FILTRATION OF RADIOACTIVE AEROSOLS BY GLASS FIBERS

PART TWO. APPENDICES

BY

TECHNICAL DIVISIONS

APRIL 16, 1951

HANFORD WORKS
RICHLAND, WASHINGTON

GENERAL ELECTRIC
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
FILTRATION OF RADIOACTIVE AEROSOLS BY GLASS FIBERS
Part Two - Appendices

by

Process Section
Separations Technology Division

April 16, 1951

HANFORD WORKS
RICHLAND, WASHINGTON

Operated for the Atomic Energy Commission
by the
General Electric Company
under
Contract # W-31-109-eng-52
COPY NUMBER

<table>
<thead>
<tr>
<th>COPY NUMBER</th>
<th>INTERNAL DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. B. Greninger - O. H. Greager</td>
</tr>
<tr>
<td>2</td>
<td>R. H. Beaton</td>
</tr>
<tr>
<td>3</td>
<td>H. M. Parker</td>
</tr>
<tr>
<td>4</td>
<td>C. C. Gamertsfelder - F. E. Adley</td>
</tr>
<tr>
<td>5</td>
<td>R. B. Richards</td>
</tr>
<tr>
<td>6</td>
<td>J. B. Work</td>
</tr>
<tr>
<td>7</td>
<td>J. E. Maider - R. S. Bell</td>
</tr>
<tr>
<td>8</td>
<td>V. R. Chapman - R. C. Grant</td>
</tr>
<tr>
<td>9</td>
<td>J. S. Parker - J. M. Frame</td>
</tr>
<tr>
<td>10</td>
<td>V. W. Wood - E. M. Johnston</td>
</tr>
<tr>
<td>11</td>
<td>F. W. Woodfield</td>
</tr>
<tr>
<td>12</td>
<td>O. F. Hill</td>
</tr>
<tr>
<td>13</td>
<td>V. R. Cooper</td>
</tr>
<tr>
<td>14</td>
<td>B. Weidenbaum</td>
</tr>
<tr>
<td>15</td>
<td>A. G. Blasewitz</td>
</tr>
<tr>
<td>16</td>
<td>R. V. Carlisle</td>
</tr>
<tr>
<td>17</td>
<td>B. F. Judson</td>
</tr>
<tr>
<td>18</td>
<td>M. F. Katzer</td>
</tr>
<tr>
<td>19</td>
<td>E. F. Kurtz</td>
</tr>
<tr>
<td>20</td>
<td>W. C. Schmidt</td>
</tr>
<tr>
<td>21</td>
<td>E and C File</td>
</tr>
<tr>
<td>22</td>
<td>700 File</td>
</tr>
<tr>
<td>23</td>
<td>300 File</td>
</tr>
<tr>
<td>24</td>
<td>Pink Copy</td>
</tr>
<tr>
<td>25</td>
<td>Yellow Copy</td>
</tr>
<tr>
<td>26 - 35</td>
<td>Extra Copies</td>
</tr>
</tbody>
</table>
Project Distribution

