DATE: March 18, 1958

SUBJECT: Maximum Thermal Flux per Mw in Three-Region Homogeneous Reactors

TO: Distribution

FROM: T. B. Fowler

SUMMARY

The maximum thermal flux per Mw of thermal power generated was calculated for a variety of critical three-region spherical homogeneous reactors. The central region contained H$_2$O or D$_2$O, the second or annulus region contained U-235 and H$_2$O or D$_2$O, and the outside region contained D$_2$O. The outside radius was held constant at 152.4 cm while the radius of the central region and the thickness of the annulus were varied in order to ascertain the peak maximum thermal flux per Mw. The peak maximum thermal flux per Mw for the D$_2$O - D$_2$O - D$_2$O system ranged from 8.07×10^{13} to 9.75×10^{13} for central region radii varying from 2 to 30 cm. For the H$_2$O - H$_2$O - D$_2$O system, peak $\phi_{\text{Max}}^{/\text{Mw}} > 3.2 \times 10^{14}$ for a central region radius of 5 cm and annulus thickness of 1 cm.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
Introduction

The maximum thermal flux per Mw was computed for a variety of critical three-region spherical homogeneous reactors containing H₂O or D₂O in the central region, U²³⁵ and H₂O or D₂O in the second or annulus region, and D₂O in the third or outer region. The radius of the central region was varied from zero to 20 cm, the thickness of the annulus was varied from 0.1 cm to 40 cm, and the radius of the outer region was held constant at 152.4 cm. An average reactor temperature of 80°C was assumed for all cases. A two-group, three-region model was used for the calculation utilizing a few-group, multi-region IBM-704 reactor code.¹

Results

In all cases the maximum thermal flux per Mw of thermal power generated was calculated. Figures 2 - 5 show plots of $\phi_{\text{max}}/\text{Mw}$ vs. $R_2 - R_1$ (see Fig. 1) for various compositions and central region radii. Figures 6 and 7 show critical concentration plotted against $R_2 - R_1$ for the cases in which the peak $\phi_{\text{max}}/\text{Mw}$ was not obtained, and Table 1 lists the critical concentrations at the points of peak $\phi_{\text{max}}/\text{Mw}$ for the cases where peaking was obtained.

The maximum thermal flux occurred at the center of the inner region in all cases except the H₂O - D₂O - D₂O system with $R_1 = 20$. In this case the maximum thermal flux occurred close to the inner boundary of the outer region.
Fig. 1. Schematic Diagram of Reactor
Fig. 2. Reactor Composition - D$_2$O - D$_2$O - D$_2$O; Maximum Thermal Flux Per MW Vs. Annulus Thickness
Fig. 3. Reactor Composition -$\text{D}_2\text{O} - \text{H}_2\text{O} - \text{D}_2\text{O}$; Maximum Thermal Flux Per MW Vs. Annulus Thickness.
Fig. 4. Reactor Composition - H₂O - D₂O - D₂O; Maximum Thermal Flux Per MW Vs. Annulus Thickness.
Fig. 5. Reactor Composition-\(\text{H}_2\text{O}-\text{H}_2\text{O}-\text{D}_2\text{O} \); Maximum Thermal Flux Per MW Vs. Annulus Thickness.
Fig. 6. Critical Concentration Vs. Annulus Thickness
Fig. 7. Critical Concentration Vs. Annulus Thickness
TABLE 1

CRITICAL CONCENTRATION AT POINTS OF PEAK $\phi_{\text{Max.}}/M_w$

<table>
<thead>
<tr>
<th>Reactor Composition</th>
<th>R_1 - cm</th>
<th>$(R_2 - R_1)$-cm</th>
<th>Critical Concentration gm U-235/liter</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_2O</td>
<td>0</td>
<td>29</td>
<td>4.13</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>21</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13</td>
<td>8.85</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.5</td>
<td>\sim 57</td>
</tr>
<tr>
<td>$\text{D}_2\text{O}-\text{H}_2\text{O}$</td>
<td>0</td>
<td>13</td>
<td>51.18</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>56.06</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4</td>
<td>\sim 71</td>
</tr>
</tbody>
</table>

