Nuclear reactivity evaluations of 216-Z-9 enclosed trench

PDF Version Also Available for Download.

Description

BS>Plutonium and americium accumulations and the nuclear criticality implications were evaluated for an underground liquid waste dispoaal site at Hanford, Washington. Remote plutonium detection by infrared, gamma, and neutron surveys is described. Geological drilling and soil sampling techniques developed are described. Nuclear criticality safety was evaluated by computer model calculations and by neutron pulsing techniques. Technologies used to evaluate a waste disposal site for a plutonium recovery operation are discussed, and sampllng equipment and procedures are described in detail. (auth)

Physical Description

Pages: 256

Creation Information

Smith, A. E. December 1, 1973.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

BS>Plutonium and americium accumulations and the nuclear criticality implications were evaluated for an underground liquid waste dispoaal site at Hanford, Washington. Remote plutonium detection by infrared, gamma, and neutron surveys is described. Geological drilling and soil sampling techniques developed are described. Nuclear criticality safety was evaluated by computer model calculations and by neutron pulsing techniques. Technologies used to evaluate a waste disposal site for a plutonium recovery operation are discussed, and sampllng equipment and procedures are described in detail. (auth)

Physical Description

Pages: 256

Notes

Dep. NTIS

Source

  • Other Information: Orig. Receipt Date: 30-JUN-74

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ARH--2915
  • Grant Number: AT(45-1)-2130
  • DOI: 10.2172/4317023 | External Link
  • Office of Scientific & Technical Information Report Number: 4317023
  • Archival Resource Key: ark:/67531/metadc1017564

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1973

Added to The UNT Digital Library

  • Oct. 15, 2017, 10:09 p.m.

Description Last Updated

  • Jan. 23, 2018, 1:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smith, A. E. Nuclear reactivity evaluations of 216-Z-9 enclosed trench, report, December 1, 1973; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc1017564/: accessed December 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.