<table>
<thead>
<tr>
<th>COPY NUMBER</th>
<th>EXTERNAL DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 - 43</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>44</td>
<td>Armed Forces Special Weapons Project</td>
</tr>
<tr>
<td>45 - 49</td>
<td>Atomic Energy Commission, Washington</td>
</tr>
<tr>
<td>50</td>
<td>Battelle Memorial Institute</td>
</tr>
<tr>
<td>51</td>
<td>Brush Beryllium Company</td>
</tr>
<tr>
<td>52 - 55</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>56</td>
<td>Bureau of Medicine and Surgery</td>
</tr>
<tr>
<td>57 - 60</td>
<td>Carbide and Carbon Chemicals Division (K-25 Plant)</td>
</tr>
<tr>
<td>61 - 64</td>
<td>Carbide and Carbon Chemicals Division (Y-12)</td>
</tr>
<tr>
<td>65</td>
<td>Carbide and Carbon Chemicals Division (C-31)</td>
</tr>
<tr>
<td>66</td>
<td>Chicago Patent Group</td>
</tr>
<tr>
<td>67</td>
<td>Columbia University (G. Failla)</td>
</tr>
<tr>
<td>68</td>
<td>Dow Chemical Company</td>
</tr>
<tr>
<td>69 - 73</td>
<td>duPont Company</td>
</tr>
<tr>
<td>74</td>
<td>Hanford Operations Office</td>
</tr>
<tr>
<td>75 - 78</td>
<td>Idaho Operations Office</td>
</tr>
<tr>
<td>79 - 80</td>
<td>Iowa State College</td>
</tr>
<tr>
<td>81</td>
<td>Kellex Corporation</td>
</tr>
<tr>
<td>82 - 85</td>
<td>Knolls Atomic Power Laboratory</td>
</tr>
<tr>
<td>86 - 88</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>89</td>
<td>Mallinckrodt Chemical Works</td>
</tr>
<tr>
<td>90</td>
<td>Massachusetts Institute of Technology (A. Gaudin)</td>
</tr>
<tr>
<td>91</td>
<td>Massachusetts Institute of Technology (A. R. Kaufmann)</td>
</tr>
<tr>
<td>92 - 94</td>
<td>Mound Laboratory</td>
</tr>
<tr>
<td>95</td>
<td>National Advisory Committee for Aeronautics</td>
</tr>
<tr>
<td>96</td>
<td>National Bureau of Standards (R. D. Huntoon)</td>
</tr>
<tr>
<td>97</td>
<td>Naval Medical Research Institute</td>
</tr>
<tr>
<td>98 - 99</td>
<td>Naval Radiological Defense Laboratory</td>
</tr>
<tr>
<td>100</td>
<td>New Brunswick Laboratory</td>
</tr>
<tr>
<td>101 - 103</td>
<td>New York Operations Office</td>
</tr>
<tr>
<td>104</td>
<td>North American Aviation, Inc.</td>
</tr>
<tr>
<td>105 - 112</td>
<td>Oak Ridge National Laboratory (X-10 Site)</td>
</tr>
<tr>
<td>113</td>
<td>Patent Branch, Washington</td>
</tr>
<tr>
<td>114</td>
<td>RAND Corporation</td>
</tr>
<tr>
<td>115</td>
<td>Sandia Corporation</td>
</tr>
<tr>
<td>116</td>
<td>Savannah River Operations Office</td>
</tr>
<tr>
<td>117</td>
<td>Sylvania Electric Products, Inc.</td>
</tr>
<tr>
<td>118 - 192</td>
<td>Technical Information Service, Oak Ridge</td>
</tr>
<tr>
<td>193 - 194</td>
<td>USAF, NEPA Office</td>
</tr>
<tr>
<td>195 - 196</td>
<td>U. S. Geological Survey (T. B. Nolan)</td>
</tr>
<tr>
<td>197 - 198</td>
<td>U. S. Public Health Service</td>
</tr>
<tr>
<td>199</td>
<td>University of California at Los Angeles</td>
</tr>
<tr>
<td>200 - 203</td>
<td>University of California Radiation Laboratory</td>
</tr>
<tr>
<td>204 - 205</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>206</td>
<td>University of Washington</td>
</tr>
<tr>
<td>207</td>
<td>Western Reserve University</td>
</tr>
<tr>
<td>208 - 209</td>
<td>Westinghouse Electric Corporation</td>
</tr>
</tbody>
</table>
Supplementary Distribution

<table>
<thead>
<tr>
<th>COPY NUMBER</th>
<th>EXTERNAL DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 - 213</td>
<td>Atomic Energy Project, Chalk River</td>
</tr>
<tr>
<td>214</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Attn: R. F. Bacher</td>
</tr>
<tr>
<td>215</td>
<td>Chief of Naval Research</td>
</tr>
<tr>
<td>216</td>
<td>H. K. Ferguson Company</td>
</tr>
<tr>
<td>217</td>
<td>Harshaw Chemical Corporation</td>
</tr>
<tr>
<td>218</td>
<td>Isotopes Division (Mr. McCormick)</td>
</tr>
<tr>
<td>219 - 220</td>
<td>Library of Congress, Acquisition Department</td>
</tr>
<tr>
<td></td>
<td>(J. W. Cormn)</td>
</tr>
<tr>
<td>221</td>
<td>National Bureau of Standards (Library)</td>
</tr>
<tr>
<td>222</td>
<td>National Research Council, Ottawa</td>
</tr>
<tr>
<td>223</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>224</td>
<td>Nucleonics</td>
</tr>
<tr>
<td>225 - 226</td>
<td>Oak Ridge Institute of Nuclear Studies</td>
</tr>
<tr>
<td>227 - 236</td>
<td>United Kingdom Scientific Mission (M. Greenhill)</td>
</tr>
<tr>
<td>237</td>
<td>USAF, Eglin Air Force Base (Technical Library)</td>
</tr>
<tr>
<td>238</td>
<td>USAF, Wright-Patterson Air Force Base</td>
</tr>
<tr>
<td></td>
<td>(Rodney Nudenberg)</td>
</tr>
<tr>
<td>239 - 243</td>
<td>USAF, Wright-Patterson Air Force Base (CADO)</td>
</tr>
<tr>
<td>244</td>
<td>U. S. Army, Army Medical Service Graduate School (Col. W. S. Stone)</td>
</tr>
<tr>
<td>245</td>
<td>U. S. Army, Atomic Energy Branch</td>
</tr>
<tr>
<td></td>
<td>(Lt. Col. A. W. Betts)</td>
</tr>
<tr>
<td>249</td>
<td>UT-AEC Agricultural Research Program</td>
</tr>
<tr>
<td></td>
<td>(Charles S. Hobbs)</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>APPENDIX A - Modified Cascade Impactor</td>
<td>17 - 27</td>
</tr>
<tr>
<td>APPENDIX B - Permeability Tests</td>
<td>28 - 48</td>
</tr>
<tr>
<td>APPENDIX C - Collection Efficiency Tests</td>
<td>49 - 73</td>
</tr>
<tr>
<td>APPENDIX D - Nomographs</td>
<td>74 - 79</td>
</tr>
<tr>
<td>APPENDIX E - Life Expectancy Tests</td>
<td>80 - 120</td>
</tr>
</tbody>
</table>
INTRODUCTION