Two-Group Constants - 80°C

<table>
<thead>
<tr>
<th></th>
<th>D_1-cm</th>
<th>D_2-cm</th>
<th>τ - cm^2</th>
<th>Σ_a - cm^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_2O</td>
<td>1.265</td>
<td>0.885</td>
<td>126</td>
<td>7.14 x 10^{-5}</td>
</tr>
<tr>
<td>H_2O</td>
<td>1.187</td>
<td>0.193</td>
<td>32.19</td>
<td>0.0174</td>
</tr>
</tbody>
</table>

$\sigma_a(25) = 532$ barns, $\sigma_f(25) = 452$ barns, $\nu(25) = 2.46$ neutrons/fission
REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Office/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HRP Director's Office</td>
<td>Rm. 259, 9204-1</td>
</tr>
<tr>
<td>2.</td>
<td>G. M. Adamson</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>S. E. Beall</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>L. L. Bennett</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>D. S. Billington</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>E. P. Blizard</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>E. G. Bohlmann</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>E. S. Bomar</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>G. E. Boyd</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>F. R. Bruce</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>W. D. Burch</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>A. D. Callihan</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>R. H. Chapman</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>R. A. Charpie</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>A. Chetham-Strode</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>R. D. Cheverton</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>H. C. Claiborne</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>B. L. Cohen</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>T. E. Cole</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>E. L. Compere</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>J. H. Crawford</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>J. S. Culver</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>W. K. Ergen</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>D. E. Ferguson</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>J. L. Fowler</td>
<td></td>
</tr>
<tr>
<td>26-30</td>
<td>T. B. Fowler</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>C. H. Gabbard</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>W. R. Gell</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>E. H. Gift</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>A. T. Gresky</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>J. C. Griess</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>E. Guth</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>P. A. Haas</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>P. H. Harley</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>J. A. Harvey</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>P. N. Haubenreich</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>J. W. Hill</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>D. K. Holmes</td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>S. Jaye</td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>G. H. Jenks</td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>W. H. Jordan</td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>S. I. Kaplan</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>P. R. Kasten</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>R. B. Korsmeyer</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>K. A. Kraus</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>N. A. Krohn</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>J. A. Lane</td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>C. G. Lawson</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>R. E. Leuze</td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>H. A. Levy</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>M. P. Lietzke</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>M. I. Lundin</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>R. N. Lyon</td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>R. L. Macklin</td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>H. G. MacPherson</td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>F. C. Maienschein</td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td>W. L. Marshall</td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>T. H. Mauney</td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td>J. P. McBride</td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td>H. F. McDuffie</td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>R. A. McNees</td>
<td></td>
</tr>
<tr>
<td>66.</td>
<td>W. R. Mixon</td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td>C. S. Morgan</td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td>L. F. Parsley</td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>F. N. Peebles</td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>B. E. Prince</td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td>R. C. Robertson</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>M. T. Robinson</td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>A. M. Rom</td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td>M. W. Rosenthal</td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td>A. F. Rupp</td>
<td></td>
</tr>
<tr>
<td>76.</td>
<td>H. C. Savage</td>
<td></td>
</tr>
<tr>
<td>77.</td>
<td>H. C. Schweinler</td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td>C. L. Segaser</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>A. H. Snell</td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>I. Spiewak</td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td>R. W. Stoughton</td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td>J. A. Swartout</td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td>E. H. Taylor</td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td>D. G. Thomas</td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td>M. Tobias</td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td>D. S. Toomb</td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td>W. E. Unger</td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td>R. Van Winkle</td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td>E. Volk</td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td>A. M. Weinberg</td>
<td></td>
</tr>
<tr>
<td>91.</td>
<td>C. E. Winters</td>
<td></td>
</tr>
</tbody>
</table>