## NATURAL CHROMIUM

AND ${ }^{22}$ C: $\operatorname{NEUTRON~ELASTIC~AND~}$ INELASTIC SCATTERING CROSS SECTIONS FROM 4.07 TO 8.56 M 2 V

W. E. Kinney

F. G. Perey

## BLANK PAGE

# Printed in ine United Stetes of Ameica. Avaisble from Nationa ? echnicat Informetion Service U.S. Cepentment of Commerce 5285 Port Rurai Rhasd. Sprongtield, Virgina 22151 Price: Prinued Copy $\$ 5.45$, Aficroficthe $\$ 1.45$ 

This report wes prepered as an secount of work sconsored by the Uirixed Stetes Governtient. Neither the United Slases nor the United States Atomic Enargy Comnnission. nor any of thate employses, nor wy of theis contractor3. subcontractors. or their employens, makes any werrenty. exprens or smplied. or astumes sery kewi iubbilify or responsibility for the eccuracy. somphenenest or uspfulness of any informmaion, apperstus. orodect or prosets disclosed. or represents that its ust wound not infringe privetely owned riftes.

# Contract No. W-7405-eng-26 

## Neutron Physicx Division

# NATURAI. CHROMIUM AVI) "Cr NEUTRON EI.ASTIC ANO INEI.ASTIC <br> SCATTERING CROSS SECTIONS FROM 4.07 TO 8.56 MeV 

W. E. Kinney and F. C. Perey

|  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

JANUARY 1974

OAK RIICGE NATIONAI. I.ABORATORY
Oak Ridge. Tennessee 37x, 0 ?
operated by
UNION CARBIDE CORFORATION
for the
U.S. ATOMIC ENERGY COMMISSION

## CONTENTS

Abstract ..... 1
Introduction ..... 1
Data Acquisition ..... 1
Data Reduction ..... 2
Resuits ..... 4
Additional Scattering Sample Properties ..... 4
Elastic Scattering Differential Cross Sections ..... 5
Inelastic Scattering Differential Cross Sections ..... 1:
Excitation Functions ..... 13
Inelastic Scaltering to the Continuum ..... 21
Conclusions ..... 24
Acknowledgments ..... 24
References ..... 25
Appendix ..... 27

# NATURAL CHROMIUM AND "Cr NEUTRON ELASTIC AND INELASTIC 

# SCATTER!NG CROSS SECTIONS FROM 4.07 TO 8.56 Mev 

W. E. Kinney and F. F. Perey


#### Abstract

Measured neutron elastic and inelastic ssattering cross sections for natural chromium between 4.07 and 8.56 Me " and for "Cr between 6.44 and 8.56 McV are presented and compared with the ciastic differential cross sections of Holmqvist and Wieding and with ENDF/B MAT $\mathbf{i l 2 1}$. Our elastic scattering differential cross sections are in fair agreemen: with those of Holmqvist and Wiedling. Our angle-integrated differentiai ciastic scattering cross sections are systematically higher by as muen as $17 \%$ than those of Holmquist and Wiedling atove 4.6 MeV . a sitteation similar te that found in comparing the two sets of data for other elements. The ENDF / B !! 1 MAT 1121 elastic angular distributions are found to be in poor agreement with experimerial results from 4 to 8.5 MeV though the ENDF B III MAT 1121 angle-inegrated differential elastic scattering cross sections agree within experimental uncertainties with our results over this energy range. An evaporation model of inelastic scattering is found to be of questionade validity if applied to levels in the residual nucleus of excitation energy less than $\mathbf{6 ~ M e V}$.


## INTRODUCTION

The data reported here are the results of one of a series of experiments to measure neutron elastic and inelastic scattering cross sections at the ORNL Van de Graaffs. Reports in the series are listed in Reference I. This report presents measured neutron elastic and inelastic scattering cross sections for natural chromium from 4.07 to 8.56 MeV and "'Cr from 6.44 to 8.56 MeV . To assist in the evaluation of the data, the data acquisition and reduction techniques are first briefly discussed. For the purposes of discussion the data are presented in graphical iorm and are compared with the results of Holmqvist and Wiedling' and with ENDF/B III (Evaluited Neutron Data File B. Version III) MAT II2I. Tables of numerical values of the elastic scattering cross sections and cross sections for inelastic scattering to discrete levels in the , esidual nucleus are given in an appendix.

## DATA ACQUISITION

The data were obrained with conventional time-of-llight techniques. Pulsed ( 2 MHz ). bunched (approximately 1.5 nsec full width at half maximum. FWHM) deuterons accelerated by the ORNL Van de Graaffs interacted with deuterium in a gas cell to produce neutrons by the D(d.n)'He reartion. The gas cells, of length 1 and $\mathbf{2 c m}$. were operated at pressures of approximately 1.5 atm and gave neutron energy resolutions of the order of $\pm \mathbf{6 0}$ keV.

The neutrons were scattered from a solid rigint circular cylindrical sample of natural chromium, 1.52 cm diameter, 2.56 height of mass 25.90 gm and placed approximately 10 cm from the gas cells when the detector angles were greater than 25 degrees. For smaller detector angles the cell-to-sample distance had to be increased to 33 cm in order to shield the detector from neutrons coming directly from the gas cells. The " "cr sample was in the form of a solid right circular cylinder made of 5 separate discs of pressed ${ }^{3} \mathrm{Cr}$ metallic powder with no binder. The overall dimensions were 1.76 cm diameter, 2.86 cm height, and the mass was 29.01 gm . The ${ }^{52} \mathrm{Cr}$ had oxidized considerably but the oxygen was accounted for as described in the results below.

The scattered neutrons were detected by 12.5 cm diarneter NE-213 liquid scintillators optically coupled to XP-1040 photomultipliers. The scintillators were 2.5 rm thick. Data were taken with three detectors simultaneously. Flight paths were approximately 5 m with the detector angles ranging from 15 to 140 degrees. The gas cell neutron production was monitored by a time-of-llight system which used a 5 cm diameter by 2.5 crn thic! NE-213 scintillator viewed by a 56 -AVP photomultiplier placed about 4 m from the celi at an angle of 55 degrees with ine incident deuteron beam.

For each event a PDP-7 computer was given the flight time of a detected recoil proton event with reference to a beam pulse signal, the pulse height of the recoil proton event, and identification of the detector. The electronic equipment for supplying this information to the computer consisted, for the most part, of standard commercial components. The electronic bias was set at approximately 700 keV neutron energy to ensure good pulse shape discrimination against gamma-rays at all ener gies.

The detector efficiencies were measured by ( $\mathrm{n}, \mathrm{p}$ ) scattering from a 6 mm diameter polyethylene sample and by detecting source $D(d, n)^{3} H e ~ n e u t r o n s ~ a t ~ 0 ~ d e g r e e s ' . ~ B o t h ~$ interactions gave results which agreed with each other and which yielded éficiency versus energy curves that compared well with calculations4.

## DATA REDUCTION

Central to the data reduction process was the use of a light pen with the PDP-7 computer oscilloscope display programs to extract peak areas from spectra. The light pen made a comparatively easy job of estimating errors in the cross section caused by extreme but possible peak shapes.

The reduction process started by normalizing a sample-out to a sample-in time-of-night spectrum by the ratio of their monitor neutron peak areas, subracting the sample-out spectrum, and transforming the difference spectrum into a spectrum of center-of-mass cross section versus excitation energy. This transformation allowed ready comparison of spectra taken at different angles and incidem neutrol, energies by removing kinematic effects. It abso made all single pesks have approximately the same shape and width regardless of excitation energy (in a time-of-light spectrum, single peaks broaden with increasing flight time). A spectrum of the variance hased on the couming statistics of the initial data was also computed. Figure I shows a typical time-of-light spectrum and its tranaformed energy spectrum.


Fig. I. A typical time-of-nlight spectrum for natural chromium with its transformed energy spectrum. The data were taken at 6.44 MeV incident neutron energy at 85 degrees with a 5.2 m flight path. The sample-out spectrum has not been subtracted from the time-of-flight spectrum. Note that the energy spectrum has been offset to allow negative excursions due to statistics in the subtraction of the sample-out background. Because of uncertainties in the efficiency near the electronic bias, the energy spectrum was terminated at ioproximately i MeV scattered neutron energy - very nearly channel 350 in the time-of-fiight spectrum. The large peak to the left of both spectra is the elastic peak. The small peak at roughly channel 100 of the energy spectrum is due 10 a $1.5 \%$ oxygen contamination of the sample.

The transformed spectra were read into the PDP-7 computer and the peak stripping was done with the aid of the light pen. A peak was stripped by drawing a background beneath it. subtracting the background, and calculating the area, centroid, and FWHM of the difference. The variance spectrum was used to compute a counting statistics variance corresponding to the stripped peak. Peak stripping errors due $t=$ uncertainties in the residual background under the peaks or to the tails of imperfectly resolved nearby peaks could be included with the other errors by stripping the peaks several times corresponding to ligh, low, and best estimates of this backgrcurid. Although somewhat subjective, the low and high estimates of the cross sections were identified with $95 \%$ coufidence limits; these. together with the best estimate, defined upper and lower errors due to stripping. When a spectrum was completely stripped, the output information was written on magnetic tape for additional processing by a large computer.

Finite sample corrections were performed according to semianalytic recipes whose constants were obtained from fits to Monte Carlo results'. The corrections were 6-12\% at forward angles, $40-60 \%$ in the first minimum, and $10-13 \%$ on the second maximum.

The final error analysis included uncertainties in the geometrical parameters (scatterer size, gas cell-to-scatterer distance, flight paths, etc.) and uncertainties in the finite sample corrections.

The measured differential elastic scattering cross sections were fitted by least squares to a Legendre series:

$$
\sigma(\mu=\cos \theta)=\Sigma[(2 \mathbf{k}+1) / 2)] a_{\mathbf{k}} \mathrm{P}_{\mathbf{k}}(\mu)
$$

the points being weighted by the inverse of their variances which were computed by squaring the average of the upper and lower uncertainties. The common $7 \%$ uncertainty in absolute normalization was not included in the variances for the fitting. In order to prevent the fit from giving totally unrealistic values outside the angular range of our measurements. we resorted to the inelegant but workable process of adding three points equally spaced in angle between the largest angle of measurement and 175 degrees. The differential cross sections at the added points were chosen to approximate the diffraction pattern at large angles, but were assigned $50 \%$ errors.