For purposes of convenience, the report entitled "The Filtration of Radioactive Aerosols By Glass Fibers" has been published in two volumes. Part one (HW-20847, 4-16-51) contains the text of the report and describes the development program which led to the design of highly efficient, glass fiber filters. Part two (HW-20847, 4-16-51) is composed of five appendices each of which pertains to a separate phase of the program. Four of the appendices contain experimental data presented in graphical form. The remaining appendix consists of a series of nomographs summarizing the permeability and efficiency characteristics of three types of glass fibers.
TABLE OF ILLUSTRATIONS

APPENDIX A

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Sample Calculation of the Particle Size Distribution Determined by the Modified Cascade Impactor</td>
<td>17</td>
</tr>
<tr>
<td>A-2 - A-7</td>
<td>Logarithmic-Probability Graphs of Cumulative Percent of Activity Less than the Stage Median Value vs. the Particle Diameter for the Modified-Cascade-Impactor Tests Performed on the Following Dates.</td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>Test Date: 1-10-50.</td>
<td>18</td>
</tr>
<tr>
<td>A-3</td>
<td>Test Date: 1-16-50.</td>
<td>19</td>
</tr>
<tr>
<td>A-4</td>
<td>Test Date: 4-11-50.</td>
<td>20</td>
</tr>
<tr>
<td>A-5</td>
<td>Test Date: 4-12-50.</td>
<td>21</td>
</tr>
<tr>
<td>A-6</td>
<td>Test Date: 8-8-50.</td>
<td>22</td>
</tr>
<tr>
<td>A-7</td>
<td>Test Date: 8-8-50.</td>
<td>23</td>
</tr>
<tr>
<td>A-8</td>
<td>An Arithmetic-Probability Graph of Figure A-2</td>
<td>24</td>
</tr>
<tr>
<td>A-9 - A-10</td>
<td>Logarithmic-Probability Graphs of Cumulative Percent of Methylene Blue Less than the Stage Median Value vs. the Particle Diameter for the Modified-Cascade-Impactor Tests Performed on the Following Dates.</td>
<td></td>
</tr>
<tr>
<td>A-9</td>
<td>Test Date: 5-31-50.</td>
<td>25</td>
</tr>
<tr>
<td>A-10</td>
<td>Test Date: 7-28-50.</td>
<td>26</td>
</tr>
<tr>
<td>A-11</td>
<td>An Arithmetic-Probability Graph of Figure A-9</td>
<td>27</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 55 Fiberglas at 3.0 pcf.</td>
<td>28</td>
</tr>
<tr>
<td>B-2</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 55 Fiberglas at 6.0 pcf.</td>
<td>29</td>
</tr>
<tr>
<td>B-3</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 55 Fiberglas at 9.0 pcf.</td>
<td>30</td>
</tr>
<tr>
<td>B-4</td>
<td>Cross-plot of Pressure Drop vs. Bed Depth for No. 55 Fiberglas</td>
<td>31</td>
</tr>
<tr>
<td>B-5</td>
<td>Cross-plot of Pressure Drop vs. Packing Density for No. 55 Fiberglas</td>
<td>32</td>
</tr>
<tr>
<td>B-6</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 55 Fiberglas at 3.0 pcf. and 3.0 pcf.</td>
<td>33</td>
</tr>
<tr>
<td>B-7</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for AA Fiberglas at 0.6 pcf.</td>
<td>34</td>
</tr>
<tr>
<td>B-8</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for AA Fiberglas at 1.2 pcf.</td>
<td>35</td>
</tr>
<tr>
<td>B-9</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for AA Fiberglas at 2.4 pcf.</td>
<td>36</td>
</tr>
<tr>
<td>B-10</td>
<td>Cross-plot of Pressure Drop vs. Bed Depth for AA Fiberglas</td>
<td>37</td>
</tr>
<tr>
<td>B-11</td>
<td>Cross-plot of Pressure Drop vs. Packing Density for AA Fiberglas</td>
<td>38</td>
</tr>
<tr>
<td>B-12</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for B Fiberglas at 0.7 pcf and 1.4 pcf.</td>
<td>39</td>
</tr>
<tr>
<td>B-13</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for B (L and R) Fiberglas at 3.5 pcf.</td>
<td>40</td>
</tr>
<tr>
<td>B-14</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 450 Fiberglas at 5.7 pcf.</td>
<td>41</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>B-15</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 600 Fiberglas at 5.1 pcf.</td>
