easier to load and unload. 

The polarizer and analyzer were mechanically coupled to facilitate isoclinic determination. 
After reading the isoclinic angle, a Babinet-Soleil-type compensator was used to determine 
the fringe order. Photoelastic, Inc Model 232 compensator was used. 

A photometer search unit was mounted on the projection screen behind an aperture. The 
point of interest in the model was located over the aperture. When the compensator was 
adjusted, the minimum light intensity was determined by the photometer. The photometer 
used was a Photovolt Corporation Model 520-M. 

The tensile specimens were 0.500 inch wide by 0.100 inch thick by 6 inches long. Each end 
of the specimen was clamped between two aluminum plates. The clamping force was 
provided by cap screws through the plates. A central hole and pin were used to transmit the 
load from the loading frame. A universal-joint pin arrangement was used to prevent the 
specimen from bending. Foil-resistance strain gages were mounted on the specimen, and 
strain was read on a BLH Model 120 strain indicator. The specimen was incrementally 
loaded and data were recorded at each load level to establish the loading curve. 

As described earlier, the properties were determined by normal-stress and shear-stress 
loadings. The normal-stress properties were readily determined from tensile specimens of the 
proper fiber orientation. It was desirable to determine the shear properties from a pure shear 
test, but very few loading methods for pure shear tests were in existence. The, rail shear test 
was one method tried for testing shear properties; the other test used was the off-axis fiber 
orientation tensile specimen. The normal-stress properties were determined first in order to 
reduce the shear proper@$ f n m  mw 

- .-.- 
. . 

In the tensile test, it was necessary to have a high length-tewidth ratio.(15) High 
length-to-width ratios ( U W )  produce more uniform stress fields. For most materials, 
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Figure 15. POLARISCOPE SHOWING THE LIGHT SQURCE. COUPLED PCILARIZER AND AN3,YZER. AND LOADING FRAME. 
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F i r e  16. POLARISCOPE SHOVYlNG THE LOADlNO FRAME, A LOADED SPECIMEN, THE CAMERA, AND PHOTOMETER. 



L/W > 5 will give satisfactory results. This problem was most serious for the off-axis test 
because of shear coupling stresses and displacements. 

The photoelastic-material properties were experimentally determined from data recorded 
when the specimen was loaded. Photoelastic data were obtained by conventional 
photoelastic methods. Experimental results were used to calculate the properties. 

Experimental Determination of Photoelastic Properties 

The tensile specimen was mounted in the loading frame and loaded incrementally. In- 
cremental loading was used to determine the linear response range. Because the theories 
were based on the linear material behavior, the test was terminated when the response 
became nonlinear or the specimen fractured. Data were recorded at each increment. 

The isoclinic angle was determined in a plane polariscope by rotating the coupled polarizer 
and analyzer until the minimum light intensity was indicated by the photometer. After 
determining the isoclinic angle, the compensator was inserted in the field and al~gned w ~ t h  
the principal birefringence direction. The fringe order was obtained by adjusting the 
compensator for minimum intensity on the photometer in a crossed, circular polariscope. 
White light was used so that the minimum light intensity was on the black, zero-order fringe. 

The material produced in this research always had an initial birefringence with the isoclinic 
aligned with the fiber direction. This initial birefringence was usually small; and, in some 
cases, negligible. However, usually it must be extracted from the data. In the cases of 0 or 
90degree fiber orientation, the initial birefringence and load birefringence directly summed 
to  produce the total measured birefringence. These data were easily corrected by 
subtraction. For ott-axis tests, the initial birefringence and load birefrir~yerlce cu~r~li i~~ed its a 
more complex manner. Even small initial birefringence may have had a pronounced effect 
on the total birefringence, so the data must be corrected. The resulting correction formula 
and its derivation are presented in Appendix C. 

The fiber-direction fringe value, f l ,  was determined by testing a 0-degree fiber orientation 
tensile specimen. The transverse fringe value, f2, was determined from a 90-degree fiber 
orientation specimen. The data were plotted with stress versus birefringence. A straight line 
was fitted to the data by the least-squares method. The slope, duIdN, times the thickness, t, 
gave the fringe value: 

where: 

f represents the material fringe value, 

do the stress increment, 

dN the fringe increment, and 

t the thickness. 



Correction.for initial birefringence is unnecessary for the 0 and 90-degree tests. In fact, the 
intercept of the least-squares, straight-line f i t  of uncorrected data with the birefringence axis 
may be a more accurate value for the initial birefringence than a direct reading. 

As mentioned before, two tests were tried for determining the shear fringe value, f 12. One 
of these is called the rail shear test. It i s  reported(16) that the shear-stress field is sufficiently 
uniform if the geometry and material properties are within certain limits. I f  the aspect ratio 
(lengthlwidth) exceeds 10 or i f  the stiffness ratio (transverse stiffnesslshear stiffness) B 1, 
then the shear stress should be uniform for most of the specimen. The test was conducted 
on specimens which satisfy these requirements, but the stress field judged by observing the 
fringe patterns was not even close to uniform. The calc.ulated shear fringe value, assuming a 
uniform shear stress, is  unreasonable. 

Better results are achieved, however, by use of a strain-gage determination of the actual 
stress state at a specific point. This test is accomplished by mounting a strain-gage rosette at 
the point and measuring the birefringence at the corresponding symmetrical point. As 
implied, the stress field is symmetrical even though nonuniform Results from the 
strain-gage rosette give the state of stress. The measured birefringence is used in Equation 58 
with other properties previously determined to find f 12. 

The test most used for shear properties is  the off-axis tensile bar. Theoretically, any fiber 
orientation between 0 and 90 degrees is suitable for use in Equation 58 to find f12. 
However, in order to minimize the effect of normal stress components in the equation, the 
orientation should be approximately in the range from 30 to 60 degrees. 

When the tensile bar is  loaded, the stress field should be a nearly uniform uniaxial stress 
along the bar i f  conditions on aspect .ratio, loading devices, alignment, and normal test 
methods are followed. The test data are corrected for initial birefringence and fitted by least 
squares to a straight line. This treatment yields the material fringe value, fg, for that fiber 
angle, 8. The state of stress in the material principal axes is calculated by the stress-tensor 
transformation. The shear fringe value, f12, is  calculated from Equation 58 and previously 
determined properties. Note that Equation 58 may be utilized to select the fiber orientation 
angle which cancels the normal stress birefringence components. Once f l  and f2 are 
determined, the material fringe value, fe, divided by 2 sin 8 cos 8 a t  this calculated 
orientation equals the shear fringe value, f12. 

Experimental Determination of Elastic Properties 

Determination of the elastic properties follows common methods used in composite 
materials technology. As the specimen i s  incrementally loaded, the strains are measured by 
strain gages. Strain components may then be used to calculate the properties. 

Either biaxial or triaxial strain-gage rosettes were mounted on the tensile specimen. The gage 
installation procedure recommended by Micro-Measurements, Inc was followed. The 
specimen surface was prepared, the gage aligned, and the gage bonded with 
Micro-Measurements M-Bond 200 adhesive which is an Eastman 910-type adhesive. 

A BLH Model 120 strain indicator and Model 225 switch and balance unit monitored the 
strains. A four-arm external-bridge arrangement was set up to reduce the gage voltage and 



thus stabilize the gage response due to self heating on the poor heat-conducting materials. 
Two legs of the bridge used 1100-ohm resistors, and the gage and thermal compensator were 
120 ohms. This arrangement reduced the indicator sensitivity by approximately a factor of 
three, but the readings were much more stable. Strain data were recorded a t  the same load 
increments as the photoelastic data and plotted to find the linear range. 

Tests of 0 and 90degree fiber-orientation specimens yielded the properties.E1, E2, v12, and 
v21. Biaxial strain-gage rosettes measured the axial and transverse strains in the loaded 
specimen. Plots of the data were made and a least-squares straight-line f i t  of the linear 
stress-strain data gave the slopes required to  calculate the properties. The 0-degree-specimen 
modulus of elasticity is E l  and the Poisson's ratio is v12. Poisson's ratio;v12, is defined as 
the ratio of the transverse (2) strain to  the longitudinal (1) strain produced by a longitudinal 
(1) stress. The 9Qdegree-specimen modulus of elasticity is E2 and the Poisson's ratio is ~ 2 1 .  
As a check, since the stiffness matrix must be symmetric, then: 

must be valid. 

The shear modulus, G12, completes the properties required for an analy~is~of a plane-stress 
problem. The off-axis tensile specimen is used to determine this property. A triaxial 
strain-gage rosette is  mounted on the specimen, as described earlier, but with the gages 
oriented at 0, 45, and. 90 degrees with respect to the fiber orientation. 

The modulus of elasticity of the specimen in the loading direction, Ee, is  a function of the 
fiber orientation relative to the load. The elastic-property transformation equations give this 
relation as: 

where: 

8 represents the fiber orientation relative to the load direction, 

m = cos 0, and 

n = sine. . . 

Since all the properties except Ee are previously determined; then, with Ee from the test, 
G12 is calculated from Equation 95. 

Data from the triaxial gage rosette yield the complete state of strain in the loaded specimen. 
The only strain required for Ee is the axial strain, €0. Results from the complete rosette 



check the accuracy of the assumed uniform uniaxial stress field. By mounting the rosettes 
aligned with the fiber coordinates and if 8 = 45 degrees was chosen (8 = 45 degrees was 
chosen for most of the shear modulus tests here), then €8 is  measured directly by the 
45-degree gage. When other orientations are used, the axial strain may be calculated from 
the rosettes' values, or the gage may be applied with one gage in an axial orientation. 

Uniaxial Loading Evaluation of Stress-Optic Laws 

One of the experimentsused to evaluate the proposed stress-optic laws was uniaxial stress 
loading of the tensile bars with different fiber orientations. The uniaxial stress, 8, was 
applied to a specimen with a fiber orientation angle, 8. Equation 58, which only applies 
when the x and y coordinates are aligned with the material fiber direction, may be written: 

The material fringe value is then: 

Also, the isoclinic angle is  a function of the fiber orientation angle. Equation 59 may be 
written: 

1 =F tan- l 
f12 

~ m 2  8n2 ' 

which is the isoclinic angle, 48, relative to the fiber coordinates. 

The experiments were carried out on two material systems. The only difference between 
materials was the epoxy resin used. For the first material, the epoxy was DER 
332lTETkIlAGE (85112115 parts by weight). DER 332 is  a Dow Chemical Company epoxy. 
TETA is  triethylene Tetramine, designated by the Cl BA Products Company as Cl BA 951 
Hardener. AGE is  a reactive diluent, Allyl Glycidyl Ether, produced by the Shell Chemical 
Company. The second material uses Marblette 6581558 (100150 parts by weight) epoxy 
produced by the Marblette Corporation. 

Tensile specimens were cut from the material sheets a t  15-degree increments of fiber 
orientation. They were mounted and loaded, as described earlier, for property 
determination. The recorded data were: birefringence, isoclinic angle, and strain. The 
photoelastic data were corrected for initial birefringence and plotted. Least-squares 
straight-line fits yielded the values necessary for calculating the material fringe value, fe. 
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Figure 18. ISOCLINIC ANGLE AS A FUNCTION OF 
THE FIBER ORIENTATION FOR UNIAXIAL LOADING 
OF TENSILE BARS FROM MATERIAL 1. 

Figure 17. MATERIAL FRINGE VALUE AS A 
FUNCTION OF THE FIBER ORIENTATION FOR 
UNIAXIAL LOADING OF TENSILE BARS FROM 
MATERIAL 1. The experimental data were compared with 

the results calculated from the finite 
element models (Figures 17 througti 20). 

Overall, the agreement was good and the verification of the proposed stress-optic laws 
seemed to be satisfactory. Material 2 had a lower- initial birefringence and was a little more 
homogeneous than Material 1, so the results from Material 2 should be a l i t t l e  more reliable. 

Plotted test  points are the result of the average of a minimum of four tests; the bars give the 
95% confidence intervals. The two solid curves in Figures 17 through 20 were calculated 
from Equations 97 and 98. One was determined using the finite-element-model calculated 
properties; the other was obtained using the experimentally determined properties, f l ,  f2, 
and f 12. 

satisfactory biaxial tests for plane-stress fields are very difficult to achieve. I t  was, therefore, 
decided to further evaluate the stress-optic relations in an orthotropic plane-stress problem. 
This phase of the study is  presented in a subsequent section (Page 55). 

SHEAR-DIFFERENCE METHOD FOR ORTHOTROPIC PHOTOELASTICITY 

Before a general plane-stress problem can be solved by the use of photoelasticity, there must 
be a method for determining the individual normal-stress components. In isotropic 
photoelasticity, this .is often accomplished by the shear-difference method,(17) which is 
derived from the equilibrium equations. Therefore, it is equally applicable to orthotropic 
problems although the resulting equations in the two are different. Development of the 
equations for orthotropic materials is  presented here. 



t L Finite Element 
Model Properties 

l 0 0 l 1  1 I I I I I '  I 
0 10 20 30 40 50 60 70 80 90 

Fiber Oriontation Angle, 8 (dsg) 

Figure 19. MATERIAL FRINGE VALUE AS A 
FUNCTION OF THE FIBER ORIENTATION FOR 
UNIAXIAL LOADING OF TENSILE BARS FROM 
MATERIAL 2. 

-20 
0 10 20  3 0  4 0  5 0  60 70 8 0  90 

Fiber Orientation Angle, 0 (deg) 

- 

Finite Element 
-Experimental. 

Figure 20. ISOCLINIC ANGLE AS A FUNCTION OF 
THE FIBER ORIENTATION FOR UNIAXIAL LOADING 
OF TENSILE BARS FROM MATERIAL 2. 

Development of Equations 

An x and y coordinate system is chosen 
such that x lies along the desired path of integration. The material fiber direction is  at some 
angle, 8, relative to x. The unknown stress state must satisfy both the stress-optic laws and 
the equilibrium equations. To meet this requirement, the stress-optic laws are rearranged 
and substituted into the equilibrium equations. The resulting equations are numerically 
integrated along the x axis to determine ox. Substitution into the stress-optic laws then gives 
oy and rxy. 

The geometrical arrangement for the path of integration is shown in the following diagram: 

From Equation 47, the normal stress, ox, is: 



Substituting into Equation 48, and solving for r xy  gives: 

Also, from Equation 47, the normal stress, oy, is: 

Substituting into Equation 48, and solving for rXV, gives: 

Taking the partial derivative with respect to x gives: 

Equiiibrium in the y direction requires: 

Taking the partial derivative of Equation 100 with respect to y gives: 

Substituting' Equations 103 and 104 into Equation 105 yields: 



c4 3 a~ = C"c": lC)1 !i sill 2G + cos 2. 

-- ) I 

Equilibrium in .the x direction requires: 

Equation 106 with Equation 107 can be solved for Ex : 
ax 

where: 

sin 2@ C5 
81 = (?- c2 



Using the difference form for numerical integration: 

where: 

I i .denotes the value a t  station i on the x axis, and 

the average of values a t  Stations (i-1) and i and i s  along the U or 

u or L L lines, as shown in the sketch on Page 51. 

After ox is found, rXY may be calculated from Equation 102 and oy may be calculated from 
Equation 101. 

Application Along the Arbitrary Axes 

Application of the shear-difference procedure is  outlined in the following steps. o he basic 
photoelastic constants for the material are determined in the material principal coordinate 
system. The transformation equations derived earlier are applied to the photoelastic 
property tensor to determine the constants (C1 to C6) in the x,y coordinate system. Bire- 
fringence and isoclinic data are collected incrementally along and parallel to the x axis. The 
data are corrected for initial birefringence and then used to compute the ox distribution. 
Finally, the oy and rXy distributions are calculated from the ox distribution. 