## RESULTS

## Additional Scattering Sample Properties

Natural chromium contains 4 isotopes with natural abundances ${ }^{6} 4.31 \%{ }^{50} \mathrm{Cr}, 83.76 \%$ ${ }^{52} \mathrm{Cr}, 9.55 \%{ }^{53} \mathrm{Cr}$, and $2.38 \%{ }^{54} \mathrm{Cr}$. Inelastic scattering to the 1.53 MeV level in ${ }^{53} \mathrm{Cr}$ and possibly to the 1.28 MeV level in ${ }^{33} \mathrm{Cr}$ is included in our cross sections per atom of natural cinromium for inelastic scattering to the 1.434 MeV level in ${ }^{52} \mathrm{Cr}$. Similarly, inelastic scattering to the $\mathbf{2 . 2 3}, \mathbf{2 . 3 2}$, and 2.45 MeV levels in ${ }^{31} \mathrm{Cr}$ is included in our cross sections per atom of natural chromium for inelastic scattering to the 2.369 MeV level in ${ }^{52} \mathrm{Cr}$. The natural chromium sample had a $1.5 \%$ oxygen contamination.

The ${ }^{32} \mathrm{Cr}$ sample had oxidized sufficiently so that oxygen elastic scattering and inelastic scattering to the 6.052 and 6.131 MeV levels in oxygen were evident in the spectra. Kinematics separated the oxygen elastic scattering from that of the ${ }^{52} \mathrm{Cr}$ at angles larger
than 60 deg. and was used with our oxygen data to deiermine the amount of oxygen in the sample to be $0.42 \mathrm{gm} / \mathrm{cm}^{3}$ as opposed to a ${ }^{53} \mathrm{Cr}$ density of $3.73 \mathrm{gm} / \mathrm{cm}^{3}$. The efastic scattering at smaller angles where there was no separation was thus able to be correc:ed for the oxygen. The oxygen inelastic scattering was sufficiently prominent and sharp so that it could be stripped from the data.

## Elastic Scattering Differential Cross Sections <br> Natural Chromium

Our differential elastic scattering cross sections for natural chromium are shown in Figure 2 with Legendre least squares fits to the data. Wick's Limit is shown and was used as an additional point in the fittings.

Figures 3 and 4 compare our differential elastic scattering cross sections with those of Holmquist and Wiedling ( $\mathrm{H}+\mathrm{W})^{2}$. The angular distributions of ENDF/B III MAT 1121 normalized to the integrals of the experimental differential elastic scattering cross sections are also shown in the figures. The two sets of experimental data appear to be consistent so far as shapes are concerned with the first minimum falling at the same angle in both sets and slowly moving toward smaller angles with increasing energy.

The ENDF/B III MAT 1121 angular distributions are perhaps in the poorest agreement we have seen in our comparisons of our data and the data of others with ENDF/B (see Ref. 1). Previous comparisons genera!!y agree within experimental uncertainties at angles less than 40 deg . An underestimate of the forward scattering could be a serious deficiency in the calculation of a fast reactor shield. ENDF/B III MAT 1121 uses a Legendre expansion of order 16 to describe its elastic angular distributions from 2.35 to 14 MeV while the maxinum order required by the experimental data is 9 .

The degree of agreement among our elastic differential cross sections and those of Holmqvist and Wiedling might be estimated with the help of Figures 5 and 6 where normalized (the coefficient of $\mathbf{P}_{0}=1$ ) Legendre expansion coeffi-ients resulting from fits to both sets of data are plotted as a function of incident neutron energy. The curves are quadratic least squares fits to our set of data with the resulting constants giver, in the equations. With the exception of the data at 8.05 MeV . all of the first four coefficients resulting from fits to the data of Holmqvist and Wiedling lie within the fitting uncertainties of the curves fitting our coefficients. The coefficients of the higher order polynomials are not in such good agreement, however. On this basis, then, the two sets of data can only be said to be in fair agreement.

$$
{ }^{52} \mathrm{Cr}
$$

Our ${ }^{52} \mathrm{Cr}$ differential elastic scattering cross sections are shown in Figure 7 with Legendre least squares fits and Wick's Limit which was used as an additional point in the fitting.

Our natural chromium and ${ }^{52} \mathrm{Cr}$ differential elastic scattering cross sections are compared in Figure 8 where it can be seen tirey agree generally well within the experimental uncertainties.


Fig. 2. Our natural chromium neutron differential elastic cross sections with Legendre fits to the data. WICK indicates Wick's Limit which was used in the fitting. The 7\% uncertainty in absolute normalization common to all points is not included in the error bars.


Fig. 3. Our natura! chromium neutron differential elastic cross sections compared with the data of Holmqvist and Wiedling $(\mathrm{H}+\mathrm{W})^{2}$ and with the angular distributions of ENDF/B III MAT 1121 from 4.34 to 6.09 MeV . WICK indicates Wick's Limit. The $7 \%$ uncertainty in absolute normalization common to all points is not included in our error bars.


Fig. 4. Our natural chromium neutron differential elastic cross sections enmpared with the data of H rImqvist and Wiedling ( $\mathrm{H}+\mathrm{W})^{2}$ and with the angular distributions of ENDF/B III MAT 1121 from 6.44 to 8.56 MeV . WiCK indicates Wick's Limit. The 7c; uncertainty in absolute normalization common to all points is not included in our error bars.


Fig. 5. The first through fourth normalized Legendre expansion coefficients obtained by fitting the natural chromium differential slastic scattering cross sections of Holmquist and Wiedling ${ }^{2}$ and our data as a function of incident neutron energy. $E$. The curves result from quadratic least squares fits to our data with constants given in the equations.


Fig. 6 The fifth through ninth normalized Legendre expansion coefficients obtained by fitting the natural chromium differential neutron olastic scattering cross sections of Holmquist and Wiedling ${ }^{2}$ and our data as a function of incident neitron energy. E. The curves resuli from quadratic least squares fits to our data with coinitants given in the equations.


Fig. 7. Our "Cr neutron differential elastic scattering cross sections with l.egendre fits to the data. WICK indicates Wick's Limit and was used in the filting. The $7 \boldsymbol{P}$; unce:tainty common to all points is not included in the error bars.


Fig. 8. A comparison of our natural chromium and ${ }^{32} \mathrm{Cr}$ neutron differential elastic scattering cross sections with Legendre ieast squares fitis io the natural chromium data.

## Inelastic Scatlering Differential Cross Sections <br> Natural Chromium

Meaningful inelastic scattering cross sections could be obtained only for inelastic scattering to levels in "'Cr for the natural chromiumis sampte since the natural abundances of the other isotopes are so small.

Figure 9 shows our differential cross sections per atom of natural chromium forr inelastic scattering to the 1.434 MeV level in '" Cr . This level being a $2^{\prime}$ kevel, there migin be some asymmetry about 90 deg. expected in the angular distribution though within the experimemal uncertainties none is evident except possibly at 8.56 MeV .

Our differemial crios sections per atom of naturai chromium ior inetastic scatiering to the $\mathbf{2 . 3 6 9} \mathrm{MeV}$ kevel in "'Cr are shown in Figure 10. The anguar distribetions are. within experimental uncertainties, isotropic.

$$
{ }^{s ?} \mathbf{C} \text { : }
$$

Our differential cross sections obtained with the "Cr sample for inclasic scatering to the 1.434 MeV tevel in "Cr are shown in Figure 11 where remarks similar to those above for the natural chromium sample apply.

Figure $\mathbf{1 2}$ shows our differential cross sections for inclastic scattering to the $\mathbf{2 . 3 6 9} \mathbf{~ M e V}$ level in " ${ }^{3} \mathrm{Cr}$ and the angular distritutions. in agreemem with those from the natural chromium sample, are isotropic within experimental uncertainties.

Figures 13 and 14 compare the natural chromium and " $\mathbf{C r}$ differential inelastic scattering to levels in "' Cr . The ${ }^{32} \mathrm{Cr}$ cross sections have been reduced by the " Cr natural isotopic abundance for the comparison. The data agree generally within experimental uncertainties.

## Excination Functions

Our angle-integrated differential cross sections per atom of natural chrcmium are shown as a function of energy in Figure 15. Our ${ }^{3} \mathrm{Cr}$ data are also included. the inelastic scattering cross sections having been reduced by the "'Cr natural isotopic abundance. The data of Hoimquist and Wiedling' are shou... in addition. along with the curvi from ENDF/B III MAT 1121 .

Our natural chromium and ${ }^{\text {" }} \mathrm{Cr}$ data agree within experimental uncertainties and the integrated elastic data are in unusually good agreement with ENi-: B (see Ref. I).

Although our data are in agreement with those of Holmqvist and Wiedling below 5 MeV . our data are systematically higher than theirs at higher energies, a situation similar to that encountered in comparisons made evith the data of Holmquist and Wiedlir:̃ in the case of natural nickel and copper'. If each set of the chromium data is linearly interpolated to the energies of the otiver, cur data aie 350 mb higher at 5.50 MeV with the differences reducing roughly exponentially with increasing energy to 36 mb at 8.56 MeV . Some discussion of these systematic differences with Holmqvist and Wieciling is given in our nickel report'.


Fig. 9. Our differential cross sections per atom of natural chromium for neutron ineiastic scattering to the 1.434 MeV levcl in ${ }^{\text {'' }} \mathrm{Cr}$. The $\pm 7 \%$ uncertainty common to all points is not inciuded in the error bars.


Fig 10. Our differential cross sections per atom of natural chromium for inelastic scattering to the $\mathbf{2 . 3 6 9} \mathbf{~ M e V}$ level in ${ }^{3} \mathrm{Cr}^{\mathrm{C}}$. The $\pm \mathbf{7 \%}$ uncertainty common to all points is not included in the error bars.


Fig. 11. Our differential cross sections for inelastic scattering to the 1.434 MeV level in ${ }^{5:} \mathrm{Cr}$ as measured with the ${ }^{52} \mathrm{Cr}$ sample . .ie data are given per atom of ${ }^{5}{ }^{3} \mathrm{Cr}$. The $\pm 7 \%$ uncertainty common to all points is riot included in the error bars.

Fig. 12. Our differential cooss sections for inelastic scattering to the 2.369 McV level in ${ }^{32} \mathrm{Cr}$ as measured with the ${ }^{52} \mathrm{Cr}$ sainple. The data are given per atom of ${ }^{5} \mathrm{Cr}$. The $\pm 7 \%$ uncertainty common to all points is not included in the error bars.


Fin. 13. A comparison of our crows sections for inelastic scattering to the 1.434 MeV levit in " ${ }^{2} \mathrm{Cr}$ measured with the natural chromium and the ${ }^{52} \mathrm{Cr}$ samples. The cross sections
 nusurd chromium data.


Fig. 14. A comparison of our cross sections for inclastic scattering to the 2.369 MeV level in ${ }^{52} \mathrm{Cr}$ measured with the natural chromium and the ${ }^{32} \mathrm{Cr}$ samples. The cross sections are given per atom of natural chromium.