<td>42</td>
</tr>
<tr>
<td>B-16</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 800 Fiberglas at 6.6 pcf.</td>
<td>43</td>
</tr>
<tr>
<td>B-17</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 115 Fiber at 3.8 pcf.</td>
<td>44</td>
</tr>
<tr>
<td>B-18</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 115K Fiberglas at 1.5 pcf and 6.0 pcf.</td>
<td>45</td>
</tr>
<tr>
<td>B-19</td>
<td>Graph of Pressure Drop vs. Superficial Velocity for No. 115K Fiberglas at 3.0 pcf. and 9.0 pcf.</td>
<td>46</td>
</tr>
<tr>
<td>B-20</td>
<td>Cross-plot of Pressure Drop vs. Bed Depth for No. 115K Fiberglas.</td>
<td>47</td>
</tr>
<tr>
<td>B-21</td>
<td>Cross-plot of Pressure Drop vs. Packing Density for No. 115K Fiberglas.</td>
<td>48</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>C-1</td>
<td>Graph of Collection Efficiency vs. Decontamination Factor</td>
<td>49</td>
</tr>
<tr>
<td>C-2</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 55 Fiberglas at 3.0 pcf.</td>
<td>50</td>
</tr>
<tr>
<td>C-3</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 55 Fiberglas at 4.5 pcf.</td>
<td>51</td>
</tr>
<tr>
<td>C-4</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 55 Fiberglas at 6.0 pcf.</td>
<td>52</td>
</tr>
<tr>
<td>C-5</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 55 Fiberglas at 9.0 pcf.</td>
<td>53</td>
</tr>
<tr>
<td>C-6</td>
<td>Cross-plot of Decontamination Factor vs. Bed Depth for No. 55 Fiberglas</td>
<td>54</td>
</tr>
<tr>
<td>C-7</td>
<td>Cross-plot of Decontamination Factor vs. Packing Density for No. 55 Fiberglas</td>
<td>55</td>
</tr>
<tr>
<td>C-8</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 55P Fiberglas</td>
<td>56</td>
</tr>
<tr>
<td>C-9</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for AA Fiberglas</td>
<td>57</td>
</tr>
<tr>
<td>C-10</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for AA Fiberglas at 1.2 pcf. and 1.8 pcf.</td>
<td>58</td>
</tr>
<tr>
<td>C-11</td>
<td>Cross-plot of Decontamination Factor vs. Bed Depth for AA Fiberglas</td>
<td>59</td>
</tr>
<tr>
<td>C-12</td>
<td>Cross-plot of Decontamination Factor vs. Packing Density for AA Fiberglas</td>
<td>60</td>
</tr>
<tr>
<td>C-13</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for B (L and R) Fiberglas</td>
<td>61</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>C-14</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for B Fiberglas</td>
<td>62</td>
</tr>
<tr>
<td>C-15</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 450 Fiberglas</td>
<td>63</td>
</tr>
<tr>
<td>C-16</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 600 Fiberglas</td>
<td>64</td>
</tr>
<tr>
<td>C-17</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 800 Fiberglas</td>
<td>65</td>
</tr>
<tr>
<td>C-18</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 115 Fiber</td>
<td>66</td>
</tr>
<tr>
<td>C-19</td>
<td>Cross-plot of Decontamination Factor vs. Bed Depth for No. 115 Fiber</td>
<td>67</td>
</tr>
<tr>
<td>C-20</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 115K Fiberglas at 1.5 pcf</td>
<td>68</td>
</tr>
<tr>
<td>C-21</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 115K Fiberglas at 3.0 pcf</td>
<td>69</td>
</tr>
<tr>
<td>C-22</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 115K Fiberglas at 6.0 pcf</td>
<td>70</td>
</tr>
<tr>
<td>C-23</td>
<td>Graph of Decontamination Factor vs. Superficial Velocity for No. 115K Fiberglas at 9.0 pcf</td>
<td>71</td>
</tr>
<tr>
<td>C-24</td>
<td>Cross-plot of Decontamination Factor vs. Bed Depth for No. 115K Fiberglas</td>
<td>72</td>
</tr>
<tr>
<td>C-25</td>
<td>Cross-plot of Decontamination Factor vs. Packing Density for No. 115K Fiberglas</td>
<td>73</td>
</tr>
</tbody>
</table>
TABLE OF ILLUSTRATIONS