Application Along the Principal Material Axes 

If the x and y coordinates are chosen to align with the material principal axes, several 
simplifications can be made. For this case: 



Equation 114 then reduces to the isotropic form of the shear-difference equation. If the x 
axis is also a line of load symmetry, only data along the x axis and one line parallel to x 
(say, u) are required. Symmetry requires that: 

I f  only ttie distributions along the material principal direction are required, regardless of the 
load direction or symmetries, then the converitional isotropic shear-difference form may be 
used. 

APPLICATION OF ORTHOTROPIC PHOTOELASTICITY TO A PLANE-STRESS 
PROBLEM 

Statement of the Problem 

Solution of an orthotropic plane-stress problem may serve both as a demonstration of the 
photoelastic theory and further verification of the theory. There are several considerations 
for selecting the problem to be solved: (1) the problem should have a practical interest and 
should contribute to the general understanding of orthotropic materials; (2) general 
two-dimensional stress states should be involved in the problem; (3) agreement between the 
photoelastic solution and an analytical solution should provide turther verification of the 
developed photoelastic analysis. 

A strip with a central hole under uniaxial loading was the problem selected to be analyzed. 
The presence of a hole in a relatively uniform stress field has historically been and continues 
to be a significant practical problem. Premature failure due to stress concentrations caused 
by holes may even be more critical in the design with orthotropic materials than with 
isotropic materials because of directional strength properties. 

The strips tested were 10 inches long, 1 112 inches wide, and 0.100 inch thick. The hole was 
0.375 inch in diameter, giving a width-to-hole diameter ratio of 4. For this ratio, the 
analytical solution for an infinite-width plate should be a reasonable approximation. Three 
fiber orientations are sufficient for material-properties calibration as well as supplying 
distinctly different stress states. The data for photoelastic and elastic constants were 
collected in relatively undisturbed regions of the strip. Fiber orientations with respect to the 
loading directions of 0 and 90 degrees produce the effect of the hole on the uniform stress 
field when loaded in the material's stiffest and least-stiff directions. Loading a t  a 30-degree 
orientation eliminates the symmetry and provides a test for the shear-difference formulation 
of orthotropic materials. 

Analytical Solution 

The analytical solution may be realized by two methods: One is  a closed-form elasticity 
solution, the other is  a numerical solution. Of course, the closed-form solution is  preferred, 
i f  it is  available. ~ekhn i t sk i i (~ )  ghes the solution for a hole in an infinite orthotropic sheet 



with a uniaxial stress field. Results from this solution are illustrated in Figure 21. The 
equation for the tangential stress around the edge of the hole i s  the only stress-distribution 
equation presented in final form. 
~ o w l a n d ( 1 ~ )  solved the case of an isotropic 
strip of finite width with a hole. This + 
solution gives the effect of finite width for 

. . isotropic materials and thus provides a 
feeling for the effect in orthotropic 
materials. A large amount of numerical data - 
are presented in his paper. Complete field 
equations are not presented explicitly in 
either of the two proposed solutions. Since 
the problem here i s  not modeled precisely 
by either of these solutions, a finite-element + 

(a) Isotropic. 
solution was formulated. 

I. (b) At O Degtar 
T 

The finite-element program used is the sarrie 
as described earlier for an analysis of the 
micromodel for calculation of material 
properties. The program solves either 
axisymmetric or plane-stress problems. A - 
built-in feature of the program allows 
arbitrary selection of the angle of the 
material principal orthotropic axes. The 
computer program will perform the coordi- 

(d) At 90 Degrees. 
nate transformation internally. ( c )  ~t 30 Degrees. 

f i b e r  k e ~ r  6g\9 = - For the symmetric problem, only one - u 
C 

7 - 
C 

- 
quarter of the model would need to be -t 

analyzed.   ow ever, since the intermediate Figure ll. TANGENTIAL STRESS DISTRIBUTION 

fiber-orientat~on angles berweert 0 a11d 90 (b,/e) AROUND A I ~ O L C  IN APJ INFINITE IsoTRnPlr: 
degrees eliminate the material symmetry, OR ORTH*TROPlC SHEET FOR UNIAXIAL LOAD- 

the full strip is  modeled. The same model is 
ING. 

used for all three orientations: 0, 30, and 
90 degrees. I he model grid Is rerifled u t~ l i l  Lhe calculatcd stross values are stahili;lerl, 
especially in the high-stress-gradient region. The final model gr~d IS shown In Figure 22. 

Photoelastic Solution 

The photoelastic solution proceeds in the same manner as for the handling of a conventional 
isotropic material. Some differences that have been noted in the prior text are described. 
The main difference i s  the use of multiple models to analyze the material-orientation 
effects. Of course, the analysis may be carried out for only one model with a given fiber 
orientation, but all the photoelastic constants for the model material must be -found by 
some method. It was decided here to use models of 0, 30, and 90-degree fiber orientation 
and use data collected in regions relatively undisturbed by the hole discontinuity to 
determine the material properties. 



Calibration curves are generated in the same manner as for the 
earlier tensile specimen by incremental loading. Data are 
obtained a t  a centerline location halfway between the hole and 
the grips. In some cases, uniformity o f  the birefringence across 
the strip width was investigated and found to be good. 
Strain-gage rosettes were mounted a t  the symmetrical location 
on the specimen and used to check the state of stress and 
generate data to determine the elastic properties. The material 
properties were calculated from the calibration curves and the 
stress-optic or stress-strain relations. 

The analysis was carried out for Lines a, b, and c in the 
specimen configuration presented in Figure 23.,,Symmetries in 
the 0 and 90degree orientations allow some reduction of the 
data collection. In all cases, a t  least two sets of data were taken 
and the average values were used in the calculation. Data to 
apply the shear-difference method were required along Lines a 
and b. Intervals between points for data collection were, 
typically, 0.010 inch near the hole with an increasing interval 
size away from the hole as the stress gradient decreased. Data 
input to a computerized routine (which accounts for the initial 
birefringence) produced the stress distribution. Data were 
taken along Line c a t  10-degree angular intervals. Data were 
corrected for initial birefringence; arid, along with the 
transformed material fringe values, were used to calculate the 
tangential stress directly. 

Comparison of Solutions 

The photoelastic solutions were cotripared witti the analytical 
solutions (Figures 24 through 26). Normalized stress 
distribution is  shown for each specimen fiber orientation in 
each figure. Figures 24 and 25 compare finite-element and 
photoelastic-normalized stress distributions along Lines a and 
b, respective1 y; Figure 26 presents the closcd-form solution(g) 
along with finite element and photoelastic solutions along the 
hole boundary. I t  can be seen that the general agreement is  
good. The few significant differences are likely caused by 
material irregularities. 

The vertical stress component in Figure 24 shows the 
maximum stress concentration a t  the hole boundary. The 
decay rate of this stress is  seen to be different between fiber 
orientations. In all three specimens, the vertical stress has 
decayed to its nominal value a t  a distance of about three times 

Figure 22. FINITE-ELEMENT 
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The horizontal stress component along the vertical centerline in Figure 25 indicates the peak 
compressive stress on the hole boundary. The decay to nominal stress on this axis occurs a t  
a distance about two times the hole radius from the center. 

The tangential stress around the hole boundary in Figure 26 compares three solutions. Since 
the stresses decay away from the hole to nominal values before reaching the specimen edge, 
agreement between the elasticity and finite-element solutions is expected to be good. The 
major-differences occur at the peak values. Photoelastic solutions for the most part are in 
closer agreement with the finite-element results. These comparisons substantially verify the 
orthotropic photoelasticity formulation. 



CONCLUSIONS 

The following conclusions can be stated as a result of this study: 

1. The governing equations for orthotropic photoelasticity are established by utilizing the 
tensorial nature of stress, strain, and birefringence in the transparent composite material. 

2. Condensation of the governing equations yields relations applicable to plane-stress 
problems for orthotropic materials. 

3. The experimental data from tests with. special biaxial stress conditions in the off-axis 
tensile specimen and the photoelastic solution of a general plane-stress problem verify 
the theoretical formulation. 

4. The shear-difference method is  reformulated to be applied in orthotropic photoelasticity 
to find separate stress components. 

5. A composite material of fiberglass and epoxy can be manufactured with sufficient 
transparency and uniformity to use as a photoelastic model. 

6. The photoelastic properties (also the elastic properties) can be calculated by use of a 
finite-element model of the material micro structure. 

7. The other theories proposed to date in the literature are mostly correct under the special 
conditions for which they apply. 
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APPENDIX A 

FINITE ELEMENT COMPUTER PROGRAM FOR NORMAL STRESS PROPERTIES 

IMPL IC I T  REAL*8  (A-HvO-ZI  
C 
C 

COMMON NUMNPINUMELINUMMATINUMPCIACELZ I~NGFQI~~AND*MTYPE*TEMP~Q~ 
1 H E D ( 1 2 1 r E ( 8 ~ 8 r 1 2 ) ~ R O ~ 1 2 ) ~ X X N N ( 1 2 ~ ~ R ( 9 O O ) ~ Z ~ 9 O O I ~ U R ( 9 O O ~ ~ U Z ( 9 O O ~ ~  
2 CODE(9001  ~ T ( 9 0 0 l ~ I B C ~ 2 0 0 ~ ~ J B C ( 2 0 0 1 r P R ( 2 0 O ~ ~ A N G L E ~ 4 ~ ~ N P  

COMMON /ARG/ R R R ( S ) ~ Z Z Z ( ~ ~ ~ S ( ~ O I ~ O ) ~ P ~ ~ O ~ . T T ( ~ ) ~ L H ( ~ )  r D D ( 3 * 3 ) *  
1 H H ( 6 r  L O ) * P R ( G l r Z Z ( 4 I t C ( 4 r 4 )  t H ( 6 ~ 1 O ~ ~ D ( 6 . 6 ~ r F ( 6 ~ l O ) r T P ~ 6 ~ ~ X I ( l O ~  
2 *EE(7)rIX(80015)rEPS(8001 

C HALF  BAND WIDTH INCREASED TO 3 5 9  U IDTHB = 3 5  
C COMMON /BANARG/ MBANINUMBLK r B (  4*UIDTHB).A(4*U I O T H B ~ 2 * U I D T H B ~  

COMMON /BANARG/ MBANrNUMBLKqB1 140lr A t  140170) 
COMMON /PLANE/ NPP 
COMMON /STRES/  S I G T ( 5 ) c  S I G R ( 5 ) r  S I G Z ( 5 ) r  URM4r URM5v PNURZ* 

IPNUTR*  PNUTZ*  ERI ELI NNN 
D IMENSION U Z P ( 9 0 0 )  r U R P ( 9 0 0 1  
00 5 I = 1.900 

5 U Z P ( 1 )  = 0.0 
REAL*4  CLASS (3) 
REAL*4 BUFF( 5 0 0 0 )  

4 0  CALL  ZERO 
LENGTH=5000 
CALL  PLOTS ( BUFFILENGTH) 

C 
C*********************************************#************************  
C R E 4 0  4NO P R I N T  OF CONTROL INFORMATION AND M A T E R I A L  PROPERTIES 
c****************+************************************************** 

5 0  REAO ( 5 1  1 0 0 0 1 E N D = 3 0 5 5 )  (HED(  1 )  r I = l r l O ) r  
1 NUMNP INUMEL INUMMATINUMPC*ACELZ * ANGFQ* 
2 QINP INPPI ICHECKIMSHPLT 

I F  t NP.EQ.0 1 NP = 1 
U R I T E  ( 6 r 2 0 0 0 1  (HED( 1 l r I ' l r l O ) r  

1 NUMNP INUMEL NUMMAT* NUMPC* ACELZ ANGFQv 
2 QINPI ICHECKI MSHPLT 

c 
I F  [ N P P )  5 4 . 5 6 9 5 4  

5 4  W R I T E ( 6 r 2 0 0 8 )  
5 6  DO 5 9  M=1, NUMMAT 

READ ( 59  1001 ) MTYPEINUMTCIRO(MTYPE )rXXNN(MTYPE 1 
I F (  NUMTC.EQ.0 1 NUMTC = 1 
W R I T E ( 6 r 2 0 1 1 )  MTYPEqNUMTC*RO(HTYPE)rXXNN(MTYPE)  
READ ( 5 r 1 0 0 5 )  ( ~ E ( ~ ~ J I M T Y P E ) ~ J ~ ~ ~ ~ ) * I = I . N U M T ~ )  
W R I T E ( 6 r 2 0 1 0 )  ( ( E ( I * J * M T Y P E )  r J = l * 8 J r I = l r N U M T C )  
DO 5 8  I=NUMTC*B 

59 CONTINUE 
C 
c*********************************************************************** 
C REAO AND P R I N T  OF NODAL P O I N T  DATA 
C**********************************************#********#************* , 

U R I T E ( 6 r 2 0 0 4 )  
L=O 

60 READ ( 5 ~ 1 0 0 2 )  NrCODE(N) rR(N)vZ(N) .UR(Nl rUZ(N l  r T ( N )  
U R P ( N )  = U R ( N )  
U Z P ( N )  = U Z ( N )  
FA = 1 .180 
RAD = DSQRT(R(N) * *2  + Z ( N ) * * 2 )  
I F t R A D  .GT. 0.810) GO TO 6 2  



R(N)  = R(WI*FA 
Z ( N )  = Z I N ) * F A  
GO TO 6 4  

6 2  I F ( R ( N )  .EQ. 0.1 TH = 1.57079 
I F ( R ( N I  .NE. 0.) TH = D A T A N ( Z ( N ) / R f N ) )  
I F ( T H  *LEO 45* /57 .29581  RP l s /DCOS(THI  
I F t T H  .GT. 45./57.2958) RP l . / D S I N ( T H I  
F P  = ( R P  - FA*O.8OO)/(RP - 0.800) 
RAD = RP - FP* (RP - RAD) 
R ( N I  = RAD*DCOS(TH) 
Z ( N 1  = RLD*DSIN(TH) 

6 4  CONTINUE 
R ( N )  = R ( N )  + 1000. 
UR(N)  = UR(N)  *0.1 
U Z I N )  = U Z ( N I  *0.0 
N L = L + l  
I F (  N.EQ.1 GO TO 7 0  
ZX=N-L 
DR= (R(  N I - R ( L  ) / Z X  
D Z s ( L ( ? d I - Z ( L  ) ) / Z X  
D T = ( T ( N ) - T ( L ) I / Z X  

I U  L = L + L  
I F ( N - L )  1 0 0 * 9 0 ~ 8 O  

8 0  CODE ( L  )=O.O . 
R ( L l = R ( L - 1 ) + O R  
Z ( L ) = Z ( L - l ) + O Z  
UR(L)=O.O 
U Z (  L)=O.O 
T ( L  ) = T ( L - l ) + D T  

I F (  NUMNP-N 1 1 O O t l l O t  6 0  
1 0 0  W R I T E ( 6 r 2 0 0 9 )  N  

CALL E X I T  
1 1 0  CONTINUE 

C***********************************************************************  
c READ AND PRINT OF ELEMENT PROPERTIES 
c*********** ............................................................. 