Fig. 15. Our angle-integrated cross sections for neutron elastic scattering on natural chromium and cross sections per atom of natural chromium for zombined inelastic scattering to the $\mathbf{1 . 4 3 4} \mathrm{MeV}$ level and :he $\mathbf{2 . 3 6 9 ~ M e V}$ level in ${ }^{52} \mathrm{Cr}$ as a function of incident neutron energy. Elastic data of Holmqvist and Wiedling ( $\mathrm{H}+\mathrm{W}$ ) are shown. The curves are cross sections from ENDF/B III MAT 1121.

Our natura! chromium and "Cr inelastic scattering data agree within experimental uncertainties. ENDF B III MAT 1121 stops inelastic scattering to discrete levels at an incident zeutron energy of 3.31 MeV . using an evaporation model with a constant nuclear "tumperat ure" of 1 MeV to describe inelastic scattering above this incident neutron energy.

## Inelastic Scattering To The Continuum

The rapidly increasing density of levels in the isotopes of naturat chromium above an excitation energy of 2.369 MeV produced inelastically scattered neutron spectra, isotropic in their angular distributions, which we reduced as inelastic scattering to a structured "continuum" or final states ratier than attempting to extract cross sections for inelastic scattering to groups of levels or to bands of excitation energy. Figure 16 shows our "contin:uum" inciastic scatiering data where our angle-averaged double-differential cross sections for scattering to an excitation energy are plotted as a iunction of the excitation energy for all our energies of measurement. The preferential excitation of $0^{+}, 2^{+}, 4^{+}, 6^{+}$, or $3^{-}$ levels at energies of $2.77,2.96,3.1,3.45,3.77,4.1,4.6,5.6$, and 6 MeV are ciearly seen. But also there are other levels or grour ; of levels which were excited to produce the other structure which is evident.

The adequacy of an evaporation model in describing our inelastic "continua" may be judged from Figure 17 where $\operatorname{SIG}\left(E \rightarrow E^{\prime}\right) / E^{\prime}$ versus $E^{\prime}$ is plotted where $\operatorname{SIG}\left(E-E^{\prime}\right)=$ the angle-averaged differential cross section for scsttering from incident energy E to exit c.m. energy $d E^{\prime}$ about $\Sigma^{\prime}$. The straight lines are least squares fits to the data with temperatures resulting from the fits being indicated. The uncertainties on the temperatures are uncertainties in tike fitting only. Two fits have been made to each set of data: cne covering neorly the entire range of $E^{\prime}$ for which we extracted data and the other to an $E^{\prime}$ below which an evporation model might be more appropriate. The values of E' to which the fits were made are indicated. The fits over the entire range of $E^{\prime}$ would seem to offer a poor description of the data with there being differences of a factor of 2 among the data and the cross sections given by an evaporation model. Fits over more limited ranges in $\mathbf{E}^{\prime}$ not su:f prisingly offer a better description of that data to which they are fitted as structure becomes less pronounced with increasing excitation energy (decreasing exit energy E). As mentioned above, ENDF/B III MAT 1121 describes all inelastic scattering above incident neutron energies of 3.31 MeV by an evaporation model with a constart temperature of I MeV.


Fig. 16. Our natural chromium angle-averaged cross sections for inelastic scattering to the "continuum" as a funciion of excitation energy for incident neutron energies, E, from 4.34 to 8.56 MeV .


Fig. 17. Our natural chromium angle-averaged cross sections for inelastic scattering to the continuum divided by the out-going neutron energy, $E^{\prime}$, as a function of out-going neutron energy for incident neutron energies, E, frora 7.54 to 8.56 MeV . Least squares fits were made io two different indicated upper limits in $E^{\prime}$ for each set of data with resulting temperatures, $T$, being shown. The lower value of $E$ ' was equal to the lowest value of the data in all cases.

## CONCLUSIONS

Our natural chromium differential elastic scattering cross sertions are in fair agreement with the data of Holmqvist and Wiedling when Legendre expansion coefficients are compared. The systematic difference in angle-inteprated differ-ntiai elastic cross sections above s. MeV seen in comparisons of the two sets of data for other elements is also seen here.

The ENDF/B III MAT 1121 elastic angular distributions are in poor agreement with experimental data and underestimate the forward peak. The ENDF B III MAT 1121 angle-integrated differential elastic scattering cross sections, however, agree with our data within experimental uncertainties.

An evaporation model of inelastic scattering to levels of excitation energy in the residual nucleus greater than 6 MeV appears to offer a fair description of anelastic scattering to these levels but becomes questionable in its reprasentation of inelastic scattering to levels of lower excitation energy.

## ACKNOWLEDGMENTS

Many have contributed to this experimental program at one time or another and we would like to thank them for their contributions. In particular, we would like to acknowledge the help of J. K. Dickens, J. W. McConrell. J. A. Higgerstaff. A. M. Marusak, P. H. Stelson, C. O. LeRigoteur, and E. Hungerford.

We are deeply indebted to F. C. Maienschein, director of the Neutron Physics Division, for his support of the experiment with the use of computers in report preparation and type setting which produced this report and the other six of our last seven reports.

## REFERENCES

1. F. G. Perey and W. E. Kinney, "Carbon Neutron Elastic- and Inelastic- Scattering Cross Sections from 4.5 to $8.5 \mathrm{MeV}^{\prime \prime}$. ORNL-4441 (December 1970).
F. G. Perey, C. O. LeRigoleur and W. E. Kinney, "Nicket-60 Neurron Elastiv:- and inelastic- Scattering Cross Sections from 6.5 to $8.5 \mathrm{MeV}^{*}$. ORNL-4523 (April 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections from ${ }^{\text {so }} \mathrm{Fe}$ in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{*}$. ORNL-4s. 15 (June 1970).
F. G. Perey and W. E. Kinney, "Calcuum Neutron Elastic- and Inelastic- Scattering Cross Sections from 4.0 to $8.5 \mathrm{MeV}^{-}$. ORNL-4519 (April 1970).
F. G. Perey and W. E. Kinney, "Sulfur Neutron Elastic- and inelastic- Scattering Cross Sections from 4 to $8.5 \mathrm{MieV}{ }^{\prime \prime}$. ORNL-4539 (June 1970).
W. E. Kinney and F. G. Perey, "Neurron Elastic- and Inclastic- Scattering Cros: Sectiuns fer Co in the Encrgy Range 4.19 to $8.56 \mathrm{MeV}^{\mathbf{N}}$. ORNL-4549 (June 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections for Mg in the Energy Range 4.19 to $8.56 \mathrm{Ne}^{\mathrm{e}} \mathrm{V}^{\text {. }}$, ORNL-4550 (June 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections for Si in the Fneizy Range 4.19 to 8.56 MeV‥ ORNL-4517 (July 1970).
F. G. Perey and W. E. Kinney, "Neutron Elastic- and Inelastic- Scattering Cross Sections 'or Na in the Energy Range of 5.4 to $8.5 \mathrm{MeV}^{\text { }}$, ORNL-4518 (f.ugust 19?0).
W. E. Kinney and F. G. Perey, "Al Neutron Elastic- and Inelastic- Scattering Cross Sections from 4.19 to $8.56 \mathrm{MeV}^{*}$. ORNL-4516 (October 1970).
i:. G. Perey and W. E. Kinney, "V Neutron Elastic- and Inelestic- Srattering Cross Sections from 4.19 to $8.56 \mathrm{MeV}^{-}$. OR NL-4551 (October 1970).
F. G. Perey and W. E. Kinney. "Neutron Elastic- and Inelastic- Scatiering Cross Sections for Yttrium in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{+}$. ORNL-4552 (December 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections for Oxygen in the Energy Range 4.34 to $8.56 \mathrm{MeV}^{\text {² }}$. CRNi-4780 (April 1972).
W. E. Kinney and F. G. Perey, "W Neutron Elastic- and Ireiastic- Srattering Cross Sections from 4.34 to $8.56 \mathrm{MeV}^{\prime \prime}$. ORNL-4803 (May ${ }^{\text {; } 973) .}$

W E. Kinney and F. G. Perey, "Natural Titanium Neutron Elastic and Inelastic Scattering Cross Sections from 4.07 to $8.56 \mathrm{MeV}^{¹}$. OR NL-4810 (October 1973)
W. E. Kinney and F. G. Perey. "Natural Nickel and ${ }^{60} \mathrm{Ni}$ Neutron Elastic and Inelastic Scattering Cross Sections from 4.07 to $8.56 \mathrm{MeV}^{*}$. ORNL - $\mathbf{4 8 0 7}$ (to be published)
F. G. Perey and W. E. Kinney, "Nitrogen Neutron Elastic and Imelastic Scattering Cross Sections from 4.34 to $8.56 \mathrm{MeV}^{\mathbf{n}}$. ORNL-480S (to 3 pe publishrd).
W. E. Kinney and F. G. Perey. ${ }^{\text {as }}$ Fe Neutron Elastic and Inelastic Scattering Cross Sections from 4.34 to $3.56 \mathrm{MeV}^{-}$. ORNL-490 ( 10 bl published).
W. E. Kinney and F. G. Perey ${ }^{{ }^{63}} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ Neutron Elastic and 1 nelastic Scattering Cross Secions frem 5.50 to $8.50 \mathrm{MeV}^{*}$. ORNL-4908 (to be publishea).
W. E. Kinazy and F. G. Perey, ${ }^{\boldsymbol{\omega}}{ }^{200} \mathrm{~Pb},{ }^{307} \mathrm{~Pb}$, and ${ }^{30} \mathrm{~Pb}$ Neutror. Elastic and Inelastic Scattering Cross Sections from 5.50 to $8.50 \mathrm{MeV}{ }^{*}$. ORNL-4909 (to be published)
2. B. Holmqvist and T. Wiedling, "Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations", AE-366, íktiebolaget Atomenergi (1969).
3. W. E. Kinney, "Neutron Elastic and Inelastic Scattering from ${ }^{5}$ Fe from 4.60 to 7.55 $\mathrm{MeV}^{*}$. ORNL-TM-2052, January 1968.
4. R. E. Textor and V. V. Verbinski, 05S: A Monte Carto Cod: for Calculating Pulse Height Distributions Due to Monoenergetic Neutrons Incident on Organic Scintillators", ORNL-4160 (February 1963).
S. W. E. Kinney, Nicl. Instr. and Methods 83, 15 (1970).
6. C. Michael Lederer, Jack M. Hollander, and Isadore Periman. "Tables of Isolopes" Sixth Edition, John Wiley \& Sons, Inc. (1967).