APPENDIX D

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>Nomograph of the Permeability Characteristics of No. 55 Fiberglass.</td>
<td>74</td>
</tr>
<tr>
<td>D-2</td>
<td>Nomograph of the Permeability Characteristics of AA Fiberglas.</td>
<td>75</td>
</tr>
<tr>
<td>D-3</td>
<td>Nomograph of the Permeability Characteristics of No. 115K Fiberglas.</td>
<td>76</td>
</tr>
<tr>
<td>D-4</td>
<td>Nomograph of the Efficiency Characteristics of No. 55 Fiberglas.</td>
<td>77</td>
</tr>
<tr>
<td>D-5</td>
<td>Nomograph of the Efficiency Characteristics of AA Fiberglas.</td>
<td>78</td>
</tr>
<tr>
<td>D-6</td>
<td>Nomograph of the Efficiency Characteristics of No. 115K Fiberglas.</td>
<td>79</td>
</tr>
</tbody>
</table>
TABLE OF ILLUSTRATIONS

APPENDIX E

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Graphs of Collection Efficiency and Pressure Drop vs. Σ - Function for the Following Test Units Operated at 25 fpm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1 - E-4</td>
<td>Two Inches of No. 55 Fiberglas at 6.0 pcf.</td>
</tr>
<tr>
<td></td>
<td>Four Inches of No. 55 Fiberglas at 3.0 pcf.</td>
</tr>
<tr>
<td></td>
<td>Two Inches of No. 115K Fiberglas at 6.0 pcf.</td>
</tr>
<tr>
<td></td>
<td>Six Inches of No. 115K Fiberglas at 6.0 pcf.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Graph of Pressure Drop vs. Σ - Function for the First Sand Filter Test Unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Graph of Pressure Drop vs. Σ - Function for the Second Sand Filter Test Unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Graph of Pressure Drop vs. Σ - Function for the Third Sand Filter Test Unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Graph of the Radioactivity Distribution in a Plant Sand Filter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Graphs of Pressure Drop vs. Σ - Function for the Following Test Units Operated at 50 fpm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-9 - E-14</td>
<td>Five Inches of No. 55 Fiberglas at 9.0 pcf. Protecting 1/4-inch of AA Fiberglas at 1.2 pcf.</td>
</tr>
<tr>
<td></td>
<td>Eleven Inches of No. 55 Fiberglas at 6.0 pcf. Protecting 1/4-inch of AA Fiberglas at 1.2 pcf.</td>
</tr>
<tr>
<td></td>
<td>Five Inches of No. 55 Fiberglas at 3.0 pcf. Protecting 11 inches of No. 55 Fiberglas at 6.0 pcf.</td>
</tr>
</tbody>
</table>
APPENDIX E (Cont.)

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-12</td>
<td>Twelve Inches of No. 450 Fiberglas at 5.7 pcf. Protecting 5 Inches of No. 55 Fiberglas at 3.0 pcf.</td>
<td>91</td>
</tr>
<tr>
<td>E-13</td>
<td>Twelve Inches of No. 600 Fiberglas at 6.8 pcf. Protecting 12 Inches of No. 450 Fiberglas at 5.7 pcf.</td>
<td>92</td>
</tr>
<tr>
<td>E-14</td>
<td>Twelve Inches of No. 800 Fiberglas at 6.6 pcf. Protecting 12 Inches of No. 600 Fiberglas at 6.8 pcf.</td>
<td>93</td>
</tr>
<tr>
<td>E-15 - E-24</td>
<td>Graphs of Pressure Drop vs. Σ - Function for the Following Test Units Operated at 25 fpm.</td>
<td></td>
</tr>
<tr>
<td>E-15</td>
<td>Eight Inches of No. 55 Fiberglas at 6.0 pcf. Protecting 1/4 Inch of AA Fiberglas at 1.2 pcf.</td>
<td>94</td>
</tr>
<tr>
<td>E-16</td>
<td>Five Inches of No. 55 Fiberglas at 3.0 pcf. Protecting 8 Inches of No. 55 Fiberglas at 6.0 pcf.</td>
<td>95</td>
</tr>
<tr>
<td>E-17</td>
<td>Five Inches of No. 115 Fibre at 3.8 pcf. Protecting 5 Inches of No. 55 Fiberglas at 3.0 pcf.</td>
<td>96</td>
</tr>
<tr>
<td>E-18</td>
<td>Twelve Inches of No. 450 Fiberglas at 10 pcf. Protecting 5 Inches of No. 115 Fiber at 3.8 pcf.</td>
<td>97</td>
</tr>
<tr>
<td>E-19</td>
<td>Fourteen Inches of No. 55 Fiberglas at 1.5 pcf. Protecting 5 Inches of No. 55 Fiberglas at 3.0 pcf.</td>
<td>98</td>
</tr>
<tr>
<td>E-20</td>
<td>Twelve Inches of No. 450 Fiberglas at 10 pcf. Protecting 14 Inches of No. 55 Fiberglas at 1.5 pcf.</td>
<td>99</td>
</tr>
<tr>
<td>E-21</td>
<td>Twenty-four Inches of No. 450 Fiberglas at 5.0 pcf. Protecting 14 Inches of No. 55 Fiberglas at 1.5 pcf.</td>
<td>100</td>
</tr>
<tr>
<td>E-22</td>
<td>Ten Inches of No. 55 Fiberglas at 1.5 pcf. Protecting 5 Inches of No. 55 Fiberglas at 3.0 pcf.</td>
<td>101</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>E-23</td>
<td>Twenty-four Inches of No. 450 Fiberglass at 2.0 pcf. Protecting 14 Inches of No. 55 Fiberglass at 1.5 pcf.</td>
<td>102</td>
</tr>
<tr>
<td>E-24</td>
<td>Twenty-four Inches of No. 800 Fiberglass at 5.0 pcf. Protecting 14 Inches of No. 55 Fiberglass at 1.5 pcf.</td>
<td>103</td>
</tr>
<tr>
<td>E-25</td>
<td>Graph of Pressure Drop vs. Σ - Function for a Composite Test Unit Operated at 50 fpm.</td>
<td>104</td>
</tr>
<tr>
<td>E-26A and E-26B</td>
<td>Graphs of Pressure Drop vs. Σ - Function for a Composite Test Unit Operated at 25 fpm.</td>
<td>105 - 106</td>
</tr>
<tr>
<td>E-27 - E-29</td>
<td>Graphs of Pressure Drop vs. Σ - Function for the Following Test Units Operated at 25 fpm.</td>
<td></td>
</tr>
<tr>
<td>E-28</td>
<td>Six Inches of No. 55P Fiberglass at 3.0 pcf. Protecting 8 Inches of No. 55P Fiberglass at 6.0 pcf.</td>
<td>108</td>
</tr>
<tr>
<td>E-29</td>
<td>Eighteen Inches of No. 55P Fiberglass at 1.5 pcf. Protecting 8 Inches of No. 55P Fiberglass at 3.0 pcf.</td>
<td>109</td>
</tr>
<tr>
<td>E-30 - E-33</td>
<td>Graphs of Pressure Drop vs. Σ - Function for the following Test Units Operated at 50 fpm.</td>
<td></td>
</tr>
<tr>
<td>E-30</td>
<td>Eight Inches of No. 115K Fiberglass at 9.0 pcf. Protecting 3/4 Inch of AA Fiberglass at 1.2 pcf.</td>
<td>110</td>
</tr>
<tr>
<td>E-31</td>
<td>Six Inches of No. 115K Fiberglass at 6.0 pcf. Protecting 8 Inches of No. 115K Fiberglass at 9.0 pcf.</td>
<td>111</td>
</tr>
<tr>
<td>E-32</td>
<td>Six Inches of No. 115K Fiberglass at 3.0 pcf. Protecting 8 Inches of No. 115K Fiberglass at 6.0 pcf.</td>
<td>112</td>
</tr>
<tr>
<td>E-33</td>
<td>Twelve Inches of No. 115K Fiberglass at 1.5 pcf. Protecting 6 Inches of No. 115K Fiberglass at 3.0 pcf.</td>
<td>113</td>
</tr>
</tbody>
</table>
APPENDIX E (Cont.)