W R I T E ( 6 r 2 0 0 1 )  
N=O 

1 3 0  READ(591003)  M I ( I X ( M I I I ~ I P ~ ~  5 )  
14n NnN+I  

IF (M-N)  1709 1 7 0 9 1 5 0  
150 I X ( N 9 1 1 = I X ( N - l * 1 ) + 1  

I X ( N T ~ ~ = I X ( N - ~ ~ ~ ) + ~  
I X ( N * 3 ) = I X i N - l r 3 ) + 1  
1 X ( N * 4 I ~ I X ( N - l r 4 1 + 1  
I X I N * 5 1 = I X ( N - l r 5 )  

1 7 0  W R I T E ( 6 r 2 0 0 3 1  N e t  I X ( N 1 1 ) r I ~ l r 5 1  
I F ( ~ - N ) 1 8 O t 1 8 0 ~ 1 4 0  

1 8 0  I F  ( NUMEL - N  I 1 8 9 r 1 9 0 r 1 3 0  
1 8 9  WRITE ( 6 9 2 0 1 2  ) N  

CALL E X I T  
1 9 0  CONTINUE ......................................................................... 

C READ AN0 PRINT OF PRESSURE BOUNDARY CONDITIONS 
c*********************************************************************** 

I F (  N U M P C 1 2 9 0 ~ 3 1 0 9 2 9 0  
2 9 0  WRITE( 6t 2005  1  

00 3 0 0  L=l rNUMPC 
READ ( 5 ~ 1 0 0 4 )  I B C ( L I * J B C ( L l r P R ( L )  

3 0 0  W R I T E ( 6 r 2 0 0 7 )  I B C ( L ) r J B C ( L ) r P R ( L )  
310 CONTINUE 

L 
C********************************* ...................................... 
C PLOT A  MESH PLOT OF THE GEOMETRY* I F  REQUESTED. 
c*********************************************************************** 
L 
C  ( N l r N 2 )  ARE F I R S T  AND LAST ELEMENTS NUMBERS TO BE PLOTTED 
C SCALE I S  FACTOR TO MAKE VERTICAL DIMENSION OLE- 10.0 INCHES 



C (XDIYDI ARE C30RDINATES OF O R I G I N  ON PAPER (YO .GE. 0.5 1 
C CLASS CONTAINS 0 - 1 2  HOLLERITH  CHARACTERS.. WRITTEN ON L E F T  EDGE. 

I F  (MSHPLT.LE.01 GO TO 3 4 6  
DO 3 4 5  M=l *MSHPLT 
READ ( 5 9  1 0 0 6 1  K l r N 2 r  SCALEIKDIYDICLISS 
CALL GRDPLT ( N U M N P I N U M E L I N ~ ~ N ~ ~ S C A L E  ~XD*VD*HED,CLASS*  I X,R*Z) 

3 4 5  CONTINUE 
3 4 6  I F  (ICHECK.NE.01 GO TO 5 0  

c 
c*********************************************************************** 
C DETERMINE BAND WIDTH 
c*********************************************************************** 

.I=O 
DO 3 4 0  h=L*NUMEL 
DO 3 4 0  I = l r 4  
DO 3 2 5  L = l r 4  
K K = I A B S ( I X ( N I I  ) - I X ( N I L ) )  
I F (  K K - J ) 3 2 5 *  325 ,320  

3 2 0  J=KK 
3 2 5  CONTINUE 
3 4 0  CONTINUE 

MBAND=Z*J+2 
MBAN = MBAND 

C***************************************U******************************  
C SOLVE NON-L INE IR  STRUCTURE BY SUCCESSIVE APPROXIMATIONS 
c*********************************************************************** 

DO 3 5 0  N = l r N U M E L  
3 5 0  EPS(N)=O.O 

C 
DO 10 I = 1.5 
S I G T ( I 1  = 3.0 
S I G R ( 1 )  = 0.0 

10 S I G Z ( 1 I  = 0.0 
DO 5 0 0  NNN=l,NP 
1FINNN.EQ. 1 1  GO TO 4 0 0  
I F ( N N N  .EQ- 2 1 6 0  TO 3 9 0  
I F ( N N N  .EQ. 4 1 6 0  TO 3 7 0  
I F t N N N  .EQo 5)GO TO 3 8 0  
PNUTR = ( S I G T (  1 1 * S I G Z ( 2 I  - S X G T ( 2 1 * S I G Z ( 1 1  I/( S I G R ( 1 1 * S I G Z ( 2 1  

1- S I G R ( 2 1 * S I G Z I 1 ) 1  
PNUTZ = f S I G T ( I ) * S I G R f Z J  - SIGT(ZI*SIGR~111/(SIGL~11*SIGR(Z~ 

1- S I G Z ( Z ) * S I G R ( 1 1 1  
00 3 6 0  N l r N U M N P  
UR( N )  = -URP(NI*PNUTR*O. l  
I F ( C O D E ( N 1  .EQ. 1.0 .OR. CODEtN)  .EQ. 3.0) UR(N)  a UR(N1  + 10.8 
UL(  N 1  = -UZP ( N  )*PNIJTZ*O.I 

3 6 0  CONTINUE 
GO TO 4 0 0  

3 7 0  DO 3 7 5  N = i.NUMNP 
U R ( N )  = URP(N) *O . l  
I F ( C O D E ( N I  .EQ. 1.0 .OR. C O D E l N )  .EQ. 3.01 U R ( N I  = UR(N)  - URM4 
U Z ( N )  = -UZP(NI*PNURZ*O. l  

3 7 5  CONTINUE 
GO TO 4 0 0  

3 8 0  CONTINUE 
DO 3 8 5  N = l t N U M N P  
U R ( N I  = -URP(N1*PNURZ*O.l*EZ/ER 
U Z ( N )  = UZP(N)*O. l  
I F ( C O D E ( N I  .EQ. 1.0 *OR. CODE(N1 .EQ. 3 - 0 1  U R ( N 1  a UR( N) - URH5 

3 8 5  CONTINUE 
GO TO 4 0 0  

3 9 0  DO 3 9 5  N = l r N U H N P  
U R ( N 1  = URP(NI*O.O 
U Z ( N 1  UZP(NJ*O. l  

3 9 5  CONTINUE 
4 0 0  CONTINUE 

L 
C FORM ST IFFNESS MATRIX 
C 

CALL  S T I F F  



C 
C SOLVE FOR 3 1  SPLACEMENTS 
c 

CALL BANSOL 
C 

WRITE ( 6 9 2 0 0 6 )  ( N * B ( 2 * N - l 1  r B ( 2 * N ) r N ~ l v N u M N p )  
C 
C COMPUTE STRESSES 
C 

CALL  STRESS 
C 

5 0 0  CONTINUE 
c *  **.***** ................................................................. 

GO TO 4 0  
c************************************************************************* 

1 0 0 0  FORMAT( 1 0 A 8 / 4 I  5 * 3 F 1 0 0 2 ~ 4 1 5 )  
1 0 0 1  FORMAT ( 2 1  59 2F 10.01 
1 0 0 2  FORMAT ( I S r F 5 . 0 * 5 F 1 0 . 0 1  
1 0 0 3  FORMAT 1 6 1 5 )  
1 0 0 4  FORMAT ( 2 1 5 * F 1 0 - 0 1  
1 0 0 5  FORMAT (8F10.0 1 
1 0 0 6  FORMAT(215r 3F10.0* 3A4)  
ZOO0 FORMAT ( 1 H 1  10A8 /  

1 30HO NUMBER OF NODAL POINTS----- I 3  / 
2 3 0 H 0  NUMBER OF ELEMENTS---------- I 3  / 
3 30HO NUMBER O F  D IFF .  MATERIALS--- 13 / 
4 30HO NUCBER OF PRESSURE CARDS---- 1 3  / 
5 30HO A X I A L  ACCELERATION--------- E 1 2 - 4 /  
6 3 0 H 0  ANGULAR VELOCITY-----------. E12.4/ 
7 30HO REFERENCE TEMPERATURE------- E12.4/ . 
8 3 0 H 0  NUMBER OF APPROXIMATIONS---- I 3 /  
9 ' 0  DATA CHECK ONLY (O=NO)------' v T 3 1  r I 3 /  
A *O NUMBER OF PLOTS-------------'* T319 1 3 )  

2 0 0 1  FORMAT (49HlELEMENT NO- I J K L MATERIAL 1 
2 0 0 2  FORMAT ( 1129F12 .2*2F  12.3r2E24.7rF12.3) 
2 0 0 3  FORMAT (11 1 3 r 4 1 6 r l I 1 2 1  
2 0 0 4  FORMAT ( 109HlNODAL POINT TYPE R-ORDINATE 2-ORDINATE R LO 

1AD OR DISPLACEMENT Z LOAD OR DISPLACEMENT TEMPERATURE I 
2 0 0 5  FORMAT ( 29HOPRESSURE BOUNDARY CONDITIONS/ 24H I J PRESS 

lURE 
2 0 0 6  FORMIT (121ilN.P. NUMBER 18X 2HUR 18X ZHUZ / ( 1 1 1 2 r 2 F 2 0 . 7 ) I  
2 0 0 7  FORMAT ( 2 1 5 r F 1 2 . 3 )  
2 0 0 8  FORMAT (23YOPLANE STRESS STRUCTURE ) 
2 0 0 9  FORMAT (26HONOCAL POINT CARD ERROR N= 1 5 )  
2 0 1 0  FORMAT (15HO TEMPERATURE 1 0 X  SHE(RZ) 9X 6HNU( RZ) 11X 4HE(T)  

1 1 0 X  5HNUtT)  6 X  9HALPHA(RZ) 7 X  BHALPHA(T) 15H YIELD STRESS / 
2 ( F 1 5 . 2 r 7 E l 5 . 5 ) )  

2 0 1 1  FORMAT (17i lOMATERIAL NUMBERS 139 30H1 NUMBER OF TEMPERATURE CARDS= 
1 1 3 9  15He qASS DENSITY= E 1 2 - 4   HI HI MODULUS RATIOS E12.4 

2 0 1 2  FORMAT ( 2lHOELEMENT ERROR FOR No 9 I 5  ) 
C 
L 

3 0 5 5  CONTINUE 
END 

SUBROUTINE S T I F F  
I M P L I C I T  REAL*8 (A-HwO-Z) 

C 
COMMON N U M N P I N U H E L . N U H M A T I N U M P C ~ A C E L Z ~ A N G F Q I ~ ~ A N D ~ M T Y P E ~ T E H P ~ Q ~  

1 H E D ( l 2 t * E ( 8 * 8 * 1 2 ) r R O (  1 2 1 r X K N N t 1 2 1  ~ R ~ 9 0 0 I ~ Z ~ 9 0 0 ~ ~ U R ~ 9 0 0 ~ ~ U Z ~ 9 0 0 ~ ~  
2 COOE(900) r T ( 9 0 0 1  r I B C ( 2 0 0 ) ~ J B C ( 2 0 0 ~ ~ P R ( 2 0 O l  eANGLE(41vNP 

COMMON /ARG/ RRR(5lrZZZ(5)rS(lO~lO)~P(lO)~TT(4)~LM(4)~DD(3~3)~ 
1 HH(6rlOIrRR(4)rZZ(4)*C(4*41 * H ( 6 * 1 0 1  ~0(6r6)~F(6~10)~TP(6)~XI(lO) 
2 r E E ( 7 ) r I X ( B O O r 5 ) r E P S ( 8 0 0 )  

COMMON /BANARC/ M B A N * N U M B L K I B ( ~ ~ O ) * A ( ~ ~ O V ~ O I  
COMMON /PLANE/ NPP 

C 
c*********************************************************************** 



C I N I T I A L I Z A T I O N  
C*********************************************************************** 

REWIND 2 
NB = 35. 
ND=2*NB 
ND2=2*ND 
STOP=O.O 
NUMBLK=O 

L 

DO 5 0  N z l r N D 2  
B ( N  )=Om9 
DO 5 0  M= l *ND 

5 0  A(N.MI=O.O 
C***********************************************************************  
C FORM STIFFNESS MATRIX I N  BLOCKS 
c*********************************************************************** 

6 0  NUMBLK=NUMBLK+l 
NH=NB*(NUMCLK+l) 
NM=NH-NB 
NL=NM-NB+1 
K S H I  FT=2*NL-2 

C 
DO 2 1 0  Y=l rNUMEL 

C 
I F (  I X ( N v 5 I  1 2 1 0 ~ 2 1 0 . 6 5  

6 5  DO 8 0  I = l r 4  
I F (  I X ( N r 1 ) - N L I  8 0 r 7 0 . 7 0  

7 0  I F (  I X ( N r 1 ) - N M )  9 0 r 9 0 r 8 0  
8 0  CONTINUE 

GO TC 2 1 0  
C 

9 0  CALL QUAD(NvV0L) 

C 
C ' ADD ELEYENT STIFFNESS TO TOTAL STIFFNESS 
C 

1 6 5  DO 1 6 6  I=1 .4  
1 6 6  LM( I ) = 2 * I X ( N .  I )-2 

C 
DO 2 0 0  1 ~ 1 . 4  
DO 2 0 0  K = l r 2  
I I = L M (  I l+K-KSHIFT 
KK=2* I -2+K 
B ( I I I = B (  I 1  I + P ( K K )  
DO 2 0 0  J x l . 4  
DO 2 0 0  L= l .2  
JJ=LM(  J ) + L - I  I+1-KSHI  FT 
LL=2*J-2+L 
I F (  JJI  2 0 0 r 2 0 0 r 1 7 5  

1 7 5  I F I N D - J J I  1 8 0 1  1 9 5 9 1 9 5  
1 8 0  W R I T E ( 6 r 2 0 0 4 )  N 

STOP=1.0 
GO TO 2 1 0  

1 9 5  A t 1  I r J J ) = A ( I  I r J J ) + S I K K I L L )  
2 0 0  CONTINUE 



210 C O N T I N U E  
C 
C ADD CONCENTRATED FORCES W I T H I N  BLOCK 
C 

L 
C BOUNDARY C G N C I T  IONS 
C 
C 1. PRESSURE E.C. 
C 

I F (  N U M P t )  2 6 0 r 3 1 0 9 2 6 0  
2 6 0  DO 3 0 0  L = l r N U M P C  

I = I B C ( L )  
J = J B C ( L )  
P P = P R ( L ) / 6 .  
D Z = ( Z ( I ) - Z ( J ) ) * P P  
b R = ( R ( J ) - R ( I ) ) * P P  
R X = 2 . 0 * R ( I  )+R( J) 
ZX=R (I )+2.0*R( J I  
I F (  N P P )  2 6 2 9  2 6 4 9 2 6 2  

2 6 2  RXe3.0 
Z X x 3  -0 

264 I I = Z * I - X S H I F T  
J J = 2 * J - % S H I F T  
I F (  1 1 )  2 8 0 9 2 8 0 9 2 6 5  

2 6 5  I F (  I I-ND ) 2 7 0 9 2 7 0 9 2 8 0  
2 7 0  S I N A = 0 , 3  

COSA=1.3 
I F ( C O D E (  I) 1 2 7 1 9 2 7 2 r 2 7 2  

271 S I N A =  D S I N ( C C D E (  I ) / 5 7 . 2 9 5 7 7 9 )  
COSA= D C C S ( C O O E ( I l / 5 7 . 2 9 5 7 7 9 )  

272 8 (  1 1 - 1  l = B (  11-1 )+RX*(COSA*DZ+SINA*DR) 
B (  I I ) = E l  I 1  )-RX*(SINA*OZ-COSA*DR) 

2 8 0  I F (  J J ) 3 0 0 ~ 3 0 0 9 2 8 5  
2 8 5  I F (  J J - N D ) 2 9 0 * 2 9 0 9 3 0 0  
2 9 0  SINA=O.O 

C U S A = I  .U 
I F ( C O D E ( J )  ) 2 9 1 r 2 9 2 9 2 9 2  

2 9 1  S I N A =  D S I N ( C O D E ( J ) / 5 7 - 2 9 5 7 7 9 )  
COSA= D 5 C S ( C O D E ( J l / 5 7 . 2 9 5 7 7 9 )  