## APPENDIX

Tabulated Values of Natural Chromium and "Cr Neutron Elastic Scattering Cross Sections<br>and<br>Crors Sections for Inelastic Scattering<br>To Discrete Levels

Our measur:d values for natural chromium and ${ }^{52} \mathrm{Cr}$ neutron elastic scattering and cress sections im inelastic scattering to discrete ievels are tabulated below. The uncertainties in differential cross sections, indicated by $\Delta$ in the tables, are relative and do not include a $\pm 7 \%$ uncertainty in detector efficiency which is common to all points. The $\pm 7 \%$ uncertainty is included in the integrated and average values. The total cross sections. $\sigma_{1}$, are those we used in the computation of Wick's Limit and were net measured by us.

We have not included the cross sections for inelastic scattering to the continuum. They are available from the National Neutron Cross Section Certer. Srookhaven National Laboratory, or from us.

No attempt was made to correct angie-integrated differential cross sections for inelastic scaitering to the 1.434 NieV level in ${ }^{3} \mathrm{Cr}$ at those energies at which data were taken at just three angles because of the anisotropic angular distributions ef neutrons so scatered. No integrated values are therefore given in these cases.

Natural chromium cross sections may be found on pages 28 through 37. The cross sections for ${ }^{52} \mathrm{Cr}$ may be found on pages 36 through 41.

## NATURAL CHROMIUM CROSS SECTIONS

Inelastic seattering cross sections are given per atom of natural chromium for inelastic scattering to levels in ${ }^{52} \mathrm{Cr}$.

$$
\begin{gathered}
\mathrm{E}_{\mathrm{n}}=4.07 \pm 0.08 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1.434 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| acm | dojdm | $\Delta(\%)$ |  |
| :--- | :--- | :--- | :--- |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.31 | 29.80 | 9.1 | 12.9 |
| 78.86 | 29.77 | 6.0 | 12.2 |
| 86.38 | 30.89 | 7.8 | 12.2 |


| aso | do/dos | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | $m b / s t r$ | + |  |
| 71.64 | 11.88 | 19.5 | 30.1 |
| 79.20 | 7.17 | 20.4 | 35.8 |
| 86.74 | 11.31 | 25.6 | 32.0 |

Avg do/dv= $\quad 8.23 \mathrm{mb} / \operatorname{sir} \pm 17.5 \%$
$\int(d \sigma / d m) d \omega=103.43 \mathrm{mb} \pm 17.5 \%$
$\mathrm{E}_{\mathrm{a}}=4.34 \pm 0.07 \mathrm{MeV}$
Elastic Scattering

| $\theta_{\text {c }}$ c | do/do | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mbisir | + | - |
| 10.20 | 1999.63 | 6.5 | 8.6 |
| 17.83 | 1630.06 | 5.4 | 9.1 |
| 17.83 | 1671.67 | 5.7 | 7.1 |
| 25.47 | 1240.12 | 5.7 | 7.2 |
| 25.47 | 1131.93 | 4.9 | 5.4 |
| 33.09 | 737.58 | 5.4 | 11.2 |
| 40.71 | 463.61 | 5.9 | 8.4 |
| 48.32 | 273.63 | 6.5 | 5.8 |
| 55.91 | 137.06 | 8.4 | 12.2 |
| 63.48 | 53.22 | 16.9 | 13.5 |
| 71.04 | 2i. 18 | 2:9 | 21.8 |
| 78.58 | 20.61 | 42.8 | 32.1 |
| 86.10 | 33.01 | 15.0 | 15.5 |
| 96.10 | 55.28 | 9.0 | 9.6 |
| 103.58 | 64.35 | 109 | 10.8 |
| 111.04 | 63.30 | 9.6 | 8.7 |
| 122.45 | 54.53 | 10.8 | 7.9 |
| 129.86 | 4241 | 10.5 | 9.2 |
| 13726 | 36.36 | 11.5 | 11.4 |

$\int(d \sigma / d o) d e=240.99 \mathrm{mb} \pm 7.3 \mathrm{G}$
Wick's Limit $=\mathbf{i 7 8 6 . 0 3} \mathrm{mb} \pm 7.3 \%$ $\sigma_{\mathrm{T}}=3.74 \mathrm{~b} \pm 1.6 \mathrm{c}$

| Legendre Fit. Order $=8$ |  |  |
| :--- | :---: | ---: |
| $k$ | $a$ | $\Delta(G)$ |
| 0 | 388.49658 | 29 |
| 1 | 363.73169 | 2.4 |
| 2 | 194.42158 | 2. |
| 3 | 131.38455 | 3.0 |
| 4 | 62.81519 | 5.3 |
| 5 | 21.49561 | 13.4 |
| 6 | 8.86383 | 28.6 |
| 7 | 3.90331 | 48.1 |
| 8 | 1.32871 | 104.2 |

$E_{\mathrm{n}}=4.34 \pm 0.07 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to. 1.434 MeV Level

| aca | doidon | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $m b ; s / r$ | + | - |
| 40.88 | 31.61 | 14.8 | 20.1 |
| 65.50 | 28.90 | 16.9 | 22.8 |
| 56.11 | 23.13 | 14.5 | 20.3 |
| 63.70 | 21.15 | 14.2 | 12.9 |
| 71.27 | 21.76 | 13.8 | 11.9 |
| 78.83 | 19.80 | 12.9 | 124 |
| 85.35 | 20.72 | 13.9 | 11.2 |
| 96.35 | 21.09 | 11.5 | 11.4 |
| 103.83 | 26.38 | 9.7 | 8.5 |
| 111.27 | 22.07 | 15.6 | 15.9 |
| 122.66 | 22.82 | 11.7 | 8.7 |
| 130.06 | 24.05 | 12.2 | 11.3 |
| 137.43 | 24.22 | 13.6 | 11.0 |

$\int(d \sigma / d m) d m=299.10 \mathrm{mb} \pm 8.4 \%$

| Legendre Fit. Order $=2$ |  |  |
| :---: | :---: | ---: |
| $k$ | $a$ | $\Delta(\%)$ |
| 0 | 47.60388 | 4.6 |
| 1 | 0.27926 | 484.6 |
| 2 | 1.86223 | 64.4 |

$\mathrm{E}_{\mathrm{a}}=4.34 \pm 0.07 \mathrm{MeV}$ (m.n) to: 2359 MeV Level

| $a_{c}$ | dojder | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | $m b ; s t r$ | $+$ | - |
| 48.73 | 10.73 | 27.1 | 28.7 |
| 56.37 | 11.28 | 15.6 | 124 |
| 63.97 | 1278 | 19.9 | 15.2 |
| 71.56 | 9.8? | 18.6 | 18.0 |
| 79.14 | 8.75 | 21.2 | 17.7 |
| 86.66 | 7.68 | 10.1 | 101 |
| 96.66 | 13.11 | 23.4 | 16.4 |
| 104.12 | 8.49 | 25.6 | 186 |
| 111.56 | 6.58 | 32.8 | 31.1 |
| 12291 | 9.01 | 23.7 | 18.6 |
| 130.29 | 10.26 | 21.5 | 18.6 |
| 137.64 | 14.56 | 14.9 | 14.0 |

Avg. do/deo $=9.34 \mathrm{mb} / \mathrm{str} \pm 10.3 \mathrm{c}$ $\int(d \sigma / d a) d e 0=117.41 \mathrm{mb} \pm 10.3 \%$
$E_{\mathrm{a}}=4.65 \pm 0.07 \mathrm{MeV}$ ( $\mathrm{n} . \mathrm{n}$ ) to: 1.434 MeV Level

| $\theta_{\mathrm{cm}}$ | do/d $\omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :--- | ---: |
| $d e \mathrm{~g}$. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.26 | 18.71 | 13.9 | 15.8 |
| 78.81 | 14.50 | 18.4 | 16.9 |
| 86.33 | 15.93 | 14.8 | 9.0 |

$E_{m}=4.65 \pm 0.07 \mathrm{MeV}$ (土n.ri) io: 2369 MeV Leved

| acs | do/de | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $\mathrm{mb} / \mathrm{Str}$ | + | - |
| 71.50 | 8.76 | 21.6 | 13.5 |
| 79.06 | 8.75 | 21.8 | 19.2 |
| 85.59 | 7.37 | 29.7 | 18.6 |

Ave dodeo $=3.55 \mathrm{mb} \cdot \mathrm{str} \pm 13.24$ $\int(\mathrm{do} / \mathrm{d} \boldsymbol{\sigma}) \mathrm{d}$ ي $=16$ ? $43 \mathrm{nbb} \pm 13.2 \%$

$$
E_{a}=4.65 \pm 0.07 \mathrm{MeV}
$$

(m.n') to: 2648 MeV Leved +2766 MeV Leved

| 2m | dojic | $\Delta(G)$ |  |
| :--- | ---: | :---: | :---: |
| deg. | $m b / s 8 \%$ | $t$ | - |
| 71.64 | 12.18 | 14.4 | 20.8 |
| 79.21 | 1246 | 20.6 | 27.0 |
| 86.75 | 9.64 | 18.0 | 25.3 |

Ave do des $=10.73 \mathrm{mb} / \operatorname{sir} \pm 14.9 \%$ $j(d \sigma / d m) d=134.82 \mathrm{mb} \pm 14.9 \%$

$$
\begin{gathered}
E_{m}=4.65 \pm 0.07 \mathrm{MeV} \\
\text { (ia.n' } 10: 2^{\circ} 05 \mathrm{MeV} \text { Lewel }
\end{gathered}
$$

| $\theta_{\text {cm }}$ | do/deo | $\Delta$ (\%) |  |
| :--- | :---: | :---: | :---: |
| deg. | mb $i$ str | + | - |
| 71.76 | 13.98 | 15.0 | 20.9 |
| 79.33 | 13.27 | 20.9 | 24.6 |
| 86.86 | 11.09 | 17.7 | 18.0 |

Avg. do/doo $=12.21 \mathrm{mb} / \mathrm{str} \pm 14.7 \%$
$\int(d \sigma / d \omega) d \omega=153.41 \mathrm{mb} \pm 14.7 \mathrm{c}$,

