DEVELOPMENT AND PROPERTIES OF URANIUM-BASE ALLOYS CORROSION RESISTANT IN HIGH TEMPERATURE WATER. PART III. CORROSION MECHANISM OF URANIUM-BASE ALLOYS IN HIGH TEMPERATURE WATER

PDF Version Also Available for Download.

Description

The factors affecting corrosion resistance both of bare and of clad uranium-base alloys are reviewed and a mechanism proposed for their corrosion behavior. For unclad gamma-phase uranium alloys exposed to a high temperature water corrodent, it is proposed that the corrosion rate is determined primarily by the oxidation of the alloy by water. This behavior is contrary to that of alpha uranium in which the corrosion rate is primarily determined by the formation and subsequent oxidation of a nonadherent hydride layer. In gamma- phase alloys the hydrogen released by the corrosion reaction, rather than forming the thermodynamically stable UH/sub 3/ … continued below

Physical Description

Medium: P; Size: Pages: 119

Creation Information

Burkart, M.W. ed. July 1, 1956.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 90 times, with 7 in the last month. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The factors affecting corrosion resistance both of bare and of clad uranium-base alloys are reviewed and a mechanism proposed for their corrosion behavior. For unclad gamma-phase uranium alloys exposed to a high temperature water corrodent, it is proposed that the corrosion rate is determined primarily by the oxidation of the alloy by water. This behavior is contrary to that of alpha uranium in which the corrosion rate is primarily determined by the formation and subsequent oxidation of a nonadherent hydride layer. In gamma- phase alloys the hydrogen released by the corrosion reaction, rather than forming the thermodynamically stable UH/sub 3/ phase, dissolves (at least in part) in the base metal where it precipitates as a metastable hydride. The amount of hydrogen absorbed by the metal and hence precipitating as the metastable hydride may be markedly reduced by the addition of hydrogen depolarizers such as nickel or platinum to the water or to the metal. Similarly the amount of absorbed hydrogen may be reduced by introducing sinks that preferentially absorb hydrogen. Both alpha uranium and zirconium were shown to be suitable sinks. Precipitated hydride hardens and embrittles the matrix and by its preferential corrosion eventually leads to discontinuous failure. The hydride may be made to precipitate in a less harmful manner by heat treatments which precipitate nucleating and hardening impurities. The mode of the precipitation is shown to be sensitive to stress; in fact, the assumption of elastic stress as contributing to hydride precipitation is considered necessary to explain the distribution of the precipitate during corrosion. In order to apply a gammaphase fuel alloy as a fuel element material, it is necessary primarily to reduce the amount of hydrogen absorbed by the fuel. This can be done by cladding the fuel with a zirconium- base alloy. Under such conditions it has been shown that fuel element lives in excess of 4 years should be obtainable with properly fabricated fuel elements before they are subject to corrosion failure. Optimum fuel element corrosion life can be achieved by decreasing the general corrosion rate, increasing the hydrogen solubility, increasing the hydrogen diffusion rate, and maintaining a proper clad-fuel bond. For uranium-base alloys such as U/sub 3/Si that do not form a hydride during hot water corrosion, use of a Zircaloy clad is unnecessary. Therefore, the development of alternate cladding materials such as Al for corrosion resistant fuel elements is predicted upon the development of uranium- base alloys that do not corrode by a hydride mechanism. In addition to U/sub 3/ both Zr-U alloys and the strained alpha uranium-base alloys do not appear to corrode by a hydride mechanism. (auth)

Physical Description

Medium: P; Size: Pages: 119

Notes

NTIS

Source

  • Other Information: Decl. Aug. 7, 1957. Orig. Receipt Date: 31-DEC-58

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1956

Added to The UNT Digital Library

  • Oct. 15, 2017, 10:09 p.m.

Description Last Updated

  • Nov. 7, 2017, 4:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 7
Total Uses: 90

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Burkart, M.W. ed. DEVELOPMENT AND PROPERTIES OF URANIUM-BASE ALLOYS CORROSION RESISTANT IN HIGH TEMPERATURE WATER. PART III. CORROSION MECHANISM OF URANIUM-BASE ALLOYS IN HIGH TEMPERATURE WATER, report, July 1, 1956; Pittsburgh, Pennsylvania. (https://digital.library.unt.edu/ark:/67531/metadc1017416/: accessed February 12, 2025), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen