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ABSTRACT 

The flux and current of radiation at the surface of shielded sources are· cal­

culated as a function of source radius and shield thickness. Curves are pre­

sented for source radius (or half-thickness) from 0 to 20 mean-free-paths and 

for shield thickness from 0 to 20 mean-free-paths for plane, cylindrical, and 

slab geometries. The curves are particularly useful for estimating flux leakage 

from large systems. Since PeT rather than P is the plotted function, the curves 

do not sacrifice accuracy. 
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'1. INTRODUCTION 

A situation of frequent occurrence in nuclear practice and design is that of a 

radiation source,· distributed throughout a volume of absorbing material, and 

shielded by further layers of absorbing material. Knowing the distributed source 

strength, and the geometry 0f the various absorbers present, it is often desired 

to find the radiation intensity (flux, dose rate) at the surface of the outer shield. 

Furthermore, it is often required to estimate the radiation intensity at more 

distant points outside the outer shield. This can usually be done with some 

accuracy merely from geometrical considerations, if the radiation current at 

the outer shield surface is known. This latter is equivalent to knowing the total 

source strength, and to knowing the probability that a typical particle emitted 

from the source escapes through the surface of the outer shield. 

In the following, then, are presented some derivations and calculations of 

these two quantities, surface intensity and surface escape probability, in three 

simple geometries under certain simplifying conditions. The geometries con­

sidered have respectively, plane symmetry, spherical symmetry, and cylindri­

cal symmetry. In each case we will only consider a uniformly distributed 

isotropic source strength throughout a central volume which is shielded by a 

concentric outer region of the same absorbing power. 

The chief simplifying assumption will be that all emitted particles travel in 

straight (unbroken) lines; that is, we will assume that any scattering is either 

through negligibly small angles, or is very small in magnitude compared to the 

absorption present. This situation is of frequent occurrence in practical trans­

port problems: The "particles" can be gamma rays-in which case our results 

are useful for obtaining gamma shield efficiencies, self-shielding factors of 

gamma sources, etc., or neutrons -in which case we might be studying escape 

from strong absorbers or calculating the fast-effect in solid fuel elements. 

II. GENERAL CONSIDERATIONS 

Consider now an isotropic source of particles, uniformly distributed 

within a volume v, which is in turn contained within a larger volume V; 
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V is bounded externally by area A. Particles will only propagate in straight 

lines, since we are neglecting scattering, but the number that penetrates a dis­

tance s within V will be attenuated by a factor exp (-2 s). L is the macroscopic. 

absorption cross section, and we are confining ourselves to situations where L 
is constant throughout V (this last condition will' be somewhat relaxed in the 

case of plane symmetry). Thus we will find it convenient to express all distances 

in units of a mean-free-path = L-l, and with this convention we will expect 

the desired quantities to be a function only of the geometry of v and V. 

Let then the "optical" distance (i.e., distance expressed in mean-free-paths) 

from an element dv of v, to an element dA of A be s. · The angle between s and 

an outward normal to A is, say, 8. The particle current outward through dA, 

due to unit source density distribution within dv, is then the product of dv, the 

fractional solid angle subtended by dA at dv, and the exponential attenuation 

factor: 

dv . dA cos8 
. 2 

47Ts 

-s e 

If we integrate this over all of A and v, and divide by the total source strength, 

we then obviously get P, the probability of escape of a typical particle. And 

this is one of our desired quantities: 

p = ! 1 dv [ dA cos~ 
v 'A 47TS 

-s e .•. ( 1) 

If the body is sufficiently symmetrical every dAis equivalent, any fixed surface 

point (denoted A in the sketches, as symbolizing the total surface area A) may 

be used as a terminus for s in the volume integrations, and Eq. ( 1) reduces to: 

AI' P = v dv 
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The other problemthat we wish to consider is the determination of the flux · 

on A-flux, it being remembered, is a scalar; the "track-length per unit 

volum~" of neutron theory, proportionate to the "dose-rate" of health physicists. 

We might, indeed, visualize a small test body at A, being subjected to the radia­

tion from the distributed source of unit· intensity per unit volume throughout v. 