$E_{n}=4.92 \pm 0.96 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: $1.43+\mathrm{MeV}$ Level

| $\theta_{\text {cm }}$ | do de | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | $m b$ str | $+$ | - |
| 15.34 | 44.12 | 6.5 | 6.5 |
| 25.56 | 33.43 | 13.7 | 24.0 |
| 33.21 | 22.84 | 19.7 | 24.3 |
| 40.85 | 2088 | 15.7 | 15.2 |
| 48.47 | 22.29 | 13.9 | 10.6 |
| 56.08 | 20.52 | 11.3 | 12.3 |
| 63.67 | 16.09 | 16.4 | 15.2 |
| 71.24 | 21.22 | 20.0 | 19.4 |
| $78.7{ }^{\text {r }}$ | 20.03 | 23.8 | 15.9 |
| 86.31 | 21.37 | 14.5 | 15.4 |
| 96.31 | 16.43 | 15.2 | 14.3 |
| 103.79 | 17.71 | 18.7 | 14.1 |
| 111.24 | 18.80 | 16.3 | 8.1 |
| 122.63 | 20.91 | 13.2 | 11.8 |
| 130.03 | 22.99 | 12.3 | 15.6 |
| 137.41 | 19.47 | 15.7 | 11.2 |

$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=269.79 \mathrm{mb} \pm 7.8 \%$
Legendre Fit, Ordet $=2$

| $k$ | $a_{k}$ | $\Delta(\%)$ |
| :--- | ---: | ---: |
| 0 | 42.93855 | 3.5 |
| 1 | 2.02639 | 45.5 |
| 2 | 4.19227 | 18.2 |

$E_{n}=4.92 \pm 0.06 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: $\mathbf{2 . 3 6 9 \mathrm { MeV } \text { Level }}$

| $\boldsymbol{\theta}_{\text {cm }}$ | $d \sigma!d \omega$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + |  |
| 25.66 | 9.50 | 27.5 | 25.8 |
| 33.33 | 6.58 | 42.9 | 32.8 |
| 41.00 | 6.31 | 27.9 | 27.7 |
| 48.64 | 8.99 | 18.7 | 26.6 |
| 56.27 | 7.89 | 24.9 | 22.4 |
| 63.88 | 8.78 | 33.9 | 26.9 |
| 71.45 | 9.12 | 23.1 | 17.9 |
| 79.01 | 10.17 | 16.4 | 14.2 |
| 86.54 | 11.68 | 17.1 | 17.9 |
| 96.55 | 7.46 | 24.2 | 13.9 |
| 104.01 | 5.84 | 38.9 | 19.4 |
| 111.46 | 5.20 | 54.0 | 26.6 |
| 122.83 | 5.13 | 40.4 | 33.3 |
| 130.21 | 6.02 | 34.0 | 23.9 |
| 137.57 | 7.57 | 21.8 | 14.1 |

Avg.do/das $=8.01 \mathrm{mb} / \mathrm{str} \pm 10.6 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=100.71 \mathrm{mb} \pm 10.6 \%$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{n}}=5.23 \pm 0.05 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{i}) \text { to: } 1.434 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| $\theta_{c m}$ | $d \sigma / d \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :---: | :---: |
| deg. | $m b / s t r$ | + | - |
| 71.22 | 11.43 | 16.9 | 17.9 |
| 78.77 | 10.16 | 22.6 | 17.5 |
| 86.30 | 12.02 | 14.5 | 14.0 |

$$
\begin{gathered}
E_{\mathrm{f}}=5.23 \pm 0.05 \mathrm{MeV} \\
(n, \mathrm{n}) \text { to: } 2.369 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| $\theta_{c m}$ $d \sigma / d \omega$ $\Delta(\%)$  <br> deg. $m b / s t r$ +  <br> 71.42 8.29 17.3  | - |  |  |
| :--- | ---: | :---: | ---: |
| 78.1 |  |  |  |
| 78.98 | 9.00 | 17.9 | 17.0 |
| 86.50 | 6.32 | 24.3 | 14.9 |

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=7.90 \mathrm{mb} / \mathrm{str} \pm 13.7 \%$
$j(d r / d a) d \omega=99.29 \mathrm{mb} \pm 13.7 \%$
$E_{\mathrm{s}}=5.23 \pm 0.05 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: $\mathbf{2 6 4 8} \mathrm{MeV}$ Level
+2.766 MeV Level

| a. | do/da | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.52 | 9.15 | 17.4 | 19.8 |
| 79.08 | 9.93 | 15.8 | 29.6 |
| 86.62 | 8.14 | $i 7.5$ | 22.4 |

Avg do/dm $=8.69 \mathrm{mb} / \mathrm{str} \pm 14.4 \%$
$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=109.23 \mathrm{mb} \pm 14.4 \%$
$\mathrm{E}_{\mathrm{s}}=5.23 \pm 0.05 \mathrm{MeV}$
(n.n) to: $\mathbf{2 9 6 5} \mathbf{~ M e V ~ L e v e l ~}$

| ase | do $/ \mathrm{d} / \boldsymbol{c}$ |  | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: | :---: |
| deg. | mb/str | + | - |  |
| 71.60 | 9.62 | 16.5 | 16.1 |  |
| 79.17 | 9.45 | 18.5 | 27.0 |  |
| 86.70 | 9.36 | 19.3 | 25.5 |  |

Avg. $\mathrm{d} \sigma / \mathrm{d} \mathrm{dow}=9.50 \mathrm{mb} / \mathrm{str} \pm 13.3 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=119.32 \mathrm{~m} \zeta \pm 13.3 \%$
$\mathrm{E}_{\mathrm{n}}=5.23 \pm 0.05 \mathrm{MeV}$
$(\mathrm{n}, \mathrm{n})$ to: $\mathbf{3 . 1 1 2 \mathrm { MeV } \text { Level }}$
+3.160 MeV Level

| $\theta_{\text {cer }}$ | do/du | $\Delta(\%)$ |  |
| :--- | :---: | :---: | :---: |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.68 | 14.44 | 13.4 | 18.6 |
| 79.25 | 11.74 | 12.9 | 21.0 |
| 85.78 | 11.30 | 16.2 | 20.5 |

Avg $\mathrm{do} / \mathrm{d} \omega=11.9 \% \mathrm{mb} / \mathrm{str} \pm!2.3 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=150.67 \mathrm{mb} \pm 12.3 \%$
$\mathrm{E}_{\mathrm{a}}=5.23 \pm 0.05 \mathrm{MeV}$
$(\mathrm{n}, \mathrm{n})$ to: $\mathbf{3 . 4 3 0 \mathrm { MeV } \text { Level }}$
+3.490 MeV Level

| Oce | $\mathrm{do} / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | :--- | :--- | :--- |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.81 | 12.46 | 16.1 | 25.0 |
| 79.39 | 13.30 | 13.7 | 20.2 |
| 86.93 | 12.92 | 15.8 | 23.1 |

Avg. $\mathrm{d} / \mathrm{d} \boldsymbol{\mathrm { d } \omega}=12.76 \mathrm{mb} \cdot \mathrm{str} \pm 13.9 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=160.36 \mathrm{mb} \pm 13.9 \%$

$$
\begin{gathered}
E_{n}=5.50 \pm 0.05 \mathrm{PieV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1.434 \text { PieV Level }
\end{gathered}
$$

| $3_{\text {cma }}$ | do/da | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + |  |
| 48.45 | 14.91 | 19.9 | 13.3 |
| 56.06 | 11.28 | 14.6 | 14.2 |
| 63.65 | 10.89 | 27.7 | 25.8 |

$$
\mathrm{E}_{\mathrm{a}}=5.50 \pm 0.65 \mathrm{MeV}
$$

$$
\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \text { to: } 2.369 \mathrm{MeV} \text { Level }
$$

| $\theta_{\text {cm }}$ | $d \sigma / d \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| $\operatorname{deg}$. | $m b / s t r$ | + | - |
| 48.59 | 8.11 | 16.9 | 18.4 |
| 56.22 | 4.65 | 32.4 | 21.9 |
| 63.81 | 6.88 | 25.8 | 22.5 |

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=6.57 \mathrm{mo} / \mathrm{str} \pm 15.4 \%$
$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=82.61 \mathrm{mb} \pm 15.4 \%$
A.vg. do dau $=8.82 \mathrm{mb} / \mathrm{str} \pm 13.7 \%$ $j(\mathrm{~d} \sigma \mathrm{~d} \omega) \mathrm{d} \omega=110.85 \mathrm{mb} \pm 13.7 \%$

$$
E_{9}=5.50 \pm 0.05 \mathrm{MeV}
$$

$$
\text { (n.n) to: } \mathbf{2 9 6 5} \mathrm{MeV} \text { Leve! }
$$

| $\boldsymbol{\theta}_{\text {com }}$ | do do | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mbistr | + |  |
| 48.72 | 9.59 | 19.8 | 20.5 |
| 56.35 | 8.62 | 18.7 | 17.0 |
| 63.96 | 9.84 | 19.1 | 29.2 |

Avg. do/d $\omega=9.14 \mathrm{mb} / \mathrm{str} \pm 14.8 \%$ $\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \omega=\mathrm{il} 4.82 \mathrm{mb} \pm 14.8 \%$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}}= 5.50 \pm 0.05 \mathrm{MeV} \\
&\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \mathrm{to}: 3.112 \mathrm{MeV} \text { Level } \\
&+3.160 \mathrm{MeV} \text { Level }
\end{aligned}
$$

| $\boldsymbol{\theta}_{\boldsymbol{c} \text { m }}$ | do/des | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mbe str | + |  |
| 48.78 | 12.09 | 18.3 | 26.1 |
| 56.41 | 879 | 17.7 | 20.2 |
| 64.03 | 8.33 | 19.8 | 27.7 |

Avg. $\mathrm{do} / \mathrm{d} \omega=8.9 \mathrm{mb} / \mathrm{str} \pm 14.4 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=112.00 \mathrm{mb} \pm 14.4 \%$
$\mathrm{E}_{\mathrm{n}}=5.50 \pm 0.05 \mathrm{MeV}$
(n.n') to: $\mathbf{2 . 6 4 8} \mathbf{~ M e V ~ L e v e l ~}$
+2.766 Ma: Level

| O.m | doid $\omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | mbistr | + | - |
| 48.67 | 11.04 | 16.2 | 26.8 |
| 56.29 | 8.51 | 13.6 | 21.4 |
| 63.90 | 8.83 | 25.4 | 31.9 |


| $\theta_{\text {cm }}$ | do/dos | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + |  |
| 48.86 | 10.84 | 18.3 | 30.6 |
| 56.52 | 14.41 | 16.2 | 26.4 |
| 64.15 | 13.61 | 15.4 | 28.4 |

Avg do/den $=11.91 \mathrm{mb} / \mathrm{st} \pm 15.9 \%$
$\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{de}=149.61 \mathrm{mb} \pm 15.9 \%$
$\mathrm{E}_{\mathrm{a}}=5.50 \pm 0.05 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: $\mathbf{3 . 4 3 0 \mathrm { MeY } \text { Level }}$