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-34 - E-40</td>
<td></td>
<td>Graphs of Pressure Drop vs. Σ - Function for the Following Units Operated at 25 fpm. (E-39, at 15 fpm).</td>
</tr>
<tr>
<td>E-35</td>
<td>115</td>
<td>Six Inches of No. 115K Fiberglas at 6.0 pcf. Protecting 8 Inches of No. 115K Fiberglas at 9.0 pcf.</td>
</tr>
<tr>
<td>E-36</td>
<td>116</td>
<td>Six Inches of No. 115K Fiberglas at 6.0 pcf.</td>
</tr>
<tr>
<td>E-37</td>
<td>117</td>
<td>Six Inches of No. 115K Fiberglas at 3.0 pcf. Protecting 8 Inches of No. 115K Fiberglas at 6.0 pcf.</td>
</tr>
<tr>
<td>E-38</td>
<td>118</td>
<td>Six Inches of No. 115K Fiberglas at 3.0 pcf. Protecting 8 Inches of No. 115K Fiberglas at 6.0 pcf.</td>
</tr>
<tr>
<td>E-39</td>
<td>119</td>
<td>Three Inches of No. 115K Fiberglas at 3.0 pcf. Protecting 6 Inches of No. 115K Fiberglas at 6.0 pcf. (at 15 fpm.).</td>
</tr>
<tr>
<td>E-40</td>
<td>120</td>
<td>Twelve Inches of No. 115K Fiberglas at 1.5 pcf. Protecting 6 Inches of No. 115K Fiberglas at 3.0 pcf.</td>
</tr>
</tbody>
</table>
Figure A-1

SAMPLE CALCULATION OF THE PARTICLE SIZE DISTRIBUTION DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 1-10-50
Sample Flow Rate: 0.5 cfm.

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Stage Median Diameter Microns</th>
<th>Radioactivity Content dpm.</th>
<th>Stage Median Value</th>
<th>Cumulative Per Cent of Activity Less Than the Stage Median Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7.72</td>
<td>10,900</td>
<td>5,500</td>
<td>99.80</td>
</tr>
<tr>
<td>II</td>
<td>3.24</td>
<td>30,700</td>
<td>15,400</td>
<td>99.02</td>
</tr>
<tr>
<td>III</td>
<td>1.71</td>
<td>188,000</td>
<td>94,000</td>
<td>94.95</td>
</tr>
<tr>
<td>IV</td>
<td>1.14</td>
<td>444,000</td>
<td>222,000</td>
<td>83.17</td>
</tr>
<tr>
<td>V</td>
<td>0.68</td>
<td>2,010,000</td>
<td>1,005,000</td>
<td>37.45</td>
</tr>
</tbody>
</table>
Figure A-2

PARTICLE SIZE DISTRIBUTION FOR THE PROCESS-CELL AIR
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 1-10-50
Sample Flow Rate: 0.5 cfm.
Figure A-3

PARTICLE SIZE DISTRIBUTION FOR THE PROCESS-CELL AIR AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 1-16-50
Sample Flow Rate: 1.0 cfm.
Figure A-4

PARTICLE SIZE DISTRIBUTION FOR THE PROCESS-CELL AIR
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 4-11-50
Sample Flow Rate: 1.0 cfm.
Figure A-5

PARTICLE SIZE DISTRIBUTION FOR THE PROCESS-CELL AIR
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 4-12-50
Sample Flow Rate: 1.0 cfm.
Figure A-6
PARTICLE SIZE DISTRIBUTION FOR THE PROCESS-CELL AIR
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR
Test Date: 3-8-50
Sample Flow Rate: 2.5 cfm.
Figure A-7

PARTICLE SIZE DISTRIBUTION FOR THE PROCESS-CELL AIR
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 8-8-50
Sample Flow Rate: 2.65 cfm.