The projected area of such a test body along any direction s, multiplied by the 

collision probability.L (test body). ds and summed over the test body, is con­

stant: L(test body)· v(test body). Thus the total collision rate per unit volume 

of test body is determined by multiplying !(test ~ody) and the flux at A, cpA' 
where the projection factor cosB of Eq. ( 2) is now not present in the volume 

integration for this last: 

~A= I -s 
dv e 2 

47Ts 
v 

... (3) 

It will be convenient, however, for us to plot a dimensionless quantity instead. 

of Eq. (3); so, in analogy with Eq. (2) we will define the quantity'¥ by setting 

= ~ 1 dv 

-s 
e 

2 
47Ts 

... (4) 

We will find below, P and 'I' for the three geometries: shielded slabs, spheres, 

and cylinders. The reader may also wish to consult related prior work that has 

become available. Castle, Ibser, Sacher, and Weinberg 1 give expressions 

and graphs of 1-P for unshielded spheres and cylinders, and also for hollow 

cylinders; these last involve integrals similar to some that we will find for 

shielded cylinders. Taylor and Obenshain
2 

give expressions and extensive 

graphs of~ outside shielded cylindrical sources. They allow 2: to be different 

within v and the shielding region, and. both concentric cylindrical and plane 
3 ' 

slab shields are considered. Case, de Hoffman, and Placzek give an elegant 

formulation of the- theory of P for unshielded sources, and give results for 

slabs, spheres, cylinders, and more complicated shapes. 
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Ill. SHIELDED SLABS 

We consider a slab of thickness Za, shielded on each side by thickness T of 

shield. This is shown in Fig. 1. Note that a and T are measured in mean-free­

paths. We will compute the current density and flux at point A on the shield 

dv 

~-
·········· .. S 

8l···· .. A 

SHIELD CORE SHIELD 

Fig. 1. Slab Source 

surface due to unit source density within the slab; weighted with the ratio A/v = 

1/a, these are then the desired dimensionless quantities P and 'It: 

l
eo 

0 

-s 
e 2 cos8 2Tydy, 

41Ts 

z z z 8 where s = y + z . Changing to integration on sec = t gives 

6 

... ( 5) 
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and 

p = 2~1 T+2a dz 

T . 

1
T+2a 

'¥ =-i. T dz 

-zt !
co 
~dt. 

1 t 

! co -zt 
e dt . 

1 t 

. .. ( 7) 

. .. (8) 

The integrations on z are now immediately accomplished. We will, further­

more, introduce the family of exponential integrals 

E (x) = 
n !

00 -xt 
_e __ dt . 

tn 
1 

... (9) 

These are discussed by Case, de Hoffman and Placzek3, by Chandrasekhar 4 , 

and many others, and have been extensively tabulated by Placzek5 .. So, 

finally, 

..• ( 10) 

and 

... ( 11) 
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IV. SHIELDED SPHERES 

We consider a sphere of radius a, surrounded by a concentric shield of outer 

radius R, and so of thickness T = R - a, see Fig. 2. We have uniform source 

Fig. 2. Sphere Source 

density throughout the central sphere: Requiring the mean-free-path to be the 

same in both sphere and shield allows us to measure all distances with this as 

the unit; the ratio A/v = 3R 2 /a 3 . The quantities we require are then given by: 

fv fa 3~2 de/> 
-s 

p e cos8 27Tr sincprdr ... ( 12) = 2 ' 47Ts 
0 0 

zlv fa -s 
'It = 3~ dcp 

e 27Tr sincprdr ... ( 13) 2 
47Ts 

0 0 
\ 

where s
2 = r 2 + R

2
- 2rR coscp, and r

2 = s 2 + R
2 

- 2sR cos B. Integrating 

on s instead ofcp, these become: 
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P = -4fa rdr 
4a 

0 i
R+r 

R-r 

and 

3R fa 1 R+r 
'I' = :::-3 rdr . 

2a o R-r · 

e:; (R2 

-s 
_e_ds 

s 

2 2 
+ s - r ) ds , ... ( 14) 

• •• ( 15) 

These again integrate in terms of the exponential integrals. The results can be 

variously expressed by means of the recursion formula 

(n-l)E (x) n 
-x· = e - x En- 1 (x ) , , :Q. > 1 

perhaps the simplest are: 

-R { 3 · 2 2 2 e (R . + Ra + R + A - 2R - 2)sinh a + 

(a
2 

• R
2 + 2R + 2) a cosh a} J , 

and 

'lt = 3~ ·[-~ (R2 
2a 

e -R {(R - 1) sinh a + a cosh a}] . 