+ 3.490 MeV Level
$\mathrm{E}_{\mathrm{n}}=6.44 \pm 0.07 \mathrm{MeV}$
Elastic Scattering

| acm | do/dw | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $m b / s t r$ | $t$ | - |
| 15.29 | 2041.46 | 4.3 | 5.3 |
| 22.93 | 1460.73 | 4.1 | 4.2 |
| 28.01 | 1054.06 | 4.7 | 4.6 |
| 35.64 | 592.32 | 4.4 | 5.3 |
| 43.25 | 289.19 | 5.7 | 5.5 |
| 48.32 | 172.24 | 6.0 | 5.1 |
| 55.91 | 57.33 | 10.4 | 7.3 |
| 63.48 | 14.25 | 17.6 | 18.5 |
| 71.04 | 6.08 | 45.2 | 27.6 |
| 78.58 | 9.34 | 22.8 | 17.3 |
| 86.10 | 16.48 | 11.1 | 13.6 |
| 93.61 | 22.91 | 11.7 | 9.6 |
| 101.09 | 26.98 | 12.1 | 7.5 |
| 103.56 | 27.26 | 11.5 | 9.3 |
| 120.46 | 24.58 | 8.7 | 7.7 |
| 127.88 | 19.43 | 11.5 | 9.8 |
| 135.29 | 12.58 | 14.5 | 14.6 |

$\int(\mathrm{do} / \mathrm{dm}) \mathrm{d} \omega=2179.94 \mathrm{mb} \pm 7.2 \%$
Wick's Limit $=2401.27 \mathrm{mb} \pm 7.3 \%$

$$
\sigma_{T}=3.56 \mathrm{~b} \pm 1.0 \%
$$

| Legendre Fit, Order $=8$ |  |  |
| :--- | :---: | ---: |
| $k$ | $a$ | $\Delta i \%)$ |
| 0 | 346.94800 | 1.9 |
| 1 | $278.8972 \%$ | 2.1 |
| 2 | 217.43750 | 2.3 |
| 3 | 155.66310 | 2.6 |
| 4 | 90.21782 | 3.6 |
| 5 | 42.95523 | 5.7 |
| 6 | 18.38136 | 9.4 |
| 7 | 5.85265 | 18.2 |
| 8 | 1.31388 | 49.0 |

$$
\begin{gathered}
\mathrm{E}_{2}=6.44 \pm 0.07 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1.434 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| Qcm | do/don | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $m b / s i r$ | + | - |
| 28.09 | 17.33 | 19.8 | 31.8 |
| 35.72 | 14.10 | 15.9 | 23.3 |
| 43.35 | 13.92 | 12.1 | 15.7 |
| 48.43 | 13.23 | 15.0 | 14.0 |
| 56.03 | 11.71 | 12.9 | 15.1 |
| 63.62 | 9.83 | 10.9 | 12.2 |
| 71.18 | 8.31 | 13.4 | 6.9 |
| 78.73 | 8.01 | 15.9 | 11.6 |
| 86.25 | 7.18 | 11.6 | 16.7 |
| 93.75 | 8.07 | 10.9 | 11.6 |
| 101.24 | 7.56 | 15.3 | 14.6 |
| 108.70 | 8.29 | 14.0 | 12.2 |
| 120.60 | 11.50 | 13.1 | 14.4 |
| 128.01 | 11.18 | 13.2 | 11.3 |
| 135.40 | 11.95 | 14.1 | 10.9 |

$\int(d \sigma / d \omega) d \omega=137.30 \mathrm{mb} \pm 8.1 \%$
Legendre Fit, Order $=2$
$k \quad a \quad \Delta(\%)$
$0 \quad 21.85197 \quad 4.0$
$1 \quad 0.48316 \quad 110.7$
$2 \quad 2.69826 \quad 17.2$
$E_{\mathrm{n}}=6.44 \pm 0.07 \mathrm{MeV}$ ( $\mathrm{n}, \mathrm{n}$ ) to: 2.369 MeV Level

| $\theta_{\text {cas }}$ | $d \boldsymbol{/} / \mathrm{d} \boldsymbol{u}$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | $m b / s t r$ | $+$ | - |
| 28.15 | 8.17 | 19.1 | 26.3 |
| 35.81 | 7.44 | 25.3 | 32.0 |
| 43.44 | 6.26 | 20.8 | 26.3 |
| 48.53 | 4.56 | 18.2 | 24.5 |
| 56.15 | 4.98 | 12.0 | 21.8 |
| 63.74 | 4.97 | 18.1 | 24.1 |
| 71.32 | 4. 11 | 17.7 | 19.0 |
| 78.87 | 4.12 | 18.5 | 13.2 |
| 86.40 | 4.79 | 16.1 | 20.9 |
| 93.90 | 4.49 | 23.0 | 22.5 |
| 101.38 | 5.60 | 19.1 | 20.9 |
| 108.84 | 5.5 | 21.6 | 26.2 |
| 120.72 | 5.21 | 15.1 | 15.6 |
| 128.12 | 4.45 | 26.1 | 24.0 |
| 135.50 | 4.60 | 14.2 | 22.5 |

Avg dord ${ }^{\prime}=4.86 \mathrm{mb} j \mathrm{str} \pm 9.6 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \boldsymbol{\omega}=61.02 \mathrm{mb} \pm 9.6 \%$
$\mathrm{E}_{\mathrm{n}}=7.03 \pm 0.06 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: 1.634 MeV Level

| $\theta_{\mathrm{c} \mathrm{m}}$ | $\mathrm{d} \sigma / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :---: | :---: |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.17 | 6.71 | 10.0 | 12.6 |
| 78.71 | 5.50 | 17.7 | 13.3 |
| 86.23 | 5.34 | 15.1 | 12.6 |

$$
\begin{gathered}
E_{n}=7.03 \pm 0.06 \mathrm{MeV} \\
\left(\mathrm{n}, \mathrm{ri}_{i}^{7}, \text { to: } 2.369 \mathrm{MeV}\right. \text { Level }
\end{gathered}
$$

| $\theta_{c m}$ | $d \sigma / d \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :---: | :---: |
| $d e g$. | $m b / s t r$ | + | - |
| 71.28 | 3.09 | 11.9 | 20.5 |
| 78.83 | 2.77 | 17.1 | 29.4 |
| 86.36 | 2.96 | 14.3 | 23.6 |

Avg. $\mathrm{d} \sigma / \mathrm{div}=2.90 \mathrm{mb} / \mathrm{str} \pm 13.8 \%$
$\int(d \sigma / d \omega) d \omega=36.42 \mathrm{mb} \pm 13.8 \%$

## $\mathrm{E}_{\mathrm{n}}=7.54 \pm 0.05 \mathrm{MeV}$ <br> Elastic Scattering

| $\theta_{\text {cm }}$ | $d \sigma / d \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $m b / s t r$ | + | - |
| 15.29 | 2059.81 | 4.3 | 4.6 |
| 22.92 | 1369.98 | 4.3 | 4.9 |
| 28.01 | 930.04 | 5.2 | 6.1 |
| 35.64 | 480.46 | 5.0 | 5.5 |
| 43.25 | 201.13 | $\therefore 8$ | 5.6 |
| 48.32 | 103.89 | 10.1 | 8.1 |
| 48.32 | 111.34 | 8.3 | 5.5 |
| 55.91 | 30.63 | 14.5 | 11.6 |
| 55.91 | 26.70 | 15.2 | 12.6 |
| 63.48 | 6.18 | 28.3 | 32.0 |
| 63.48 | 8.57 | 22.7 | 25.8 |
| 71.04 | 5.07 | 31.6 | 31.8 |
| 78.58 | 8.88 | 14.8 | 17.4 |
| 86.10 | 11.87 | 12.8 | 10.3 |
| 93.60 | 15.05 | 9.8 | 12.6 |
| 101.09 | 17.41 | 13.9 | 8.1 |
| 109.55 | 18.14 | 8.8 | 9.6 |
| 120.46 | 16.44 | 13.5 | 10.1 |
| 127.89 | 10.53 | 11.0 | 14.4 |
| 135.20 | 6.33 | 18.1 | 19.7 |

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=1914.77 \mathrm{mb} \pm 7.3 \%$ Wick's Limit $=2474.68 \mathrm{mb} \pm 7.3 \%$ $\sigma_{\mathrm{T}}=3.34 \mathrm{~b} \pm 1.0 \%$

| Legendre Fit, Order $=8$ |  |  |
| :---: | :---: | ---: |
| $k$ | $a_{k}$ | $\Delta(\%)$ |
| 0 | 304.74561 | 2.1 |
| 1 | 255.33163 | 2.3 |
| 2 | 204.707 | 2.4 |
| 3 | 151.21629 | 2.6 |
| 4 | 95.13348 | 3.2 |
| 5 | 50.30403 | 4.3 |
| 6 | 23.83644 | 6.0 |
| 7 | 8.42546 | 9.9 |
| 8 | 2.00243 | 24.2 |

$\mathrm{E}_{\mathrm{n}}=7.54 \pm 0.06 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: 1.434 MeV Level

| aco | do/dos | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + | - |
| 35.71 | 9.38 | 21.7 | 27.9 |
| 43.33 | 9.34 | 19.0 | 178 |
| 48.41 | 7.89 | 25.6 | 15.7 |
| 48.41 | 7.93 | 20.1 | 13.5 |
| 56.01 | 6.65 | 17.1 | 11.5 |
| 56.01 | 8.24 | 9.8 | 9.8 |
| 63.59 | 7.45 | 17.5 | 11.4 |
| 63.59 | 6.48 | 14.4 | 11.1 |
| 71.16 | 5.75 | 19.1 | 11.2 |
| 78.70 | 6.00 | 23.3 | 14.4 |
| 86.22 | 5.04 | 18.2 | 153 |
| 93.73 | 4.66 | 16.0 | 19.2 |
| 101.21 | 4.70 | 14.5 | 15.3 |
| 119.67 | 4.62 | 15.3 | 18.5 |
| 120.57 | 7.71 | 13.2 | 20.2 |
| 127.98 | 8.87 | 10.4 | 12.6 |
| 135.38 | 9.77 | 8.8 | 11.7 |

$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=96.47 \mathrm{mb} \pm 8.0 \%$
Legendre Fit, Order $=2$

| $k$ | $a$ | $\Delta(\%)$ |
| ---: | :---: | ---: |
| 0 | 15.35375 | 3.9 |
| 1 | -0.00133 | 100.0 |
| 2 | 2.33334 | 15.3 |