Cumulative Per Cent of Activity Less than the Stage Median Value
Figure A-3

PARTICLE SIZE DISTRIBUTION IN THE PROCESS-CELL AIR

An Arithmetic - Probability Graph of Figure A-2

Cumulative Per Cent of Activity less than the Stage Median Value

Particle Diameter - Microns

99.99 99.9 99.8 99.5 99 98 95 90 80 70 60 50 40 30 20 10 5 2 1 0.5 0.2 0.1 0.05 0.01

99.9 99.8 99.5 99 98 95 90 80 70 60 50 40 30 20 10 5 2 1 0.5 0.2 0.1 0.05 0.01
Figure A-9

PARTICLE SIZE DISTRIBUTION IN THE METHYLENE BLUE SMOKE
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 5-31-50
Sample Flow Rate: 2.5 cfm.
Figure A-10

PARTICLE SIZE DISTRIBUTION IN THE METHYLENE BLUE SMOKE
AS DETERMINED BY THE MODIFIED CASCADE IMPACTOR

Test Date: 7-28-50
Sample Flow Rate: 1.7 cfm.
Figure A-11

PARTICLE SIZE DISTRIBUTION IN THE METHYLENE BLUE SMOKE

An Arithmetic - Probability Graph of Figure A-9
Figure B-1

GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY

No. 55 Fiberglas, $\rho = 3.0$ pcf.

X - L = 12 inches
O - L = 24 inches

Pressure Drop - Inches of water

Superficial Velocity - fpm.
Figure B-2

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

No. 55 Fiberglas, $\rho_p = 6.0$ pcf.

- □ - $L = 5$ inches
- X - $L = 6$ inches
- △ - $L = 9$ inches
- ○ - $L = 48$ inches
Figure B-3
GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

No. 55 Fiberglas, \(\rho_p = 9.0 \) pcf.
- \(O - L = 2 \) inches
- \(\triangle - L = 4 \) inches
- \(\square - L = 6 \) inches

Superficial Velocity - fpm.
Pressure Drop - Inches of water
Figure B-4
CROSS- PLOT OF PRESSURE DROP
VS. BED DEPTH
No. 55 Fiberglas

- O - V = 25 fpm; $\rho_p = 3$ pcf.
- △ - V = 50 fpm; $\rho_p = 3$ pcf.
- □ - V = 25 fpm; $\rho_p = 6$ pcf.
- X - V = 50 fpm; $\rho_p = 6$ pcf.
- ○ - V = 10 fpm; $\rho_p = 9$ pcf.
- □ - V = 30 fpm; $\rho_p = 9$ pcf.
- △ - V = 50 fpm; $\rho_p = 9$ pcf.
Figure B-5
CROSS- PLOT OF PRESSURE DROP
VS. PACKING DENSITY
No. 55 Fiberglas
O - V = 25 fpm, L = 6 inches
Δ - V = 50 fpm, L = 5 inches
X - V = 50 fpm, L = 10 inches

Pressure Drop - Inches of water

Packing Density - pcf.
Figure B-6

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

No. 55 P Fiberglas

O - L = 6 inches; \(\rho_p = 2.0 \) pcf.
X - L = 6 inches; \(\rho_p = 3.0 \) pcf.
Figure B-7
GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY

AA Fiberglas, $\rho = 0.6$ pcf.
$\bigcirc - L = 1.5$ inches
$\times - L = 1.0$ inch
$\Delta - L = 0.5$ inch
Figure B-8

GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY

AA Fiberglas, \(\rho_p = 1.2 \) pcf.

\(\Theta \) - \(L = 1.00 \) inch
\(X \) - \(L = 0.75 \) inch
\(\square \) - \(L = 0.50 \) inch
\(\Delta \) - \(L = 0.25 \) inch

Pressure Drop - Inches of water

Superficial Velocity - fpm.
Figure B-9
GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY
AA Fiberglas, \(\rho = 2.4 \) pcf.
- O - L = 1.00 inch
- X - L = 0.75 inch
- □ - L = 0.50 inch
- Δ - L = 0.25 inch
Figure B-10
CROSS- PLOT OF PRESSURE DROP
VS. BED DEPTH
AA Fiberglas
Ø - V = 50 fpm; \(\rho = 1.2 \text{ pcf.} \)
Δ - V = 10 fpm; \(\rho = 1.2 \text{ pcf.} \)
□ - V = 10 fpm; \(\rho = 0.6 \text{ pcf.} \)
Figure B-11

CROSS- PLOT OF PRESSURE DROP

VS. PACKING DENSITY

AA Fiberglas

- L = 0.25 inch; V = 5 fpm.
- L = 0.25 inch; V = 10 fpm.
- L = 0.50 inch; V = 10 fpm.
- L = 0.50 inch; V = 20 fpm.