... ( 16) 

... ( 17) 

. .. ( 18) 
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V. SHIELDED CYLINDERS 

We consider a cylindrical source of radius a, surrounded by a concentric 

cylindrical shield of outer radius R, and so of thickness T = R-a, see Fig. 3. 

I 

s/ , 
I 

Fig. 3. Cylindrical Source 

We have uniform source density throughout the central cylinder. Requiring the 

mean-free-path to be the same in both sphere and shield allows all distances to 

be measured in mean-free-paths. The ratio A/v = 2R/a 
2

. 
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The desired quantities on the shield surface are then given by 

i
a 

2R 
p = 7 0 pdp 121T 100 

d1> . dz 
o -m 

-s e 
z 

47Ts 
cos8 

••• ( 19) 



..• (20) 

2 2 2 2 ,J,. 8 .J..j where s = z + R + p - 2Rpcos't', and cos = (R-pcos.,.,) s. We first may 

integrate on z by means of the substitutions s 
2 

= £
2 + z 

2 
= € 2f

2
. The partial 

integrals on z then readily can be transformed to more convenient forms: 

([) - s 

f. 7--dz 

CD 

~JCDK (ft) dt 
f 1 t 

1 

... (21) 

and 

!
CD ~CD .t CD -s 2 -f~ ( ~dz =y r. = zj· K (ft)dt 

s t ~ - 1 0 

-CD 1 1 

... (22) 

The cp integrations are now most easily accomplished by considering the project- '· 

ion of Fig. 3 on a horizontal plane, see Fig. 4. Introducing the angle X between 

R 

Fig. 4. Projection of Cylindrical Source on Horizontal Plane 

Rand f, and recognizing that cosX = (R-pcos </>>/f, we see that our integrals 

have become 
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p = Tra2 . · ... (23) 

and 

~ = R2 Ia pdp 
Tra 

0 

... (24) 

The arguments may be expanded by the addition theorems of Graf and Neumann
6 

and then immediately integrated: 

2R ra roo . dt 
P = T l pdp Jl Kl(Rt)Io(pt) -t-' ... (25) 

... (26) 

and so, finally 

... (27) 

and 

... (28) 
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The remaining integrations must, in general, be perform~d numerically. A 

compilation that is of assistance in the second case is an unclassified Hanford 
7 . 

report by G. M. Muller In. the special case of R = a, or T = 0, however, the 

integrals follow from results in Chapter V of reference 6: 

... (29) 

and 

... (30) 

Equation (29) is incorrectly given in reference 3, but has appeared elsewhere in 

the classified literature 
8

. 

VI. RESULTS 

Families of curves based on Eq. { 10), ( 11 ), ( 17). (18), and (27), ( 28) are given 

in Fig. 5 through 10. Because of the large orders of magnitude that must be 

spanned for application to practical problems, it has been found convenient to plot 

the quantities PeT and 'lte T versus a (in mean-free-paths), for various values of 

shield thickness T (in mean-free-paths). 

Thus to obtain the escape probability P, knowing a and T (in mean-free-paths), 

the ordinates of Fig. 5, 7, and 9 should be directly read, then multiplied by 
-T 

e 

To obtain the surface flux c/>Adue to a given· source strength per unit volume, 

we must remember Eq. (4): having read the ordinate of Fig. 6, 8, or 10 , it 

must then be multiplied bye -T, by the source strength, and also by v/ A. Almost 

always one wants the flux c/>A expressed in particles /cm
2
-sec, so the source 

strength should be expressed in particles /cc-sec and the factor v/A must have 

the units [centimetersl. 
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Finally it should be pointed out that the requirements for the constancy of the 
. ~-1 

mean-free-path L.. throughout V can be relaxed somewhat in the case of plane 

symmetry. In fact, so long as L is constant in the core region v, it can be al­

lowed to be a varying function of position z in the shield region without changing 

Eq. ( 10) and ( 11). In these the external factor 1/Za is unchanged; a is still to be 

measured in core mean-free.:.paths. The arguments of the exponential integral 

functions are now to be interpreted as total optical thicknesses (JL (z) dz) of 

shield and shield-plus-core, respectively. Thus, if total optical shield thickness 

T is correctly computed, Fig. 5 and 6 can still be used. This remark may 

prove of co~venience i:n computing plane shielding situations where the shield 

is laminated. 
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