DNA damage in mammalian cells and its relevance to lethality

PDF Version Also Available for Download.

Description

From fourth symposium on microdosimetry; Pallanza, Italy (24 Sep 1973). Cell killing (loss of proliferative capacity) is a principal end point in all radiation effects contingent upon cell viability. DNA, the molecular carrier of the genetic inheritance, affects the affairs of a cell because the properties and characteristics of a cell are dictated by the DNA -- RNA -- protein axis of information storage, flow, and expression. Thus, the mutagenic and chromosome- breaking properties of radiation, the biological amplification available to a lesion in DNA, and the fact that DNA molecularly constitutes a very large radiation target, aH make DNA ... continued below

Physical Description

Pages: 40

Creation Information

Elkind, M.M. & Ben-Hur, E. January 1, 1973.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

From fourth symposium on microdosimetry; Pallanza, Italy (24 Sep 1973). Cell killing (loss of proliferative capacity) is a principal end point in all radiation effects contingent upon cell viability. DNA, the molecular carrier of the genetic inheritance, affects the affairs of a cell because the properties and characteristics of a cell are dictated by the DNA -- RNA -- protein axis of information storage, flow, and expression. Thus, the mutagenic and chromosome- breaking properties of radiation, the biological amplification available to a lesion in DNA, and the fact that DNA molecularly constitutes a very large radiation target, aH make DNA the principal target relative to many radiation effects. An indirect approach may be useful in studies of the sensitive targets in a mammalian cell. This stems from the fact that to kill cells with low LET radiation; sublethal damage must be accumulated and cells can repair this damage. Thus, focussing on DNA, and repair processes in DNA, while indirect, is supporied in the instance of cell killing by extensive experimental evidence. The status of damage registered directly in DNA may be assessed by examining changes in the sedimentation of DNA from irradiated cells. Along with measurements of cell survival, sedimentation data are discussed relative to their bearing on cell killing and their ability to help us understand the organization and replication of DNA in mammalian cells. (CH)

Physical Description

Pages: 40

Notes

Dep. NTIS

Source

  • 4. symposium on microdosimetry, Pallanza, Italy, 24 Sep 1973

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-730952--6
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 4385921
  • Archival Resource Key: ark:/67531/metadc1016608

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1973

Added to The UNT Digital Library

  • Oct. 15, 2017, 10:09 p.m.

Description Last Updated

  • Oct. 27, 2017, 2:15 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Elkind, M.M. & Ben-Hur, E. DNA damage in mammalian cells and its relevance to lethality, article, January 1, 1973; Illinois. (digital.library.unt.edu/ark:/67531/metadc1016608/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.