$E_{n}=7.54 \pm 0.06 \mathrm{MeV}$
(n.n) te: $\mathbf{2 , 3 6 9} \mathbf{~ M e V}$ Levei

| $\theta_{\text {c }}$ | $\mathrm{do} / \mathrm{do}$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + |  |
| 43.41 | 3.11 | 26.8 | 31.5 |
| 48.49 | 3.22 | 27.0 | 36.1 |
| 48.49 | 3.13 | 24.8 | 35.2 |
| 56.10 | 2.5; | 23.9 | 24.5 |
| 56.16 | 2.23 | 33.0 | 30.7 |
| 63.69 | 2.90 | 32.8 | 26.3 |
| 63.69 | 2.30 | 39.0 | 24.6 |
| 71.26 | 2.70 | 25.9 | 36.9 |
| 78.80 | 3.26 | 26.9 | 17.4 |
| 86.33 | 2.59 | 21.2 | 27.0 |
| 93.84 | 2.38 | 22.4 | 28.9 |
| 101.32 | 2.20 | 20.8 | 33.1 |
| 108.77 | 2.29 | 20.9 | 31.0 |
| 120.67 | 1.98 | 20.2 | 31.9 |
| 129.6 | 1.83 | 22.3 | 26.3 |
| 135.46 | 1.89 | 20.8 | $3: 5$ |

Avg. do/dou $=2.29 \mathrm{me} / \mathrm{str} \pm 10.2 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{c} \omega=28.83 \mathrm{mb} \pm 10.2 \%$
$\mathrm{E}_{n}=8.04 \pm 0.05 \mathrm{MeV}$
$(\mathrm{n}, \mathrm{n})$ to: 1.434 MeV Level

| $\theta_{\mathrm{cm}}$ | $\mathrm{do} / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :--- | :--- |
| $\boldsymbol{d e g}$ | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.15 | 4.42 | 23.4 | 17.0 |
| 78.69 | 4.72 | 13.4 | 20.6 |
| 86.22 | 4.37 | 20.1 | 24.6 |

$$
\begin{gathered}
E_{n}=8.04 \pm 0.05 \mathrm{MeV} \\
(\mathrm{n} \text { n) to: } 2.369 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| $\boldsymbol{e c m}_{\text {cm }}$ | $\mathrm{d} \boldsymbol{\sigma} ; \mathrm{d} \omega$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + | - |
| 71.24 | 1.59 | 42.9 | 28.6 |
| 78.79 | 2.15 | 24.4 | 31.3 |
| 86.32 | 0.95 | 78.8 | 29.6 |

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=1.61 \mathrm{mb} / \mathrm{str} \pm 26.2 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=20.24 \mathrm{mb} \pm 26.2 \%$
$E_{\mathrm{n}}=8.56 \pm 0.05 \mathrm{MeV}$
Elastic Scattering

| $\theta_{\text {cma }}$ | do/doo | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + | - |
| 15.29 | 2066.95 | 5.6 | 7.1 |
| 22.93 | 134276 | 5.1 | 8.3 |
| 28.01 | 862.89 | 5.6 | 6.8 |
| 35.64 | 399.88 | 5.5 | 7.9 |
| 43.25 | 160.22 | 7.1 | 6.7 |
| 48.32 | 78.89 | 9.1 | 10.1 |
| 55.91 | 19.83 | 15.4 | 18.5 |
| 63.48 | 5.50 | 30.1 | 32.4 |
| 71.04 | 7.61 | 28.2 | 28.6 |
| 78.58 | 8.18 | 15.9 | 23.6 |
| 86.10 | 10.37 | 17.7 | 15.8 |
| 93.60 | 15.02 | 10.2 | 14.3 |
| 101.09 | 17.71 | 8.2 | 13.8 |
| 108.55 | 18.08 | 9.1 | 10.7 |
| 120.46 | 15.22 | 11.4 | 13.3 |
| 127.88 | 8.59 | 17.5 | 18.7 |
| 135.29 | 5.44 | 21.3 | 24.1 |

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=1790.89 \mathrm{mb} \pm 7.5 \%$
Wick's Limit $=2514.80 \mathrm{mb} \pm 7.3 \%$ $\sigma_{\mathrm{T}}=3.16 \mathrm{~b} \pm 1.0 \%$

| Legendre Fit, Order $=9$ |  |  |
| :---: | :---: | :---: |
|  | $a_{4}$ | $\Delta$ (\%) |
| 0 | 285.02979 | 2.7 |
| 1 | 240.45734 | 2.9 |
| 2 | 196.80482 | 3.1 |
| 3 | 150.06050 | 3.4 |
| 4 | 99.47911 | 4.1 |
| 5 | 56.69565 | 5.5 |
| 6 | 30.02299 | 7.4 |
| 7 | 12.83146 | 11.8 |
| 8 | 4.16914 | 22.0 |
| 9 | 1.01623 | 49.3 |

$\mathrm{E}_{\mathrm{a}}=8.56 \pm 0.05 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: 1.434 MeV Level

| $\theta_{\text {cum }}$ | do/daw | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| $d e g$. | $m b / s t r$ | + | - |
| 35.70 | 8.68 | 39.3 | 29.6 |
| 43.32 | 8.93 | 12.9 | 21.5 |
| 48.39 | 5.80 | 20.7 | 19.5 |
| 55.99 | 5.29 | 25.4 | 17.9 |
| 53.58 | 5.04 | 19.0 | 12.2 |
| 71.14 | 6.23 | 22.9 | 15.6 |
| 78.68 | 5.56 | 11.5 | 12.8 |
| 86.21 | 5.05 | 16.1 | 24.2 |
| 93.71 | 4.46 | 23.5 | 25.6 |
| 101.19 | 3.45 | 24.8 | 18.3 |
| 108.65 | 4.43 | 123 | 21.6 |
| 120.55 | 5.37 | 12.2 | 16.2 |
| 127.97 | 4.90 | 21.8 | 23.7 |
| 135.36 | 5.20 | 18.3 | 16.7 |

$\int(\mathrm{d} \sigma / \mathrm{S} \omega) \mathrm{d} \mathrm{d}=69.10 \mathrm{mb} \pm 8.9 \%$

| Legendre Fit, Order $=\mathbf{2}$ |  |  |
| :---: | :---: | ---: |
| $\boldsymbol{k}$ | $\boldsymbol{a}^{\boldsymbol{a}}$ | $\Delta(\%)$ |
| 0 | 10.99744 | 5.5 |
| 1 | 0.99444 | 47.9 |
| 2 | 0.71028 | 47.5 |

$$
E_{n}=8.56 \pm 0.05 \mathrm{M}_{1} /
$$ $(\mathrm{n}, \mathrm{n})$ to: $\mathbf{2 . 3 6 9} \mathbf{~ M e V} 1$ vel

| $\boldsymbol{\theta}_{\text {cm }}$ | $\mathrm{d} \sigma / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 43.38 | 3.59 | 21.6 | 35.7 |
| 48.46 | 1.6 i | 38.5 | 38.5 |
| 63.66 | 1.49 | 40.2 | 37.2 |
| 71.22 | 1.25 | 45.8 | 41.8 |
| 78.77 | 1.98 | 28.7 | 33.1 |
| 86.29 | 1.62 | 22.9 | 34.0 |
| 93.80 | 1.72 | 33.7 | 31.9 |
| 101.28 | 1.71 | 27.7 | 35.3 |
| 108.74 | 1.49 | 32.4 | 3.7 |
| 120.64 | 1.44 | 35.1 | 38.4 |
| 128.04 | 1.23 | 34.9 | 40.3 |
| 135.43 | 1.37 | 34.6 | 25.7 |

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=1.53 \mathrm{mb} / \mathrm{str} \pm 13.1 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=19.27 \mathrm{mb} \pm 13.1 \%$
${ }^{52} \mathrm{Cr}$ CROSS SECTIONS
$F_{\mathbf{w}}=6.44 \pm 0.07 \mathrm{MeV}$
Elastic Scattering

$$
\begin{gathered}
\mathrm{E}_{\mathrm{n}}=6.44 \pm 0.07 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1.434 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| $\theta_{\text {cm }}$ | do/d $\omega$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + | - |
| 35.72 | 7.64 | 75.4 | 22.8 |
| 43.35 | 14.01 | 12.8 | 20.4 |
| 48.43 | 14.63 | 18.2 | 18.2 |
| 56.03 | 11.79 | 18.6 | 13.9 |
| 63.62 | 10.58 | 13.9 | 15.3 |
| 71.18 | 10.35 | 13.7 | 11.8 |
| 78.73 | 8.69 | 17.9 | 14.2 |
| 86.25 | 8.35 | 22.2 | 10.7 |
| 93.76 | 8.93 | 18.2 | 14.9 |
| 101.24 | 7.82 | 14.7 | 18.0 |
| 108.70 | 9.69 | 13.8 | 7.7 |
| 120.60 | 11.98 | 11.0 | 12.4 |
| 128.00 | 12.95 | 8.6 | 18.7 |
| 135.40 | 13.49 | 11.9 | 19.9 |

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega \omega=146.51 \mathrm{mb} \pm 8.5 \%$
Legendre Fit, Order $=2$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=2230.36 \mathrm{inb} \pm 7.3 \%$
Wick's Limit $=2401.17 \mathrm{mb} \pm 7.3 \%$ $\omega_{T}=3.56 \mathrm{~b} \pm 1.0 \%$

Legendre Fit, Order $=9$

| $k$ | $a$ | $\Delta(\%)$ |
| :--- | ---: | ---: |
| 0 | $354.972!6$ | 1.9 |
| 1 | 285.54443 | 2.2 |
| 2 | 223.00180 | 2.4 |
| 3 | 158.17705 | 2.8 |
| 4 | 89.73320 | 4.1 |
| 5 | 40.09595 | 7.5 |
| 6 | 14.05306 | 16.9 |
| 7 | 2.07775 | 83.5 |
| 8 | -1.33218 | 82.2 |
| 9 | -1.07083 | 55.3 |


| $\boldsymbol{k}$ | $\boldsymbol{a}_{\boldsymbol{k}}$ | $\Delta(\%)$ |
| ---: | ---: | ---: |
| 0 | 23.31750 | 4.8 |
| 1 | -0.09398 | 713.7 |
| 2 | 2.33285 | 26.5 |

$$
E_{\mathrm{a}}=6.44 \pm 0.07 \mathrm{MeV}
$$

$$
(\mathrm{n}, \mathrm{n}) \text { to: } 2.369 \mathrm{MeV} \text { Leve! }
$$

| $\theta_{\mathrm{cm}}$ | $\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :--- | ---: |
| $d e g$. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| d8.53 | 5.04 | 23.0 | 26.9 |
| 56.15 | 3.43 | 55.4 | 19.4 |
| 63.74 | 5.46 | 15.8 | 21.4 |
| 71.32 | 5.64 | 25.1 | 18.8 |
| 78.87 | 4.64 | 23.5 | 18.9 |
| 86.30 | 5.14 | 21.6 | 23.7 |
| 93.90 | 6.21 | 16.3 | 16.6 |
| 101.38 | 4.90 | 16.9 | 14.3 |
| 108.84 | 3.73 | 16.7 | 16.8 |
| 120.72 | 5.01 | 13.3 | 24.6 |
| 128.12 | 3.90 | 21.7 | 28.1 |
| 135.50 | 4.23 | 11.2 | 19.1 |

