Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron Lasers

PDF Version Also Available for Download.

Description

It is well-known that seeding can be used to produce narrow-bandwidth and fully-coherent x- ray free-electron lasers. Self-seeding, which uses an extra undulator to generate the seed pulse, is perhaps one of the most promising methods to accomplish this. In the hard x-ray regime with high- energy electrons, this method requires a large magnetic chicane to match the path length delay of the x-ray monochromator that selects a narrow bandwidth of radiation. Such a chicane not only takes large footprint to build, but also may degrade the electron beam qualities through incoherent and coherent synchrotron radiation. In this paper, we ... continued below

Physical Description

15 pages

Creation Information

Ding, Yuantao; Huang, Zhirong; Ruth, Ronald D. & /SLAC June 4, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

It is well-known that seeding can be used to produce narrow-bandwidth and fully-coherent x- ray free-electron lasers. Self-seeding, which uses an extra undulator to generate the seed pulse, is perhaps one of the most promising methods to accomplish this. In the hard x-ray regime with high- energy electrons, this method requires a large magnetic chicane to match the path length delay of the x-ray monochromator that selects a narrow bandwidth of radiation. Such a chicane not only takes large footprint to build, but also may degrade the electron beam qualities through incoherent and coherent synchrotron radiation. In this paper, we present an alternative two-bunch self-seeding scheme. The two bunches are precisely separated to match the x-ray delay of the monochromator and eliminate the need for a long, complex magnetic chicane. The spectrally filtered SASE x-ray pulse produced by the first bunch is combined with the second electron bunch at the entrance of the second undulator and then amplified to the saturation level. We present start-to-end simulation results based on the LCLS hard x-ray FEL and show that this method can produce a nearly fully coherent x-ray pulse at a few GW power level.

Physical Description

15 pages

Source

  • Journal Name: Submitted to Physical Review Special Topics - Accelerators and Beams; Journal Volume: 13; Journal Issue: 6

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14021
  • Grant Number: AC02-76SF00515
  • DOI: 10.1103/PhysRevSTAB.13.060703 | External Link
  • Office of Scientific & Technical Information Report Number: 981363
  • Archival Resource Key: ark:/67531/metadc1016171

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 4, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 1:52 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ding, Yuantao; Huang, Zhirong; Ruth, Ronald D. & /SLAC. Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron Lasers, article, June 4, 2010; [California]. (digital.library.unt.edu/ark:/67531/metadc1016171/: accessed May 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.