2 9 2  B (  J J - l I = B (  J J - l ) + Z X * ( C O S A * D Z + S I N A * D R )  
B ( J  J ) = R (  J J I - Z X * ( S I N A * D Z - C O S A * D R )  

' 300 CCJNT I N U E  
b 

C 2. DISPLACEMENT B.C. 
C 

3 1 0  00 4 0 0  M=NLwNH 
I F (  M-NUMNP) 3 1 5 9 3 1 5 9 4 0 0  

3 1 5  U=VR(M)  
N=2*M-1-KSHI F T  
I F (  CODE( M) 1 3 9 0 t 4 0 0 9 3 1 6  

316 I F ( C O D E ( H ) - l . l ~ 1 7 t 3 7 0 . 3 1 7  
317 IF(CODE(M~-2.)318r390.3L8 
318 I F ( C O D E (  C)-3.1 3 9 0 , 3 8 0 9 3 9 0  
370 C A L L  MODIFY(  A9 0 9 N D Z r H B A N D 9 N * U )  

GO TO 4 0 0  
3 8 0  C A L L  M C D I F Y (  A9 B I N D ~ ~ H B A N D I N I U )  
390 U = U Z t M I  

N=N+J 
C A L L  M O D I F Y ( A 9 B v N D 2 9 M B A N D ~ N ~ U )  

4 0 0  CONTINUE 
C 
C W R I T E  B i C C K  OF EQUATIONS ON TAPE AND S H I F T  UP LOWER BLCCK 
C 



DO 4 2 0  N = l  rND 
K=N+ND 
B ( N I = B ( K )  
B ( K l = O e 9  
DO 4 2 0  M = l r N D  
A ( N r M ) = A ( K r M l  

4 2 0  A(KrMI=O.O 
C 
C CHECK F3R LAST  BLOCK 
c 

I F (  NM-NUMNPI 6 0 r 4 8 0 r 4 8 0  
4 8 0  CONTINUE 

........................................................................ 
I F (  S T O P i 4 9 0 r  5 0 0 ~ 4 9 0  

4 9 0  C A L L  E X I T  ' 

5 0 0  RETURN 
C 

2 0 0 3  FORMAT (26HONEGATIVE AREA ELEMENT NO. I 4 1  
2 0 0 4  FORMAT ; 29HOBAND WIDTH EXCEEDS ALLOWABLE I 4 1  

END 

SUBROUTINE Q U A D ( N r V 0 L )  
C 

I M P L I C I T  REAL*B (A-HrO-Z)  
COMMON NUMNP r NUMELr NUMMATr NUMPCr ACELZ r PNGFQrHBANDr HTYPEvTEMPv QV 

1 H E D ( 1 2 1  v E ( ~ ~ ~ ~ ~ ~ I ~ R O ( I ~ I ~ X X N N ( ~ ~ ) ~ R ( ~ ~ ~ I V Z ~ ~ O O I  ~ U R ( 9 0 0 I t U Z ( 9 0 0 t v  
2 CODE49001  r T ( 9 0 0 l  t I B C ( 2 0 0 I t  J B C t 2 O O ) t P R ( 2 0 O I  g A N G L E ( 4 l r N P  

COMMON /ARG/ R R R ( ~ I ~ Z Z Z ( ~ I V S ( ~ O V ~ O ) ~ P ( ~ O ) ~ T T ( ~ ) ~ L ~ ( ~ ~ V D D ~ ~ V ~ I ~  
1 H H ( 6 r  L O l r R R ( 4 ) t Z Z ( 4 ) r C [ 4 ~ 4 1  * H ( 6 t l O I  ~ O ( ~ ~ ~ ) V F ( ~ ~ ~ O I ~ T P ( ~ I ~ X I ( ~ O I  
2 r E E ( 7 ) r  I X ( B O O r S ) r E P S ( 8 0 0 )  

COMMON /BANARG/ WD*NUMBLK,B( 1 4 0 1  r A ( l 4 0 t 7 O I  
COMMON /PLANE/  NPP 
COMMON /AREAS/ AREA( 8 0 0 )  

C 
9 0  I = I X ( N r l )  

J=-IX(N.Z) 
K r I X ( N t 3 I  
L = I X ( N r 4 l  
M T V P E = I X ( N t S I  
I X ( N r 5 l a - I X ( N r 5 )  

C 
C FORM STRESS-STRAIN R E L A T I O N S H I P  
c 

T E M P = ( T ( I I + T ( J ) + T ( K ) + T ( L ) I / 4 . 0  , 

DO 103 MMm2.8 
M = MM 
I F (  E (M , l rMTYPE l -TEMP)  103.104.104 

1 0 3  CONTINUE 
1 0 4  RATIO=O.O 

D E N = E ( R r l r M T V P E l - E ( M - 1 s l r M T Y P E I  
I F ( D E N 1 7 0 r 7 1 r 7 0  

7 0  R A T I O = (  TEMP-€( M - l r  IV MTYPEI I I D E N  
7 1  DO 1 0 5  K K = l r 7  

1 0 5  E E ( K K l = E ( M - L r K K + l ~ M T Y P E 1 + R A T I O * ( E ( M ~ K K + l t M T V P E  1 - E ( M - l v K K + l t M T Y P E I  I 
TEMP=TEMP-Q 

C 
C 

E P S R = E E ( 7 l / E E (  1) 
I F (  EPSR-EPS( N I  I 1 0 6 9  l O E r  1 0 8  

1 0 6  R A T I O = ( E E ( 7 ) / ( E P S ( N I * E E ~ l l l ~ * ~ l ~ O - X X N N ( M T Y P E I ~ + X X N N ~ M T V P E ~  
EE(  1 I = E E (  l ) * R A T I O  
E E I 3 ) = E E ( 3 l * R A T I O  

108 CONTINUE 
C. 

I F ( N P P I 8 4 r 8 6 r 8 4  
C CHECK THERMAL SECTION FOR PLANE STRE.SS CASE 

8 4  XX=EE( 1 I / E E (  31 



COMM=EE( 1) /( X X - E E ( 2 1 * * 2 1  
C l l r  l )=COMM*XX 
C (  l r 2 ) = C O M N * E E ( 2 1  
C ( l r 3 1 = 0 . 0  
C ( 2 * 1 1 = C ( l r 2 1  
C ( 2 * 2 1 = C O M M  
C 1 2 1 3 1 = 0 . 0  
C ( 3 r  l)=0.0 
C ( 3 1 2 ) z O . O  
C ( 3 r 3 1 = 0 . 0  
C ( 4 1 4 1 = E E ( 4 1  
60 T O  88 

C  
86 C ( l r l 1 = 1 . O / E E ( l )  

C ( l r 2 1 = - E E ( Z I / E E ( 1 1  
C I l r 3 ) = - E E ( 4 1 / E E ( 3 1  
C ( Z * l ) = C ( L . 2 1  
C ( 2 r 2 1 = C ( l r l I  
C ( 2 1 3 ) = C ( 1 1 3 )  
C ( 3 r l l = C ( 1 , 3 !  
C i 3 . 2 1 = ~ ( 2 * 3 )  
C ( 3 i 3 1 = 1 e O / E E ( 3 )  
C A L L  S Y M I N V ( C I ~ ~  
C ( 4 r 4 l = E E (  1 ) / (2 .0+2 .0*EE(2 l l  

C  
88 DO 110 H z 1 1 3  

110 TT(MI=((C(Mil1+C(Mr2ll*EE(5)+C(Mr31*EE(6!I*fEY..' 
C  
C  FORM QUACR I L b T E R A L  S T I F F N E S S  M A T R I X  
C 

R R R ( S I = ( R (  1 1 + R ( J 1 + R ( K ) + R ( L 1 1 / 4 0 0  
2 2 2 ( 5 ) = ( Z (  1 1 + Z ( J ) * Z ( K l + Z ( L 1 ) / 4 * 0  
DO 94 M = 1 * 4  
M M = I X ( N r P )  
I F (  N P P 1 9 3 r 8 9 r 9 3  

8 9  I F ( R ( M M 1 1 9 3 r 9 1 1 9 3  
91 R ( M M  I = . O l * R R R ( S I  

I ' F ( C O D E ( H M ) 1 9 3 i 9 2 r 9 3  
9 2  C O D E ( M M l = l . O  
93 R R R ( M l = R ( M W B  
94 Z Z Z ( M ) = Z ( M P 1  . 

C 
DO 1 0 0  I I = l r  1 0  
P ( I  I J=O.O 
DO 9 5  J J s l r 6  

9 5  HH( JJr I 1  )=O.O 
DO 1 0 0  JJ=l*IO' 

1 0 0  S ( 1  I r J J ) = O . O  
DO 119 I I = l r 4  
J J = I X ( N r 1 1 )  

119 A N G L E ( I I ) , = C O O E ( J J 1 / 5 7 . 3  
C 

I F (  K - L ) 1 2 5 r 1 2 0 * 1 2 5  
120 C A L L  T R I S T F t  l t 2 r 3 1  . 

R R R ( 5 l = ( R R R (  l ) + R R R ( 2 ) + R R R I 3 1 1 / 3 * 0  
2 2 2  ( 5 1 = (  Z Z Z (  1 1 + Z Z Z ( 2 . ) + Z Z Z (  3 W 3 . 0  
V O L = X I  (11 
GO TO 1 3 0  

1 2 5  VOL=O.O 
C A L L  T R I S T F ( 4 r l r S )  
V O L = V O L + X I  (1 1  
C A L L  T R I S T F (  l r 2 r S I  
V O L = V O L + X I ( 1 )  
C A L L  T R I S T F t  2 1 3 r 5 )  
V O L = V O L + X I  ( 1 
C A L L  T R I S T F ( 3 r 4 r S )  
V O L = V O L + X I  (1) 
A R E A ( N 1  = VOL 
I F ( N P P  oEO. 0 1  A R E A ( N 1  A R E A ( N B t R R R ( 5 )  

C 



DO 140 IIllr6 
DO 140 JJnlrlO 

140 HH( I IrJJ laHH( I IrJJ)/4*0 
C 

130 RETURN 
L 

END 

SUBROUTINE TRISTF(1IrJJvKK) 
C 

IMPLICIT REAL*8 (A-HrO-2) 
COMMON NUMNPINUVELrNUMHATrNUHPCIACELZtANGFQtneAND~MTYPErTEMPrQr 
1 HED(12) rE(818r12)rRO( 12)9XXNN(121 rR(900)1Z(900) rUR(900) rUZ(900)r 
2 CODE(9001~T(900)~IBC(200)~ J B C ( 2 0 O l r P R ( 2 O O ) r A N G L E ( 4 ) r N P  
COMMON /ARG/ R R R ( 5 ) r Z Z Z ( 5 ~ ~ S ( 1 O ~ l O ~ ~ P ( l O ~ r T T ( 4 ~ r L H ( 4 ) ~ D D ( 3 ~ 3 ~ ~  
1 ~~(6r1011RR(4)rZZ(4)rC(4r*)rH~6~1O~~D(6r6)~F(6~lO)rTP(6~rXI(lO~ 
2 rEE(7),IX(800r5)rEPS(800) 
CnMMCN /PLANE/ NPP 

C 
C 1. INITIALIZATION 
C 

LH( 1)=II 
LM( 21=JJ 
LM( 3)=KK 

C 
RR( l)=RRR( 11 1 
RR(2)=RRR( JJ) 
RR131=RRR(KK 1 
RR(4)=RRR( 11) 
ZZ( l)=ZLZ( I1 1 
ZZ( 2)=ZZZ( JJ 
ZZ(31=ZZZ(KK) 
ZZ(4)=ZLZ( I 1  I 

C 
85 DO 100 Is196 

DO 9 0  J=l r 10 
F( IIJ)=O.O 

9 0  H( I r J15O.O 
DO 100 Jslr6 

100 D(IrJ)=O.O 
C 
C 3. FORM INTEGRAL(G)T*(C)*(G) 
C 

CALL INTER(X1rRRrZZI 
C 

D(2*6)=XI( ll*(C(lr2)+C(2~3I) 
D(3r!i)=XI( l)*C(4r4) 
D(5r5)=X1( 11*C(4r41 
D(6r6)=XI( 1)*C(212) 
IF(NPP)1041J06r104 

104 D(2rZ)=XI( l)*C(lrl) 
D(3r3)~X111)*C(4r4) 
GO TO 108 

106 D(lr ll=XI( 31*C(3r3) 
D(lr2)=XI(2)*(G(lr31*C(3r3)) 
D(1131=XI(51*C(3r31 
D(lrb)=XI(Z)*C(2r31 
~(2r2)~~1(1)*(C(lrl)+2*0*t(lr3)+C(3r3)) 
D(2r3)aXI(4)*(C(lr3)+C(3*3) 1 
D(3r3)=XI(6)*C(3r3)+XI(l)*C(4r4) 
D(3rb)=XI(4)*C(2r31 

C 
108 00 110 11196 

DO 110 JaI 16 



110 O ( J r  I I = O ( I r J )  
C 
C 4. FORM COEFFIC IENT-DISPLACEMENT TRANSFORMAT I O N  MATR 1% 

C 
C ROTATE UNKNOWNS I F  REQUIRED 
C 

DO 1 2 5  5 ~ 1 1 2  
I = L l r ( J O  
I F ( A N G L E ( 1 ) )  1 2 f r l 2 5 r 1 2 5  

1 2 2  S I N A =  OS IN(ANGLE(  1))  
COSA= OCOS (ANGLE( I I I 
I J = 2 * I  
DO 1 2 4  K a l e 6  
TEM=H(Kr  I J - 1 1  
H ( K 9  IJ-l)=TEM*COSA+H(KrIJ1*SINA 

1 2 4  H ~ K *  IJ)=-TEM*SINA+H(K~IJ)*COSA 
1 2 5  CONTINUE 

C 
c 5. FORM ELEMENT STIFFNESS MATRIX (H)T*(D)*(HI 
C 

00 1 3 0  J = L r l O  
DO 1 3 0  K n l r 6  
l ~ l H ( K r J 1 1 1 2 8 r  1 3 0 r 1 2 8  

1 2 8  DO 1 2 9  I = l r 6  
1 2 9  F (  I r J I = F ( I r J I + O ( I r K W H ( K I J )  
1 3 0  CONTINUE 

C 
RO 1 4 0  I ~ l r l O  
DO 1 4 0  K t l . 6  
I F ( H ( K r 1 ) )  1 3 8 r  1 4 0 r 1 3 8  

1 3 8  00 139 J s l r l O  
1 3 9  S t 1  ~ J I = S ( I I J ) + H ( K ~ I ) * F ( K ~ J )  
1 4 0  CONTINUE 

C 
c 6. FORM THERPAL LOAD MATRIX  
C 

I F ( N P P ) 1 4 5 r l 5 0 ~ 1 4 5  
1 4 5  T T (  3 )=0 .0  

COMM=XI( l I * E E ( 4 1  
1 5 0  COMH=RO( MT.YPEI*ANGFQ**Z 

T P (  l)=COMM*X1(7)+XI(2)*TT(3) 
T P ( 2 I = C O H M * X I  ( 9 ) + X I (  l ) * ( T T (  1 ) + T T ( 3 ) )  
TP( 3 J=COMM*XI( I O ) + X I o * T T ( 3 )  
COMM=-RO(MTVPE)*ACELZ 
TP(4 )=COMM*X I  ( 1) 
TP(  51=COMM*XI (7)  
T P ( 6 ) = C O M M * X I ( 8 I + X I (  1)*Tf(2) 