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=4.56 \mathrm{mb} / \mathrm{str} \pm 9.6 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=57.35 \mathrm{mb} \pm 9.6 \%$

$$
\begin{gathered}
E_{\mathrm{n}}=7.03 \pm 0.06 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1.434 \mathrm{MeV} \text { Level }
\end{gathered}
$$

| $\theta_{\mathrm{cm}}$ | $\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $\mathrm{mb} / \mathrm{sir}$ | + | - |
| 71.17 | 7.43 | 7.3 | $\mathbf{i 0 . 5}$ |
| 78.71 | 6.07 | 7.2 | 16.4 |
| 86.24 | 5.52 | 11.4 | 12.9 |


| $\boldsymbol{\theta}_{\text {cm }}$ | $\mathrm{d} \sigma / \mathrm{d} \omega$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + |  |
| 71.28 | 3.37 | 12.6 | 16.7 |
| 78.83 | 3.21 | 10.6 | $!4.0$ |
| 86.36 | 3.36 | 13.0 | 17.2 |

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=3.27 \mathrm{mb} / \mathrm{str} \pm 11.0 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=41.10 \mathrm{mb} \pm 11.0 \%$
$\mathrm{E}_{\mathrm{a}}=7.54 \pm 0.06 \mathrm{MeV}$ Elastic Scattering

| $\boldsymbol{\theta}_{\text {cm }}$ | do/d $\omega$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/str | + | - |
| 15.29 | 1974.98 | 4.8 | 7.5 |
| 22.93 | 1349.41 | 5.1 | 6.6 |
| 28.01 | 911.55 | 4.8 | 7.4 |
| 35.64 | 482.87 | 5.7 | 9.6 |
| 43.25 | 196.85 | 6.9 | 6.6 |
| 48.32 | 109.96 | !2.0 | 4.7 |
| 55.98 | 35.54 | 14.3 | 11.4 |
| 63.48 | 8.86 | 19.2 | 32.9 |
| 71.04 | 6.03 | 21.7 | 27.2 |
| 78.58 | 8.21 | 13.5 | 20.7 |
| 86.10 | 10.52 | 11.4 | 14.8 |
| 93.60 | 14.96 | 12.2 | 14.2 |
| 101.09 | 18.02 | 8.1 | 8.0 |
| 108.55 | 20.77 | 7.0 | 10.7 |
| 120.46 | 15.49 | 10.4 | 13.1 |
| 127.88 | 10.47 | 10.8 | 14.2 |
| 135.29 | 6.54 | 17.0 | 17.3 |

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=1888.44 \mathrm{mb} \pm 7.4 \%$
Wick's Limit $=2474.58 \mathrm{mb} \pm 7.3 \%$ $\sigma_{T}=3.34 \mathrm{~b} \pm 1.0 \%$

| Legendre Fit, Order $=10$ |  |  |
| :---: | :---: | ---: |
| $k$ | $\quad 10$ | $\Delta(\%)$ |
| 0 | 300.55518 | 2.5 |
| 1 | 251.15988 | 2.8 |
| 2 | 201.86864 | 3.0 |
| 3 | 150.44354 | 3.3 |
| 4 | 95.93333 | 4.3 |
| 5 | 53.04265 | 6.4 |
| 6 | 27.62170 | 10.1 |
| 7 | 12.18252 | 17.7 |
| 8 | 4.4375 | 33.4 |
| 9 | 1.66845 | 5.5 |
| 10 | 0.58864 | 81.1 |

$\mathrm{E}_{\mathrm{n}}=7.54 \pm 0.06 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}$ ) to: $1.434 \mathrm{M}: \mathrm{eV}$ Level

| $\theta_{c \mathrm{~cm}}$ | $\mathrm{~d} \mathrm{\sigma} / \mathrm{dav}$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $m b / \mathrm{str}$ | + | - |
| 35.71 | 11.31 | 17.9 | 19.3 |
| 43.33 | 9.51 | 14.0 | 23.1 |
| 48.41 | 9.44 | 16.6 | 17.3 |
| 56.01 | 8.00 | 9.8 | 10.3 |
| 63.59 | 7.48 | 12.7 | 11.7 |
| 71.16 | 7.35 | 12.8 | 12.2 |
| 78.70 | 7.08 | 9.4 | 14.1 |
| 86.22 | 6.15 | 15.1 | 12.5 |
| 93.73 | 5.27 | 11.3 | 23.2 |
| 101.21 | 5.70 | 12.0 | 23.0 |
| 108.67 | 6.25 | 13.8 | 25.5 |
| 120.57 | 9.01 | 26.8 | 15.5 |
| 127.98 | 15.54 | 5.9 | 10.5 |
| 135.38 | 16.45 | 7.2 | 11.4 |

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=131.54 \mathrm{mb} \pm 8.0 \%$
Legensre Fit, Order $=2$

| $k$ | $a_{k}$ | $\Delta(\%)$ |
| ---: | ---: | ---: |
| 0 | 20.93494 | 3.9 |
| 1 | -2.15703 | 22.8 |
| 2 | 3.63094 | 12.1 |

$\mathrm{E}_{\mathrm{n}}=7.54 \pm 0.06 \mathrm{MeV}$ ( $\mathbf{n}, \mathrm{n}$ ) to: $\mathbf{2 . 3 6 9} \mathbf{M e V}$ Level

| $\theta_{c m}$ | do'd $\omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $m \dot{m} /$ str | + | - |
| $43.4 \cap$ | 3.74 | 31.9 | 36.0 |
| 48.49 | 2.50 | 46.7 | 30.1 |
| 56.10 | 2.73 | 15.2 | 26.3 |
| 63.49 | 3.22 | 24.6 | 20.3 |
| 71.26 | 3.41 | 28.4 | $2 ? .4$ |
| 78.81 | 2.24 | 40.7 | 23.6 |
| 86.33 | 2.97 | 15.0 | 17.1 |
| 93.84 | 2.59 | 13.1 | 26.0 |
| 101.32 | 2.38 | 14.5 | 25.7 |
| 108.78 | 2.93 | 16.0 | 25.4 |
| 120.67 | 2.02 | 19.4 | 25.7 |
| 128.07 | 2.22 | 16.8 | 29.0 |
| 135.46 | 1.78 | 14.8 | 25.7 |

Avg. do/d $\omega=2.29 \mathrm{mb} / \mathrm{str} \pm 10.1 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=28.83 \mathrm{mb} \pm 10.1 \%$
$\mathrm{E}_{\mathrm{n}}=8.04 \pm 0.05 \mathrm{MeV}$
( $\mathrm{n}, \mathrm{n}^{\prime}$ ) to: 1.434 MeV Level

| $\theta_{\mathrm{cm}}$ | $\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | ---: | ---: |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.15 | 7.36 | 9.7 | $\mathbf{i 4 . 3}$ |
| 78.69 | 6.68 | 14.2 | 17.4 |
| 86.22 | 5.33 | 11.0 | 15.0 |

$E_{\mathrm{a}}=8.04 \pm 0.05 \mathrm{Me}^{\prime}$
( $\mathrm{n}, \mathrm{n}$ ) to: 2.369 N. i eV Level

| $\theta_{\text {cm }}$ | $\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$ | $\Delta(\%)$ |  |
| :--- | ---: | :---: | :---: |
| deg. | $\mathrm{mb} / \mathrm{str}$ | + | - |
| 71.24 | 2.83 | 17.2 | 34.7 |
| 78.79 | 3.07 | 199 | 21.1 |
| 86.32 | 2.30 | 29.9 | 28.4 |

Avg dgid $\omega=2.73 \mathrm{mb} / \mathrm{str} \pm 17.3 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=34.36 \mathrm{mb} \pm 17.3 \%$
$E_{\mathrm{n}}=8.56 \pm 0.05 \mathrm{MeV}$
Elastic Scattering

| $\theta_{\text {cm }}$ | d $\sigma / \mathrm{d} \omega$ | $\Delta$ (\%) |  |
| :---: | :---: | :---: | :---: |
| deg. | mb/st, | + | - |
| 15.29 | 2050.69 | 5.4 | 7.9 |
| 22.92 | 1240.76 | 5.7 | 5.3 |
| 28.91 | 736.22 | 6.9 | 4.1 |
| 35.63 | 361.06 | 6.7 | 5.2 |
| 43.25 | 143.86 | 7.9 | 7.5 |
| 48.32 | 100.08 | 6.7 | 7.9 |
| 55.91 | 22.58 | 13.7 | 12.8 |
| 63.48 | 8.93 | 12.5 | 22.7 |
| 71.04 | 6.79 | 21.8 | 32.8 |
| 78.58 | 8.58 | 14.3 | 17.4 |
| 86.10 | 9.86 | 12.4 | 17.0 |
| 93.60 | 12.55 | 13.1 | 16.4 |
| 93.61 | 12.74 | 11.0 | 17.1 |
| 101.09 | 15.87 | 9.2 | 15.1 |
| 101.09 | 13.51 | 18.6 | 20.5 |
| 108.55 | 18.11 | 9.3 | 19.7 |
| 1.8.55 | .6.23 | 10.8 | 15.8 |
| 120.46 | 15.80 | 8.7 | 13.7 |
| 127.88 | 10.11 | 14.4 | 15.8 |
| 135.29 | 5.27 | 17.6 | 23.9 |

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=1687.03 \mathrm{mb} \pm 7.4 \%$ Wick's Limit $=2514.69 \mathrm{mb} \pm 7.3 \%$ $\sigma_{T}=3.16 \mathrm{~b} \pm 1.0 \%$

| Legendre Fit, Order $=10$ |  |  |
| :---: | :---: | ---: |
| $k$ | $\boldsymbol{a}=10$ | $\Delta(\%)$ |
| 0 | 268.49927 | 2.5 |
| 1 | 226.42068 | 2.8 |
| 2 | 185.15302 | 3.0 |
| 3 | 142.47368 | 3.4 |
| 4 | 95.47168 | 4.2 |
| 5 | 57.52827 | 5.8 |
| 6 | 33.21892 | 7.8 |
| 7 | 16.75014 | 11.6 |
| 8 | 7.63199 | 17.0 |
| 9 | 3.47761 | 22.4 |
| 10 | 1.08875 | 36.1 |