C 
OO 1 6 0  I a l r l O  
00 160 K m l r 6 '  



160 P ( I  ) = P ( I ) + H ( K * I ) * T P ( K )  
C 
C 
C FORM S T R A I N  TRANSFORMATION MATRIX  
C 

4 0 0  DO 4 1 0  I s 1 9 6  
DO 4 1 0  J = l r l O  

4 1 0  HH( 1 1 ~ ) = H H ( 1 9 J ) + H ( 1 1 J )  

END 

SUBROUTINE STRESS 
C 

I M P L I C 1 T  REAL*B (A-H.0-ZI 
COMMON N U M N P ~ N U M E L ~ N U M M A T I N U M P C ~ A C E L Z ~ A N G F Q ~ M B A N D ~ M T Y P E ~ T E M P ~ Q V  

1 H E 0 (  1 2 )  r E ( 8 ~ 8 ~ 1 2 I r R O (  12)rXXNN(L2)rR(90011Z(9OOl * U R ( 9 0 0 )  v U Z ( 9 0 0 )  I 
2 CODE(90011T(900~11BC(200~~ J B C ( 2 0 0 ) 9 P R ( 2 0 0 1 * A N G L E ( 4 I * N P  

COMMON /ARG/ R R R ( S ) ~ Z Z Z ( ~ ) ~ S ( ~ O I ~ O ) ~ P ( ~ O ) ~ T T ( ~ ~ ~ L ~ ( ~ )  v O D ( S v 3 ) v  
1 H H ( 6 r  iOIrRR(4)rZZ(4)rC(4r4)rH(6tlOI * D ( 6 T 6 ) * F ( 6 * 1 0 )  1 T P t 6 I  * X I ( l O )  
2 ~ E E ( ~ ) ~ I X ( B O O I ~ ) ~ E P S ( B O O )  

COMMON /EANARG/ ND*NUMBLK*B(  1 4 0 )  r A ( 1 4 0 9 7 0 )  
COMH(3N /PLANE/ NPP 
COMMON /AREAS/ AREP( 8 0 0 )  
COMMON /STRES/ S I G T ( S I 1  S I G R ( 5 ) r  S I G Z ( 5 ) r  URM4r URM5r PNURZI 

l P N U T R t  PNUTZ t  ERI EZ. NNN 
D IMENSION S I G ( 1 0 )  

c*********************************************************************** 
C COMPUTE ELEMENT STRESSES 
c*********************************************************************** 

XKE=O.O 
XPE=O.O 
MPR I NT=O 
I F R  = L 
FRNGRT = 0. 
FRNGZT = 0. 
S I G R T  = 0.0 
S I G Z T  = 0.0 
S I G T T  = 0. 
AREAT a 0. 

C 
DO 3 0 0  M s l r N U M E L  

C 
N=M 
I X ( N I ~ ~ P I A B S ( I X ( N I ~ ) )  
M T Y P E = I X ( N * 5 )  

C 
C A L L  QUAD( N1 VOL) 
I X (  NISI=MTYPE 



T P (  I I=O.O 
DO 1 7 0  K z l r l O  

170 T P (  I ) = T P (  I ) + H H ( I e K ) * P ( K l  
C  
C  

R R (  l ) = T P ( Z )  
R R ( 2 1 = T P ( 6 )  
R R ( 3  = ( T P (  l ) + T P ( 2 ) * R R R ( 5 J + T P 4 3 ) * Z Z Z ( 5 ) I / R R R ( 5 l  
R R ( 4  = T P ( 3 ) + T P ( 5 )  

C  
I 

1 7 6  DO 1 8 0  1 = 1 v 3  
S I G (  I ) = - T T ( 1 )  
DO 1 8 0  K = l v 3  

1 8 0  SIG(I)=SIG(II+C(IvKI+RR(K) 
S I G ( 4 ) = C ( 4 r 4 ) * R R t 4 )  

C  
C  C A L C U L A T E  P H O T O E L A S T I C  TERMS 
C  

S I G ( 1 1  = S I G ( 1 )  - S I G R T  
SIG(2) = S I G ( 2 )  - S I G Z T  
S l G ( 3 1  = S I G ( 3 )  - S I G T T  
S I G T t N N N )  = S I G T I N N N I  + q T G f ? ! * A R E b ( N J  
F R I N G Z  ( ( S  I G (  1 ) - S I G 1 3 )  ) / E (  1 v  8vMTYPE J  J * A R E A ( N )  
F R I N G R  = ( t S I G ( 2 ) - S I G ( 3 l ) / E ( 1 * 8 t M T Y P E I ) * A R E A ( N )  
FRNGRT = FRNGRT + F R I N G R  
FRNGZT = FRNGZT + F R I N G Z  
I F ( N  .NE. 2 5 o I F R I  GO T O  1 9 0 '  
I F R  = I F R  + 1 
S I G R ( N N N 1  = S I G R t N N N )  + S I G ( 1 1 / 2 5 .  

190 I F ( N  .LEO 6 0 0 )  GO T O  1 9 5  
S I G Z ( N h ' N )  = S I G Z (  N N N )  + S I G (  2 ) / 2 5 .  

1 9 5  S I G ( 9 )  = S I G ( 3 I  
S I G ( 9 )  = F R I N G Z / A R E A ( N )  
S I G ( 1 0 )  = b R E A ( N )  
AREAT = AREAT + A R E A ( N I  

C  
C C A L C U L A T E  ENERGY TERMS 
L 

DO 2 5 0  I * l r l O  
COMH=O.O 
DO 2 0 0  K = l r l O  

2 0 0  C O M H ~ C O H H + S f  I p K ) * P ( K I  
2 5 0  XPE=XPE+COHM*P( I J  

X K E = X K E + V O L * R O ( H ~ Y P E I * ( P ( 9 ~ * * 2 + P ( l O ) * * 2 l  
C  
C  C A L C U L A T E  E F F E C T I V E  S T R A I N  
C  

I F ( N P P 1 2 5 1 r 2 5 2 ~ 2 5 1  
2 5 1  R R ( 3 1 = - i S I G (  L I + S I G ( 2 ~ ~ * E E O / E E ( l l  
2 5 2  C C = ( R R ( l ) + R R ( Z J I / Z * O  

CR= DSQQT( ( (  R R ( 2 ) - R R (  1) ) / 2 * 0 ~ * * 2 + ( R R ( 4 ) / 2 ~ 0 1 * * 2 )  
RR(  1 )=CC+CR 
R R (  2)=CC-CR 
E P S ( N ) =  DSQRT(  ( R R ( 1 ) - R R ( 2 )  I * * 2 + ( R R ( l ) - R R ( 3 )  ) * * 2 + ( R R ( 2 ) - R R ( 3 J  ) * * 2 1  

1 *.707/( l o O + E E ( 2 ) )  
C  
c*********************************************************************** 
C  OUTPUT S T R E S S E S  
c*  ...................................................................... 
C  
C C A L C U L A T E  P R I N C I P A L  STRESSES 
C 

CC=(SIG(  ~ I + s I G ( ~ )  )/h 
B B = ( S I G (  1 ) - S I G ( 2 )  1 / 2 .  
CR= D S Q A T t  @ 0 * * 2 + S  I G (  4 J**2)  
S I G (  5 l=CC+CR 
S I G ( 6 ) = C C - C R  
S I G ( 7 ) =  2 8 . 6 4 8 * 0 A T A N Z ( S I G ( 4 )  , 0 0 1  

C  
C  STRESSES P A R A L L E L  TO L I N E  I -J  



C 
GO TO 1 3 4  
I = I X ( N r 1 )  
J = I X ( N r 2 )  
ANG= 2.*CATAN2(Z(J)-Z(I)rR(J)-R(Ill 
COS2A= OCOS( L N G )  
S I N Z A =  J S I N (  PNGJ 
C X = . 5 * ( S I G ( l ) - S I G ( 2 )  ) 
S I G ( 8 ) = C X * C O S 2 A + S  I G ( 4 ) * S I N 2 A + C C  
S I G ( 9 ) = 2 . * C C - S I G ( 8 I  
S I G (  lO)=-CX*SIN2A+SIG(4I*COS2A 

C 
104 I F (  M P R 1 ; d T ) l l O r  1 0 5 r l l O  
1 0 5  W R I T E ( 6 a 2 0 0 0  ) 

MPR I N T = C O  
110 MPR I N T = M P R I N T - 1  

L 
3 0 5  W R I T E ( 6 r 2 0 0 1  ) N r R R R (  5 I r Z Z Z ( 5 ) r ( S I G (  I) r I ~ 1 r l O )  
3 0 0  C O N T I N U E  

W R I T E ( 6 , 2 0 0 5 )  S I G R T r S I G Z T r S I G T T r A R E A T r S I G R ( N N N ~ r S I G Z ( N h ' N ~ r  
l S I G T ( N N Y ) r E (  l r 8 r l ) r E (  l r 8 r 2 I r F R N G L T  

I F ( N P N  .EQ. I )  GO TO 3 0 6  
I F ( N N N  eEQ. 21  GO TO 3 0 6  
I F ( N N N  .EQ. 4 )  GO TO 3 0 3  
I F ( N N N  .EQ. 5 1  GO TO 3 0 4  
E T  = S : G T ( 3 ) * 1 0 0 .  

. FTR= S !GT(3  ) /FRNGZT 
F T Z =  S I G T ( 3  1/FRNGRT 
ER = ( S I G Z ( 2  J + S I G R ( l )  - S I G R ( 2 1 * S I G Z ( l I  ) / ( S I G Z ( 2 ) * O o O l  - PNUTR* 

l ( S I G T ( 2 I * S I G Z ( l )  - S I G T ( l ) * S I G Z ( Z )  ) / E l )  
PNURZ = ( S I G R I  2 )  - P N U T R * E R * S I G T ( 2 ) X , E T I / S I G Z ( 2 )  
EZ = S I G Z ( Z ) / ( O . O l  + P N u R Z * S I G R ( Z ) / E ' R  + P N U T Z * S I G T ( Z ) / E T I  
URM4 = ?O.*PN.UTP*ER/ET 
URM5 = lO . *PNUTZ*EZ/ET 
GO TO 3 0 6  

3 0 3  FR = S I G R ( 4 ) / F R N G Z T  
GO TO 3 0 6  

304 F Z  = S I G Z ( 5 ) / F R N G R T  
3 0 6  C O N T I N U 5  

I F t N N N  -EQ. 5 )  W R I T E ( 6 r 2 0 0 7 1  ERrEZrETrPNUTRrPNUTZ.PNURZrFR~FZrFTRr  
l F T Z  

C 
I F ( X K E ) 3 1 0 r 3 2 0 r 3 1 0  . 

3 1 0  W= DSQR7(  XPE/XKE)  
W R I T E ( 6 ; 2 0 0 6 ) W  

C 
3 2 0  RETURN 

C 
' 2 0 0 0  FORMAT C 7 H l E L o N O .  7 X  1HR 7 X  1 H Z  4X 8HR-STRESS 4 X  8HZ-STRESS 4 X  

1 8HT-STRESS 3 X  9HRZ-STRESS 2 X  10HMAX-STRESS 2 X  1 0 H M I N - S T R E S S  
2 3 7 H  ANGLE S I G Z  F R I N G E  AREA ) 

2 0 0 1  FORMAT ( 1 7 r 2 F 8 . 2 ~  l P 6 E 1 2 . 4 ~  O P l F 7 . 2 r  1 P 3 E 1 0 . 2 )  
2 0 0 6  FORMAT i 36HOAPPROXIMATE FUNDAMENTAL FREQUENCY P € 1 2  - 5  1 
2 0 0 5  F O R M b T f  i H l /  

A 2 5 H O  SUPERIMP. S I G M A  R....= r E 1 1 . 4 r 4 H  P S I /  
0 2 5 H 0  SUPERIMP.  S IGMA Z....= r E 1 1 . 4 r 4 H  P S I /  
2 2 5 H 0  SUPERIMP. S IGMA T....= r E 1 1 . 4 r 4 H  P S I /  
3 2 5 H 0  CROSS-SECTIONAL AREA.= r E l l . 4 r 7 H  SQ.IN./ 
4 2 5 H 0  AVERAGE SIGMA Re.....= r E l l 0 4 r 4 H  P S I /  
5 2 5 H 0  AVERAGE SIGMA Z....e.= r E l l e 4 ~ 4 H  P S I /  
1 2 5 H O  AVERAGE S I G M A  T......= r E 1 1 . 4 r 4 H  P S I /  
6 2 5 H 0  F I R E R  F R I N G E  VALUE...= r E11 .4 r15 .H  P S I  I N . / F R I N G E /  
7 2 5 H 0  M A T R I X  F R I N G E  VALUEaem r E l l o 4 r 1 5 H  P S I  I N . / F R I N G E /  
8 2 5 H 0  T O T b L  F R I N G E  0RDER.e.s' r E 1 1 . 4 r 8 H  F R I N G E S )  

2 0 0 7  FORMAT( 1HO/  
1 2 5 H O  R MODULUS.......= r E 1 1 . 4 r  4 H  P S I /  
2 2 5 H 0  Z  MODULUS. 0. ....= r E l l . + *  4 H  P S I /  
3 2 5 H 0  T  MODULUS.......= ; E l l . 4 r  4 H  P S I /  
4 2 5 H 0  NUTR...............d r E l l . 4 /  
5 2 5 H 0  N U T Z o a e  0. ...e.. ......P r E11.4/ 



6 2 5 H 0  NUHZob.  .-...... ....*.I r E l l . + /  
7 2 5 H O  R  F R I N G E  VALUE...= r E11.41 1 5 H  P S I  I N . / F R I N G E /  
8 2 5 H O  Z F R I N G E  VALUE...= r E11.49 1 5 H  P S I  I N . / F R I N G E /  
9 2 5 H O  TR F R I N G E  VALUE.-.= r E11 .4 r  1 5 H  P S I  I N . / F R I N G E /  
AZSHO T Z '  F R I N G E  V A L U E - - - -  r E l l - 4 ,  15H P S I  1N. /FRINGE)  

C 
E ND 

S U B R O U T I N E  S Y M I N V ( A r N M A X l  
C 

I M P L I C I T  R E A L * 0  (A-H.0-2) 
D I M E N S I O N  A ( 4 . 4 )  

C  
00 2 0 0  N - I r N W A X  

C  
D = A ( N r K )  
00 100 J - l r N M A X  

100 A ( N I J I ~ - A ( N I J ) / O  
c 

DO 1 5 0  I = l r N M A X  
I ~ ( N - I ) 1 1 0 r 1 5 0 r 1 1 0  

116 DO 140 J t l r N M A X  
I F ( N - J  1 1 2 0 r 1 4 0 r 1 2 0  

120 A ( I r J ) ~ A t I r J l + A ~ l r N ) + A ( N r J )  
140 C O N T I N U E  
150 A ( 1  e N ) = A (  I . N I / D  

2 0 0  C O N T I N U E  
c 

RETURN 
c 

END 

S U B R O U T I N E  I N T E R (  X I  r R R r Z Z )  
C 

I M P L I C I T  R E A L * 0  ( A - H r O - 2 )  
D I H E N S I U N  R R ( ~ ) ~ z z (  1 ) r ~ 1 ( 1 )  r ~ M t 6 ) r ~ ( 6 ) ' r Z i 6 ) r x ~ ( 6 )  
COMMON I P L P N E /  NPP 
DATA X X J 3 * 1 . 0 0 0 r 3 * 3 - O D O /  

C 
C O M M = R R ~ Z I * ( Z Z ( ~ ) - Z Z ( ~ ) ) + R A ( ~ ) * ( ~ Z ~ ~ ) - Z Z ( ~ ~ ~ + R R ~ ~ ~ * ~ ~ ~ ( ~ ~ - ~ ~ ~ ~ ~ )  
COMM=COMM/Z4.0 
R ( l ) - R n (  1 1  i 

R ( Z  l = R R 4 2 )  
R ( 3 ) = R R 1 3 )  
R ( 4 l = ( R ( l I + R ( Z ) ) / 2 -  
R ( 5 ) = ( R t Z I + R ( 3 . ) ) / 2 .  
R ( 6 ) = ( R ( 3 ) + R ( 1 ) 1 / 2 .  

C 
Z ( l l = Z Z i l )  
Z ( 2 1 6 Z Z : 2 )  ' 

Z ( 3 ) = Z Z ( 3 1  
Z 1 4 l m ( Z (  1 ) + 2 ( 2 ) ) / 2 0 ,  
Z ( 5 ) = ( Z ( Z ) + Z ( 3 ) ) / 2 .  
2 ( 6 ) - ( 2 ( 3 ) + Z ( l l ) / 2 1  

C 
. I F ( N P P 1 1 O r 3 0 r  10 

.I0 DO 2 0  1=1*6 
2 0  XMO I ) = X X (  I 

GO TO 40 
30 DO 3 5  11196 
35 XU( I ) = X X ( I  ) * A (  1) 

C 
40 DO 5 0  I s l r  1 0  



L 

DO 1 0 0  I=1*6 
X I (  l ) = X I ( l ) + X M (  I) 
XI( 2 ) = X 1 ( 2 ) + X M ( I ) / R (  I 1  
XI( 3)=%1(3)+XM(I)/(R(II**2) 
X I ( ~ ) = X I ( ~ ) + X M ( I ) * Z (  I ) / R ( I )  
xI(~)=XI(~)+XM(I)*Z(I)/(R( I W * 2 )  
x ~ ( ~ ~ = x I ( ~ ) + X M ( I ) * Z ( I ) * * ~ / ( R ( I ) * * ~ )  
X I (  7 ) = X I ( I ) + X M ( I I * R (  I) 
X I  ( 8  ) = X I  ( 8  )+XM( I ) * Z (  I )  
X I ( S ) = X I ( ~ ) + X H ( I ~ * R ( I  **2 
X I (  1 0 ~ = X I ( 1 0 1 + X M ~ I I * R  I I * Z ( I  I 

1 0 0  CONTINUE 
I 

C 
DO 1 5 0  f = l . l O  

1 5 0  X I  ( I ) = X I  I )*COMM 
L 

RETURN 
C 

END 

SUBROUTINE M O D I F Y ( A I B I N E Q ~ M B A N D V N I U )  
C 

I M P L I C I T  REAL*B (A-H.0-Z) 
D I M E N S I O N  P( 1 4 0 * 7 0 ) r B (  1 4 0 )  

C 
DO 2 5 0  M129MBAND 
K=N-M+ 1 
I F ( K ) 2 3 5 r 2 3 5 ~ 2 3 0  

2 3 0  B (K )=B(K I -A (K .M) *U  
AIK,M)=O-0  

2 3 5  K=N+M-1 
IF (NEQ-KJ250 .240 .240  

2 4 0  B (K )=B(K ) -A (N .N1*U  
A(N*M)=O.O 

2 5 0  CONTINUE 
A (N I I IP~ .O  
B(N,=v  
RETURN 

C 
EN0 

SUBROUTINE BANSOL 
C 

I M P L I C I T  R E A L * I  (A-H.0-2) 
COMMON I B A N A R G I  MMrNUMBLK1B(140lrA(140r701 

C 
NN = 2.+35. 
NL=NN+ 1 
NH=NN+NN 
REWIND 1 
REWIND 2 
NB=O 
GO TO 150 

c*********************************************************************** 
C REDUCE EQUAT IORS BY BLOCKS 
c*********************************************u************************ 
C 
C 1. S H I F T  BLOCK OF EQUATIONS 
C 

1 0 0  NB=NB+ l  
DO 1 2 5  N = l r N N  
NM=NN+N 
B (N)=B(NCI I  
B (NMlsO .0  



DO 1 2 5  M=l rMM 
A(N*Ml=A(NM*M)  

1 2 5  AINMrM)=O.O 
C  
C  2 .  READ NEXT BLOCK OF EQUATIONS INTO CORE 
C  

I F (  NUMBLK-NB)150r200*  1 5 0  
1 5 0  R E A D ( Z ) ( B ( N l * ( A ( N * M B  rM= l rMH)  rNsNLrNH)  

I F ( N B l 2 0 0 r  1 0 0 9 2 0 0  
C  
C  3. REDUCE BLCCK OF EQUATIONS 
C 

2 0 0  DO 300 N = l r N N  
I F (  A(N1 1 ) ) 2 2 5 r 3 0 0 r 2 2 5  

2 2 5  B ( N ) = B ( N ) / A ( N *  1) 
DO 2 7 5  Ln2rMM 
I F ( A ( N r L ) ) 2 3 0 r 2 7 5 r 2 3 0  

2 3 0  C = A ( N * L ) / A ( N * l )  
I = N + L - 1  
J=O 
DO 2 5 0  KILIMM 
J = J + 1  

2 5 0  A( I * J I = A ( I r J ) - C * A ( N * K b  
B l  I ) = B (  I 1-A(NrL ) *B(N)  
A(N,L)=C 

2 7 5  CONTINUE 
3 0 0  CONTINUE 

c 
C  4. WRITE BLOCK OF REDUCED EQUATIONS ON TAPE 2  
C  

I F (  NUMBLK-NB 1 3 7 5 r 4 0 0 r 3 7 5  
3 7 5  WRITE( l ) ( B ( N ) r  ( A ( N r M ) e H = Z r M M ) r N s l * N N l  

GO TO 1 0 0  
c******+**************************************************************** 
C  BACK-SUBST ITUT ION 
c ****** ** + .............................................................. 

4 0 0  DU 450 M = l * N N  
N=NN+l-M 
DO 4 2 5  Kz2rHM 
L=N+K- 1 

4 2 5  B I N ) = B ( N ) - P ( N r K ) * B ( L I  
NH=N+NN 
B(NM)=B(N)  

4 5 0  A(NM*NB)=R(N)  
NB=Ne-1 
I F (  N B ) 4 7 5 * 5 0 0 * 4 7 5  

4 7 5  BACKSPACE 1 
READ ( l ) ( B ( N )  r ( A ( N r M l r W 2 r H M 1 , N o l r N N )  
BACKSPACE a 
GO TO 4 0 0  

c * ...................................................................... 
C  ORDER UNKNCWhS I N  B ARRAY 
c*********************************************************************** 

5 0 0  K=O 
DO 6 0 0  N e t 1 9  NUMBLK 
DO 600 N = l r N N  
NM=N+NN 
K=K + 1 

6 0 0  B ( K ) = A l N M * N B )  
C  

RETURN 
L .  

END 

SUBROUTINE GRDPLT (NNvNE'Nl r  N2rSCALErXDrYD*HED*CLASS* I X * R * Z j  
C  
C****  ROUTINE TO PLOT THE F I N I T E  ELEMENT GRID FOR WILSON'S CODE. 
C 



REAL*8 R ( 9 0 0 ) ~ 2 ( 9 0 0 ) r S C A L E r X D r Y D  
C  

OIMENS ION I X ( 8 0 0 r 5 ) r H E D 1 2 0 ) r E N D ( 4 ) r C L A S S ( 3 I  eDATE(2 )  
C  
C  

MAXDIF=O 
H R I T E  ( 6 9 5 0 )  N ~ ~ N ~ * S C P L E ~ X O ~ Y D I C L A S S  

5 0  FORMAT( '-MESH PLOT REQUESTED FOR E L E M E N T S a r 1 5 r  @ TOs v 1 5 /  
1 @ O S C A L E = ' r T l O r F l 0 . 6 /  
2  * XD= ' r  T lOvF10.6 /  
3  ' Y D = ' r Y l O r F 1 0 . 6 /  
4  C L A S S = ' r T l O p 3 A 4 )  

c 
C**** PLOT ONLY THE ELEMENTS BETWEEN N 1  AND N2e  I N C L U S I V E o  
C  

N l = M A X O ( N l r l )  
N 2 = M I N O ( N 2 r N E I  

c 
C**** F I N D  MINIMUM COORDINATESc 
C  

XMIN=l .E75 
YMIN=XMIN  
DO 1 0 0  M m N l r N 2  
DO 7 5  I = l r 4  
K = I X ( H * i )  
I F  (K.LT.1 .CR. KeGToNN)  GO TO 7 5  
X M I N = A M I N l ( X M I h r S N G L ( R ( K I I )  
VMIN=AMINl(YMINrSNGL(L(KII) 

75 CONTINUE 
1 0 0  CONTINUE 

WRITE ( b r 6 0 0 )  X H I N r Y H I N  
600 FORMATI 'OHINIMUH COORDINATES AREse2E15.6)  

C  
C**** WRITE T I T L E S  ON PLOT 
C  

C A L L  S Y M B O L ~ - ~ ~ O ~ ~ ~ O ~ O ~ ~ O ~ V C L A S S (  1 I r 9 0 0 0 * 1 2 0  
C A L L  I C A Y ( C A T E )  
CALL  SYHBOL(-1  .Or6.010.105r DATE(  1 1  * 9 O o O r 8 )  
C A L L  SYMBOL ( O e O r O . 5 ~ 0 . 1 0 5 r H E D ~ 1 ~ ~ 0 ~ 0 ~ 7 2 ~  

C  
C**** PLOT THE ELECENTS. 
C  

OO 2 0 0  W N l r N Z  
I = I X ( M I L I  
J = I X ( M r 2 )  
K = I X ( M r 3 )  
L = I  X ( M r 4 )  
MAXDIF=MbXO(MAXDIF*  I A B S I I - J l r  I A B S t  I - K M A B S ( 1 - L l v  

1 I A B S I J - K l  r I A B S (  J - L l r l A B S ( K - L ) )  
L=4 
I F  ( I X ( M r 4 ) . E Q o l X ( M . r 3 1  L s 3  
K = I  X ( M r L  
I F  (KeLT .1  eORe K -GToNNI  GO TO 2 0 0  
XP=SCALE*(R( K I - k M l N I * X D  
YP=SCALE*( Z( K 1 -YHIN)*YD 
C A L L  PLOT ( X P r Y P v 3 )  
DO 1 5 0  I = l r L  
K = I X ( M r  I) 
I F  (K.LT.1 .CR. K.GT.NN1 GO TO 2 0 0  
XP=SCALE*(R(K) -XMIN)+XD 
YP=SCALE*( Z (K ) -YMIN) *VD  
C A L L  PLOT ( X P t Y P p 2 )  

1 5 0  CONTINUE 
2 0 0  CONTINUE 

WRITE ( 6 r 2 0 0 0 )  H A X D I F  
2 0 0 0  FORMAT( 'OGRID PLOT F IN ISHED.  MAXIMUM NODE DIFFERENCE WASa 1x3) 

C A L L  PLOT ( 17.0eO.Or-31 
RETURN 
END 



SUBROUTINE ZERO 
I M P L I C I T  R E A L * 8  (A-H.0-2) 

. COMMON Z l ( 6 6 1 7 1  
.COMMON /ARG/ E 2 t 3 1 9 8  I 

. . COMMON /BANARG/ Z 3 ( 9 9 4 1 1  
DO LO I m l r 6 6 1 7  

10 . Z 1 (  I ) = O . O  
DO 20 J m l t 3 1 9 8  

20.  Z 2 (  J)-0.0 
DO 30 K m l r 9 9 4 1  

, 30 i 3 1 K I ~ O . 0  
RETURN 
END 



APPENDIX B 

C  HEAT0001 
COMMON B ( 7 0 0 )  r X ( 7 0 0  ) v Y ( 7 0 0 )  q T ( 7 0 3 l  v D ( 7 0 0 I  vKODE(700)*  HEAT0002 

1 H E D ( 2 0 ) v L M ( 5 1 v  I X ( 3 ) v E ( 3 t 3 ) ~ K X ( 4 ) r P ( 5 l r S ( 5 * 5 ) * D D ( 5 l q  HEAT0003 
2  XCONO1201 ,SPHT(20 l  v D E N S ( 2 0 1  HEAT0004 

COMMIX ISVMAR C /  NUMNPrMBbNDrA(700t271 7 0 0 1  l fEAT0005 
O l M E N ~ 1 O N  LM1 ( 1 2 5 0 )  9 LMJ( 1 2 5 0 ) q  L M K ( 1 2 5 0 1  r  MTYP(1250)  AREA( 1 2 5 0 )  
DlMENSION I X Z  ( 1 2 5 0 )  1 T Y Z ( 1 2 5 0 l  
DIMENSION JX(  125015  1 
REAL*4 CLASS( 3 )  
REAL*4 BUFF(50COl  
LENGTH=5000 
C A L L  P L O T S  ( ~ U F F ~ L E N G T H )  

C * + + + + * * + * + * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * H E A T O O O 6  
C  READ AND PRINT OF CONTROL INFORMATION HEAT0007 
C * * * * * * * + * + * * * * * ~ * * * * * * * + * * + * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * H E A T O O O ~  

5 0  READ ( 5 v 1 0 0 3 1  .HEDtNUIrNP,NUMELtNUMCBCrKATrNUMMATrNDTr 1NTERrDTr HEAT0009 
1 ICHECKI MSHPLT 

I F  ( K A T I  5 4 v 5 6 v 5 4  HEAT0010 
' 5 4  WRITE ( 6 1 2 0 1 0 1  HEAT00 11 

GO TO 5 8  HEATOOlZ 
5 6  WRITE ( 6 1 2 0 1 1 1  HEAT0013 
58 HR1 TE ( 6 , 2 0 0 0 )  HED*NUMNP~NUMELINUMCBCvNUMMATvNDT1 INTERvDTv HEAT0014 

1 ICHECKI MSHPL; 
C  HEAT0015 

READ ( 5 1  1 0 0 3 )  IM,xCOND(M) rSPHT(M)*DENS(M) gOX(Ir)vN=ltNUMMAT) HEAT0016 
WRI T E ( 6 1 2 0 0 9 )  (M*xCOND(Ml rSPHTtMl  *DENS(H) vQX(H)vM=ltNUMHAT) HEAT0017 

c** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *HEATOOl8  
C  READ OR GENERATE NODAL POINT INFORMAT ION HEAT0019 ' 
c***********************************************************************HEATOO20 

WRITE ( 6 ~ 2 0 0 1 )  HEAT0021 
L = l  HEAT0022 

C HEAT0023 
6 0  READ ( 5 r 1 0 0 1 1  NqKODE(Nl r X ( N I 1 Y I N I 1 T I N )  HE AT0024  

FA = 0 .6308  
RAO = SORT[XIH)*+Z + Y ( N ) * * 2 )  
I F ( R A 0  .GT. 0.010) GO TO 6 2  
X ( N I  = X (N I *FA 
Y ( N )  = Y(N) *FA 
GO TO 6 4  

6 2  I F (  X ( K I  .EQ. 0.) TH = 1.57079 
I F ( X I N )  .NE. 0.1 TH = A T A N ( Y ( N ) / X ( N ) )  

. I F I T H  .LE. +5.;57.29581 RP = 1./ COS(THI 
I F ( T H  .GT. 45./57.2958) RP P l o /  S I N ( T H )  
FP = ( R P  - FA*O.8OOl/tRP - 0.800) 
RAD = RP - FP*(AP - RAD) 
X ( N I  = RAD* COS(TH) 
Y ( N I  = RAD* S I N ( T H 1  

6 4  CONTINUE 
D I  FF=N+l -L  
I F  (N-L)  6 5 1 8 0 1 7 0  

6 5  WRITE ( 6 r 2 0 2 0 )  N  . 
GO TO 60 

7 0  D X = ( X ( N ) - X ( L - 1 )  ) / D I F F  
D Y = I Y ( N 1 - V ( L - l ; I / D I F F  

7 5  KODE(LI=O 
X ( L I = X ( L - 1 I + D X  



Y ( L I = Y ( L - l I + D Y  HEAT0033 
T f L  I=O.O HEAT0034 

8 0  WRITE ( 6 . 2 0 0 2 )  L , K O D E f L I r X ( L J t Y f L J r T f L )  HEAT0035 
L = L + l  HEAT0036 
I F  f N - L )  9 0 ~ 8 0 . 7 5  HEAT0037 

9 0  I F  f  NUMNP+l-L ) 1 0 0 v 1 0 0 ~ 6 0  HEAT0038 
1 0 0  CONTINUE HEAT0039 

C********************** ************************.#***********************HEATOO40 
C FORM CONDUCT1 V I T Y  MATRIX FOR COMPLETE BODY HEAT0041 
~ * * * * * * 4 *  **+***************+*********************************************HEATOO~~ 

DO 1 1 0  I=l,NUMNP ' HEAT0043 
D f  I I = O . O  HEAT0044 
8 f  I )=O.O HE AT 0 0 4 5  
DO 1 1 0  J = l r 2 7  HE AT 0 0 4 6  

110 A( I 1  J ) + O - 0  HEAT0047 
MBAND=O HEAT0048 

. NUM=O HEAT0049 
WRl T E  ( 6 . 2 0 0 3 )  HEAT0050 

C HEAT0051 
DO 2 0 0  N=l.NUMF.L HEAT0052 

C HEAT0053 
C 1. READ OR GENERATE ELEMENT PROPERTIES HEAT0054 
C HE AT 0 0 5 5  

I F  (NUM-N) 1 2 0 v 1 2 1 9 1 2 1  HEAT0056 
1 2 0  READ ( 5 . 1 0 0 2 )  tlUHvKX( 1 I r K X f  2 1 t K X f  3 I r K X f 4 )  vMTYPE HEAT0057 

IFt NUM-f ( N U + 1 1 / 3 2 ) * 3 2  .GT. 2 4  .OR. NUM .GT. 3 8 4 )  MTYPE 2 
c HEAT0058 

1 2 1  DO 1 2 2  I = 1 . 4  HEAT0059 
,122 L M I I ) = L M ( I I + l  HEAT0060 

C HEAT0061 
I F  (NUM-Nl 1 2 3 , 1 2 4 ~  1 2 6  HEAT0062 

1 2 3  WRITE ( 6 . 2 0 2 1 )  NUM HEAT0063 
GO TO 1 2 0  ' HE AT 0 0 6 4  

C HEAT0065 
1 2 4  DO 1 2 5  I = 1 , 4  HEAT0066 
1 2 5  L Y ( I I = K X ( I I  ' HEAT0067 

LUND=XCOND f  MTV7EI HEAT0068 ' 
C HEAT0069 

1 2 6  WRITE ( 6 . 2 0 0 4 )  N ~ L M ~ ~ I ~ L M ~ ~ ~ ~ L M ( ~ ~ ~ C H ( ~ ~ ~ M T Y P E  HEAT0070 
L M I ( N )  = L M ( 1 )  
L M J ( N I  = L M ( 2 )  
L M K f H l  = L M ( 3 )  
MTYPfN) = MTYPZ 
J X f N v 1 1  = L M ( l !  
JX fN .2 )  = L M ( 2 )  
JX(N.31 = L H ( 3 )  
J X f  N.4) = LMf 4 )  
JX(N.5)  = MTYPt  

C 
C 2. FORM ELEMENT CONDUCTIVITY MATRIX 



I F  ( 1 - J )  1 3 5 1  1 5 2 ,  1 3 5  H E A T 0 0 9 3  
1 3 5  A J = X ( J ) - X (  I )  H E A T 0 0 9 4  

AK=XX-X( I I H E A T 0 0 9 5  
B J = Y ( J ) - Y (  1 1  H E A T 0 0 9 6  
BK=YY-Y( I ) MEAT0097  
C=B J-BK H E A T 3 0 9 8  
DX=AK-AJ H E A T 0 0 9 9  

C H E A T 0 1 0 0  
XMUL=l.O H E A T 0 1 0 1  
I F  ( K A T )  1 3 6 ~ 1 3 7 ~ 1 3 6  H E A T 0 1 0 2  

1 3 6  XMUL=XMUL*(X( I I + X ( J  )+XX) /3 .0  H E A T 0 1 0 3  
C H E A T 0 1 0 4  

1 3 7  XLAM=AJ*BK-AK*SJ H E A T 0 1 0 5  
COHH=. 5*COND* XHUL /XLAM HEAT0 1 0 6  
QQ=XLAM*XMUL*QX(MTYPE t I 4 . 0  H E A T 0 1 0 7  
@STDRE=XLAM*XMUL*SPHT (HTYPE WDENS (MTYPE) 14.0 H E A T 0 1 0 8  

C H E A T 0 1 0 9  
E (  l r  ll =C**2+0X**2 H E A T 0 1 1 0  
E (  L rZ)=BK*C-AK*DX H E A T 0 1 1 1  ' 

E (  1 r3)=-BJ*C+AJ*DX H E 4 T 0 1 1 2  
E ( Z r l ) = E ( l r Z )  H E A T 0 1 1 3  
E ( 2  r 2 )  =RK**2+AK**2 H E A T 0 1 1 4  
E ( 2  .3 )=-BJ*BK-AJ*bK H E A T 0 1 1 5  
E ( 3 r l ) = E ( l r 3 1  H E A T 0 1 1 6  
E ( 3 * 2 1 = E ( 2 r 3 )  HEAT0117  
E (  3  r31=BJ**2+A.J**2  HEAT011'8 

C H E A T 0 1 1 9  
I X (  1 ) = K  H E A T 0 1 2 0  
T X ( 2 ) = K + 1  H E A T 0 1 2 1  
I F  ( K - 4 1  . 1 4 5 r  1 4 0 r 1 4 5  HEAT0122  

1.40 I X ( Z ) = l  H E A T 0 1 2 3  
1 4 5  I X ( 3 1 = 5  H E A T 0 1 2 4  

C H E A T 0 1 2 5  
DO 1 5 1  I = l r 3  HEAT0 1 2 6  
I I = I X t I )  H E A T 0 1 2 7  
P ( I I l = P ( I I l + @ @  . H E A T 0 1 2 8  
DO( I I ) = D D ( I I l + S S T O R E  H E A T 0 1 2 9  
DO 1 5 1  J = l r 3  H E A T 0 1 3 0  
JJ= I X ( J )  H E A T 0 1 3 1  

1 5 1  S ( I I ~ J J ) ~ S ( I I I J J ) + E ( I ~ J ~ * C D M H  H E A T 0 1 3 2  
C H E A T 0 1 3 3  

1 5 2  CONTINUE H E A T 0 1 3 4  
C H E A T 0 1 3 5  

DO 1 5 5  I = l r 4  H E A T 0 1 3 6  
DO 1 5 5  J = l t 4  H E A T 0 1 3 7  

1 5 5  S( I r J ) = S ( I  I J ) - S (  I v ~ I * S ( J ~ ~ ) / S ( S ~ ~ )  HEAT0138  
C H E A T 0 1 3 9  
C 3. ADD ELEMENT CONDUCTIVITY TO COMPLETE CONDUCTIVITY MATRIX H E A T 0 1 4 0  
C H E A T 0 1 4 1  a 

DO 1 7 5  L = l r 4  HEATOl+Z 
I = L H ( L )  H E A T 0 1 4 3  
D (  I ) = D l  I )+DD( L l  HEAT0 144 '  
B ( I  ) = B ( I  ) + P I L  1 H E A T 0 1 4 5  
DO 1 7 5  M = l r 4  HEAT0 1 4 6  
J = L M ( M ) - I + 1  H E A T 0 1 4 7  
I F  ( 2 7 - J )  1 2 3 r 1 5 8 ~ 1 5 8  HEAT0148  

1 5 8  I F  ( MBAND-J ) 160 .1  65 .165 H E A T 0 1 4 9  
1 6 0  MBAND=J HEAT0 150 .  
1 6 5  I F ( J )  1 7 5 r 1 7 5 r 1 7 0  H E A T 0 1 5 1  
1 7 0  A( I r J ) = A ( I * J I + S ( L r M I  H E A T 0 1 5 2  
1 7 5  CONTINUE H E A T 0 1 5 3  

C H E A T 0 1 5 4  
2 0 0  CONTINUE H E A T 0 1 5 5  

C******** ***********a** *************************************************HEATOl56 
C BOUNDARY CDNDIT IONS H E A T 0 1 5 7  
C * * * * * * * * * * * * * ~ * * * * * ~ b l e t  **O**********************************************HEATO~~~ 
C H E A T 0 1 5 9  
C 1. CONVECT ION BOUNDARY CONDITIONS HE AT0 1 6 0  
C H E A T 0 1 6 1  

I F  (NUHCBC 1 2 2 3 1 2 2 0 r 2 0 5  H E A T 0 1 6 2  



2 0 5  W R I T E  ( 6 r 2 0 0 6 )  H E A T 0 1 6 3  
DO 2 1 5  N=l.NUYCBC . HEAT0 1 6 4  
W R I T E ( 6 1 2 0 0 4 )  NUMNPINUMCBCIN H E A T 0 1 6 5  
READ ( 5 ~ 1 0 0 7 )  IIJIHITEMP H E A T 0 1 6 6  
WRITE  ( 6 1 2 0 0 7 )  I~J IHITEMP HEAT0 1 6 7  
X L = S Q R T ( ( X ( J ) - & ( I  ) I * * 2 + ( Y ( J ) - Y f I I I * * 2 I  H E A T 0 1 6 8  
I F  (KAT  2 0 6 1  2 3 7 1  2 0 6  H E A T 0 1 6 9  

2 0 6  X L = X L * ( X ( I  I + X ( J I ) / Z .  HEAT3 1 7 0  
2 0 7  TEMP=H*XL*TEMP/Z. H E A T 0 1 7 1  

W-t4*KL/4. H E A T 0 1 7 2  
R (  I ) = B (  I )+TEMP H E A T 0 1 7 3  
B(  J)=B(JI+TEMP H E A T 0 1 7 4  
A ( I  * l I = A ( I q l I + H  H E A T 0 1 7 5  
A ( J I ~ I = A ( J ~ ~ I + H  H E A T 0 1 7 6  
K = J - I + 1  H E A T 0 1 7 7  
I F  ( K )  2 1 2 1 2 1 2 1 2 1 0  H E A T 0 1 7 8  

2 1 0  A( I r K I = A ( I * K I + H  H E A T 0 1 7 9  
GO TO 2 1 5  H E A T 0 1 8 3  

2 1 2  K = I - J + 1  H E A T 0 1 8 1  
A( JIKI=A(JIK)+?I H E A T 0 1 8 2  

2 1 5  CONTINUE H E A T 0 1 8 3  
2 2 0  CONTINUE H E A T 0 1 8 4  

C H E A T 0 1 8 5  
C 2. TEMPERATURE BOUNDARY CONDIT IONS H E A T 0 1 8 6  
C H E A T 0 1 8 7  

DO 3 0 0  N = l r N U K N P  H E A T 0 1 8 8  
B ( N I = B ( N I t T ( N I  H E A T 0 1 8 9  
I F ( K O D E ( N 1  I 2 2 5 r 3 0 0 r 2 2 5  H E A T 0 1 9 0  

2 2 5  DO 2 5 0  Ms2rMBAND H E A T 0 1 9 1  
K=N-R+1 H E A T 0 1 9 2  
I F ( K )  2 3 5 ~ 2 3 5 1 2 3 0  H E A T 0 1 9 3  

2 3 0  B ( K I = B ( K I - A ( K * M ) * T I  N )  H E A T 0 1 9 4  
A(K*M)=O.O H E A T 0 1 9 5  

2 3 5  L=N+M-1 H E A T 0 1 9 6  
I F  ( NUMNP-L) 2 4 5 r 2 4 0 1 2 4 0  H E A T 0 1 9 7  

2 4 0  B ( L ) = B ( L ) - A ( N v M ) * T ( N I  H E A T 0 1 9 8  
2 4 5  A( N*Ml=O.O H E A T 0 1 9 9  
2 5 0  CONTINUE H E A T 0 2 0 0  

A ( N * 1 ) = 1 . 0  H E A T 0 2 0 1  
B ( N ) = T ( N I  H E A T 0 2 0 2  

3 0 0  CONTINUE H E A T 0 2 0 3  c****************** ******** ............................................. 
c PLOT A MESH PLOT OF THE GEOMETRY, IF ~ E e u E s t E b .  
C****************** ***9*84********************************************** 

C 
C ( N l 1 N 2 )  ARE F I R S 1  AND LAST  ELEMENTS NUMBERS TO BE PLOTTED 
C SCALE I S  FACTOR TO MAKE VERT ICAL  D IMENSION .LE. 10.0 INCHES 
C ( X D v Y D I  ARE COORCINATES OF O R I G I N  ON PAPER ( Y D  .GE. 0.5 I 
C CLASS CONTAINS 0 - 1 2  H O L L E R I T H  CHARACTERS. WRITTEN ON L E F T  EDGE. 

I F  (MSHPLT.LE.0) GO TO 3 4 6  
DO 3 4 5  M= l rMSHPLT  
READ ( 5 1  1 0 0 6 )  N l t  NZISCPLEIXDIYDICLASS 
C A L L  GRDPLT ( ~ U M N P ~ N U M E L I N ~ ~ N ~ * S C A L E V X D * Y D ~ H E D ~ C L A S S *  J X e X *  Y I  

3 4 5  CONTINUE 
346 I F  (1CHECK.NE.O) GO TO 5 0  

C 
C****************** *****************************************************HEATO204 
C SOLVE FOR NODAL P O I N T  TEMPERATURES H E A T 0 2 0 5  
C****************** Y*****$***********************************************HEATO206 
C F O R M  EFFECTIVE CONDUCTIVITY MATRIX FOR TIME INCREMENT H E A T 0 2 0 7  
C H E A T 0 2 0 8  

I F  ( D T I  7 0 0 r 7 0 0 1 3 0 4  . H E A T 0 2 0 9  
3 0 4  DTZ=l .O/DT H E A T 0 2 1 0  

DO 3 2 0  N = l r N U M N P  H E A T 0 2 1 1  
T(NI=O.O H E A T 0 2 1 2  
I F  (KODE(N1 I 5 2 0 r 3 0 5 r  3 2 0  H E A T 0 2 1 3  

3 0 5  I F  ( D ( N I )  3 1 0 t 3 2 0 r 3 1 0  H E A T 0 2 1 4  
310 D ( N ) = D T Z * D ( N )  HEATO21'5 

A ( N * l I = A ( N , l I + D ( N I  H E A T 0 2 1 6  
3 2 0  CONTINUE H E A T 0 2 1 7  



C A L L  SYMSOL(1)  
C  
C  CALCULATE TEMPERATURE AT THE END OF EACH T I M E  INCREMENT 
C  

L 
C  1.- CALCULATE F F F E C T I V E  LOAD MATRIX 
C  

OO 4 0 0  I = l r N U M N P  
@ ( I  I = B ( I I  
I F  ( K O D E ( I I 1  4 0 0 * 3 9 5 r 4 0 0  

395 Q ( I  ) = B ( I ) + D ( I  !*T( I) 
4 0 0  CONTINUE 

c 
C 2. SOLVE FOR TEMPERATURES 
C 

C A L L  SYMSOL(2 I 
C  

DO 5 0 0  I = l r N U M N P  
500 '  T (  I I = @ (  I) 

C  
T IHE=T IME+DT  
L L  = L  L+ 1 
I F  I L L - I N T E R )  6 0 0 r 5 5 0 r 5 5 0  

5 5 0  WRITE ( 6 ~ 2 0 0 5 )  T I M E *  ( N r T ( N ) r N = l r N U M N P I  
L L = O  

C  
6 0 0  CONTINUE 

GO TO 5 0  
C 
C  STEADY STATE SOLUTION 
C  

7 0 0  DO 8 0 0  I = l r N U W N P  
8 0 0  a(  1 1 = 8 (  1 1  

C A L L  SYMSOL(1)  
C A L L  SYMSOL(21 
WRITE 1 6 r 2 0 0 5 1  TIME.(  N r Q ( N l e N = l r N U M N P )  
ARE AT = 0.0 
AREAM = 0.0 
AREAF = 0.0 
TXZA  = 0.0 
TXZAF  = 0.0 
TXZAH = 0.0 
I P  = 1 
F R I N G  = 0.0 
DO 9 0 0  I 1  = 1.NUMEL 
I = L M I I I I I  
J = L H J ( I I 1  
K  = L M K ( I I 1  
H  = M T Y P ( I 1 )  
A R E A ( I 1 )  = ( X t J I * Y ( K I  - Y ( J ) * X ( K )  - X ( I ) * Y ( K I  + Y ( I ) * X ( K )  + X ( I ) *  

1 Y ( J )  - Y ( I ) * X ; J I ) / 2 . 0  
AREAT = AREAT + A R E P ( I I )  
I F ( M  .EQ. 1)  AREAF = AREAF + A R E A ( I 1 )  
I F ( M  .EQ. 2 1  AREAM = AREAM + A R E A t I I )  
0 1  = Y ( J I  - Y ( K )  
OJ - Y ( K )  - Y i I l  
BK = Y ( I 1  - Y ; J )  
C I  = X ( K )  - X ! J )  
C J  = X ( I )  - X f K 1  
CK = X ( J 1  - X ( I 1  
P H I X  = ( R I * @ (  I )  + B J * @ ( J )  + B K * @ ( K I  ) / ( Z . O * A R E A ( I I  1 )  
P H I Y  = ( C I * @ ( I )  + C J * @ I J )  + C K * @ ( K ) ) / ( 2 . O * A R E A ( I I ) l  
T X Z (  1 1 1  = XCONOIM)*PHIX 
TYZ ( 1 1  ) = XCO?lD(M ) * P H I Y  
FR I N G  - FRING + 2 . 0 * T X Z ( I I ) * A R E A ( I I  ) /SPHT(M)  
TXZA  = TXZA + T X Z ( I I ) * A R E A ( I I )  



I F ( M  . E l .  1 1  T X Z A F  = T X Z A F  + T X Z ( I I I * A R E A ( I I )  
I F ( M  .EQ. 2 )  T X Z A M  = T X Z A M  + T X Z ( I I I * A R E A ( I I )  

8 5 0  C O N T I N U E  
900 C O N T I N U E  

W R I T E ( 6 r 2 0 3 0 )  ( I I c  A R E A ( I I ) r  T X Z ( I I J r  T Y Z ( I 1 ) r  I 1  = I t N U M E L )  
W R I T E ( 6 r 2 0 3 1 1  AREATI F R I N G r  T X Z A t  T X Z A F r  T X Z A M r  A R E A F t  AREAM 

2 0 3 0  FOR'MAT( 1 5 9  3 Z 1 5 . 3 )  
2031 F O R M A T ( 8 H l A R E L I  = r F 6 . 3 / 1 6 H  F R I N G E  ORDER = t E10 .3  / 2 1 H  AVG. SHEAR 

1 S T R E S S  = r E 1 0 . 3 / 2 7 H  AVG. F I B E R  SHEAR S T R E S S  P r E 1 0 . 3 / 2 8 H  A V G -  MA 
Z T R I  X SHEAR S T R E S S  = r E 1 0 . 3 / 1 4 H  F I B E R  AREA = r F 6 * 3 / 1 5 H  M A T R I X  AREA 
3s r F 6 . 3 )  

GO T C  5 0  H E A T 0 2 5 8  
C 
C FORMAT S T A T E M E N T S  
C H E A T 0 2 6 1  

1000 FORMAT ( 2 0 A 4 / 7 1 5 r E l 5 * 6 i 2 1 5 )  
1001 FORMAT ( 2 1  5 r 3 F 1 0 . 0 )  H E A T 0 2 6 3  
1 0 0 2  FORMAT ( 6 1 5 )  H E A T 0 2 6 4  
1003 FORMAT ( I l O r 4 F 1 0 . 0 )  H E A T 0 2 6 5  
1007 FORMAT ( 2 1 5 t 2 F 1 0 . 0 1  H E  A T 0  2 6 6  
1006 F O R M A T ( 2 1 5 r  3 F 1 0 . 0 1  3 ' 6 4 )  

C H E A T 0 2 6 7  
Z O O 0  FORMAT ( 1 H O  2 0 ~ 4 / /  25HONUMBER OF N O D A L  P O I N T S - -  I 4 /  H E A T 0 2 6 8  

1 2 5 H  NUMBER OF ELEMENTS------ I 4  / 2 5 H  NUMBER OF C O N V E C T I O N  8 C - I 4 / H E A T 0 2 6 9  
2 2 5 H  NUMBER O F  MATERIALS- - - - -  I 4  / 2 5 H  NUMBER OF INCREMENTS---- I4/HEAT0270 
3 2 5 H  O U T P U T  I XTERVAL--------- I 4  / 2 0 H  T I  ME INTERVAL------  E 1 0 . 3 /  H E A T 0 2 7 1  
4 2 5 H  D A T A  CHECK O N L Y  ( 0 = N 0 1 - -  I 4 /  
5 2 5 H  NUMBER OF PLOTS--------- 14) 

2 0 0 1  FORMAT ( 2 0 H O  N.P. NO. CODE 1 4 x 1  l H X r l 4 X r l H Y t 1 4 X r l H T ~  H E A T 0 2 7 2  
2 0 0 2  FORMAT ( 2 I l O t 3 E 1 5 . 6 )  H E A T 0 2 7 3  
2003 FORMAT ( 3 5 H O  N I J K L M A T E R I A L )  H E A T 0 2 7 4  
2 0 0 4  FORMAT ( 5 1 5 r I l O )  H E A T 0 2 7 5  
2 0 0 5  FORMAT ( 6 H O T I Y E =  E 1 2 . 5 /  ( I 6 r E 1 4 . 6 ~  I 6 r E 1 4 . 6 r  I 6 r E 1 4 - 6 r  1 6 t E 1 4 - 6 r  H E A T 0 2 7 6  

1 I 6 r E 1 4 . 6 r  1 6 t E 1 4 . 6 )  H E A T 0 2 7 7  
2 0 0 6  FORMAT ( 4 0 H O  I J H T E M P E R A T W E  H E A T 0 2 7 8  
2007 FORMAT ( 2 1 5 r 2 E 1 5 . 6 )  H E A T 0 2 7 9  
2009 FORMAT ( 4 H O  H 1 4 X  1 H K  1 4 X  1HC 1 4 X  1 H D  1 4 X  1 H O /  ( 1 4 t 4 E 1 5 . 6 ) )  H E A T 0 2 8 0  
2010 FORMAT ( 2 5 H A A K I S Y  M M E T R I C  S O L I D  BODY ) H E A T 0 2 8 1  
2011 FORMAT ( 2 7 ~ 1 T s . 0  O I M E N S I O N A L  PLANE BODY I H E A T 0 2 8 2  

C H E A T 0 2 8 3  
2 0 2 0  FORMAT ( I O H O C P R D  NO-  149 1 3 H  OUT O F  ORDER H E A T 0 2 8 4  
2 0 2 1  FOR.MbT ( 1 3 H O B A D  CARD NO- 14) H E A T 0 2 8 5  

C H E A T 0 2 8 6  
END H E A T 0 2 8 7  

SUB ROUT I NE SY MSOL ( K K K )  
C 

COMMON /SYMARG/ N N t M M t A ( 7 0 0 t 2 7 ) r B (  700) 
C 

GO T O  ( ' ~ O O O ~ ~ O O O ~ ~ K K K  
. C 

C REDUCE M A T R I X  
C 

1000 00 2 8 0  N = l r N N  
DO 2 6 0  L s 2 r M H  
C = A I N r L ) / A ( N r  1 1  
I = N + L - 1  
I F  ( NN-.I ) 2 6 0  r 2 4 0 9  2 4 0  

2 4 0  J = O  
DO 2 5 0  K z L r M M  
J = J + 1  

2 5 0  A ( I t J I = A ( I r J ) - C * A ( N r K )  
2 6 0  A ( N t L ) x C  
280 C O N T I N U E  

GO TO 5 0 0  
C 
C REDUCE VECTOR 
C 



2 0 0 0  0 0  2 9 0  N = l r N N  
DO 2 8 5  L t Z t M M  
I = N + L - 1  
I F  ( NN- I  ) 2 9 0 1  2 8 5 1  2 8 5  

2 8 5  B (  I ) = B (  1 ) - A ( N * L ) * B ( N )  
2 9 0  B f N ) = B ( N ) / A ( N r l )  

C 
C BACK S U B S T I T U T I O N  
C 

N=NN 
3 0 0  N = N-1 

I F ( N I  3 5 0 ~ 5 0 0 * 3 5 0  
3 5 0  DO 4 0 0  K=2 9 MM 

L = N+K-1 
I F  ( NN-L  1 403r 3 7 0 9  3 7 0  

370 B I N )  = B f N )  - A f N v K I  * B f L )  
4 0 0  CONTINUE 

GO TO 3 0 0  
L 

5 0 0  RETURN 
C 

END 

SUBROUTINE GaOPLT ( N N I N E ~ N L * N ~ ~  SCALE, XD IYC IHEDrCLASSr  I X p R q Z I  
C 
C**** ROUTINE TO PLOT THE F I N I T E  ELEMENT G R I D  FOR WILSON'S CODE. 
L 

REAL*4 R ( 7 0 0 )  r Z ( 7 0 0 ) r S C A L E * X D * Y D  
C 

DIMENSION I X I ~ Z ~ O ~ ~ ) V H E D ( ~ O ) ~ E N D ( ~ ~ ~ C L A S S ( ~ ~ ~ D A T E ( ~ ~  
C 
C 

MAXDIF=O 
WRITE ( 6 . 5 0 )  N~~NZ~SCALE IXDTYDICLASS 

5 0  FORMAT( '-MESH PLOT REQUESTED FOR ELEMENTSe*  1 5 9 '  TOs o I  5 1  
1 'OSCALE='r  T l O r F 1 0 . 6 /  
2 ' X D = ' r T l O r F 1 0 . 6 /  
3 ' YO=' r T l O r F 1 0 . 6 /  
4 ' C L A S S = ' r T l O r 3 A 4 )  

C 
C**** PLOT ONLY THE ELEMENTS BETWEEN N 1  AND N21  INCLUSIVE.  

C 
C**** F I N D  MINIMUM COORDINATESe 
C 

XMIN  = 1.OE50 
YMI  N=XMIN 
0 0  1 0 0  H = N l r N Z  
DO 75 -  1 ~ 1 9 4  
K = I X ( M r I )  
I F  (K.LT.1 .OR. KoGToNN1 GO TO 7 5  
X M I N = A M I N l f  XMINrR ( K I )  
Y M I N = A M I N ~ ( Y M I N I Z ( K ) ~  

7 5  CONTINUE 
1 0 0  CONTINUE 

WRITE  ( 6 , 6 0 0 1  XMINIYMIN 
6 0 0  FORMAT( '0MINIMUM COORDINATES A R E 0 v 2 E 1 5 - 6 )  

C 
C**** WRITE T I T L E S  ON PLOT 
C 

C A L L  SYMBOL(-1.0*4.Or Om105rCLASS( 1) r90.Or  1 2 )  
C A L L  I D A Y (  DATE)  
C A L L  S Y M B O L ( - 1 ~ O ~ 6 ~ O ~ O ~ 1 0 5 r D A T E ( l ~ r 9 O ~ O r 8 ~  
C A L L  SYMBOL ( 0 . 0 1 0 . 5 1 0 . 1 0 5 r H E D t l )  v O i O r 7 2 )  

C 
C****  PLOT THE ELEMENTS. 



C 
DO 2 0 0  M z N l r N Z  
I = I X ( M * l )  . 
J=I X ( M * 2 )  
K z I  X ( M r 3 )  
L = I  X I M * 4 )  
MAXDIF=MAXO(MAXOIF.  I A B S (  I - J  ) * I A B S (  I - K ) r I A B S (  I - L ) *  

1 I A B S ( J - K ) r I A B S ( J - L ) v I A B S ( K - L ) )  
L a 4  
I F  ( I X ( M v 4 ) . E @ . I X ( M * 3 ) )  L x3  
K = I  X ( M * L )  
I F  (K.LT.1 .OR. K.GT.NN) GO TO 2 0 0  
X P = S C A L E * ( R ( K ) - X M T N ) + X D  
Y P = S C A L E * ( Z ( K ) - Y M I N ) + V D  

. C A L L  PLOT ( X P v Y P v 3 )  
00 1 5 0  I = l t L  
K = I X ( M t I )  
I F  ( K . L T - 1  .OR. K.GT.NN) GO TO 2 0 0  
X P = S C A L E * ( R ( K ) - X M I N  )+XD 
YP=SCALE*(  Z ( K  1 - Y M I N  ) + Y D  
C A L L  PLOT ( X P * Y P * Z )  

1 5 0  C O N T I N U E  
2 0 0  C O N T I N U E  

I UR! T P  ( 6 i 2 0 0 0 )  M A X D I P  
2000 FORHA?( 'OGRID P L O T  F I N I S H E D .  MAXIMUM NODE D I F F E R E N C E  WAS'  I 3  9 

C A L L  PLOT (17 .0*0 .0* -3 )  
RETURN 
END 



APPENDIX C 

EXTRACTION OF INITIAL BIREFRINGENCE 

Load-induced birefringence is the total birefringence minus the initial birefringence. This 
relationship may be written : 

where: 

[Nl  represents the load birefringence tensor, 

[NT] the total or observed birefringence tensor, and 

[N I the initial birefringence tensor. 

From Equation 42, the tensors may be expressed in terms of their principal components and 
orientation angle with respect to the chosen coordinate system: 

where: 

p and q .represents the principal birefringence directions, and 

- 6  the isoclinic angle relative to the coordinate system. 

The first two terms in the birefringence matrix are summed to find,one of the stress-optic 
relations. When this summation is accomplished: 



The third terms yield: 

Squaring Equations C-3 and C-4 and using trigonometric identities and Equation 46 gives 
the expression for the load birefringence: 

Dividing Equation C-4 by C-3 gives the load isoclinic: 

The load-induced birefringence and isoclinic are used for the analysis. 
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