Packing Density - pcf.
Figure B-12

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

B Fiberglas

Θ - L = 1.0 inch, $\rho = 1.4$ pcf.
Δ - L = 1.0 inch, $\rho = 0.7$ pcf.

Superficial Velocity - fpm.
Pressure Drop - Inches of water
Figure B-13

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

B (L and R) Fiberglas

\(\varepsilon_p = 3.5 \) pcf.

\(L = 1.0 \) inch

Pressure Drop - Inches of water

Superficial Velocity - fpm.
Figure B-14

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

No. 450 Fiberglas

\(\varphi = 5.7 \) pcf.

\(L = 8 \) inches

Superficial Velocity - fpm.

Pressure Drop - Inches of water
Figure B-15

GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY

No. 600 Fiberglas
\(\rho = 5.1 \text{ pcf.} \)
\(L = 7 \text{ inches} \)
Figure B-16

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

No. 800 Fiberglas
\(\phi = 6.6 \text{ pcf.} \)
\(L = 8 \text{ inches} \)

Superficial Velocity - fpm.
Pressure Drop - Inches of water
Figure B-17

GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY

No. 115 Fiber, \(\epsilon_f = 3.8 \text{ pcf.} \)

- O - L = 10 inches
- \(\Delta \) - L = 20 inches

Superficial Velocity - fpm.
Figure B-18
GRAPH OF PRESSURE DROP
VS. SUPERFICIAL VELOCITY
No. 115 K Fiberglas

- L = 6 inches, \(\rho_p = 6.0 \text{ pcf.} \)
- L = 12 inches, \(\rho_p = 6.0 \text{ pcf.} \)
- L = 24 inches, \(\rho_p = 6.0 \text{ pcf.} \)
- L = 6 inches, \(\rho_p = 1.5 \text{ pcf.} \)
- L = 12 inches, \(\rho_p = 1.5 \text{ pcf.} \)
- L = 18 inches, \(\rho_p = 1.5 \text{ pcf.} \)

Superficial Velocity - fpm.

Pressure Drop - Inches of water
Figure B-19

GRAPH OF PRESSURE DROP VS. SUPERFICIAL VELOCITY

NO. 115K FIBERGLAS

- □ L = 6 inches \(\rho_p = 9.0 \) pcf.
- ○ L = 12 inches \(\rho_p = 9.0 \) pcf.
- △ L = 6 inches \(\rho_p = 3.0 \) pcf.
- ◊ L = 12 inches \(\rho_p = 3.0 \) pcf.
- X L = 24 inches \(\rho_p = 3.0 \) pcf.

Superficial Velocity - fpm.

Pressure Drop - Inches of Water
Figure B-20

GRAPH OF PRESSURE DROP VS. BED DEPTH

NO. 115K FIBERGLAS

- □ - \(\rho_p = 1.5 \text{ pcf}, \ V = 50 \text{ fpm} \)
- ○ - \(\rho_p = 3.0 \text{ pcf}, \ V = 25 \text{ fpm} \)
- △ - \(\rho_p = 3.0 \text{ pcf}, \ V = 50 \text{ fpm} \)
- ◊ - \(\rho_p = 6.0 \text{ pcf}, \ V = 10 \text{ fpm} \)
- X - \(\rho_p = 6.0 \text{ pcf}, \ V = 25 \text{ fpm} \)
- ▽ - \(\rho_p = 9.0 \text{ pcf}, \ V = 50 \text{ fpm} \)
Figure B-21

GRAPH OF PRESSURE DROP VS. PACKING DENSITY
NO. 115K FIBERGLAS

- □ L = 6 inches, V = 25 fpm.
- ○ L = 12 inches, V = 10 fpm.
- △ L = 12 inches, V = 25 fpm.
- ◊ L = 12 inches, V = 50 fpm.
Figure C-1

GRAPH OF COLLECTION EFFICIENCY
VS. DECONTAMINATION FACTOR
Figure C-2

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 55 Fiberglas, $p = 3.0$ pcf.

$\Theta - L = 12$ inches
$X - L = 24$ inches

Superficial Velocity - fpm.
Figure C-3

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY
No. 55 Fiberglas, $\rho_p = 4.5$ pcf.

$L = 6$ inches
Figure C-4

GRAPH OF DECONTAMINATION FACTOR VS. SUPERFICIAL VELOCITY
No. 55 Fiberglas, $\rho_p = 6.0$ pcf.

- $\Theta - L = 5$ inches
- $X - L = 9$ inches

Superficial Velocity - fpm.
Figure C-5

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 55 Fiberglas, $\rho_p = 9.0$ pcf.

- $\Theta - L = 2$ inches
- $X - L = 4$ inches
- $\Delta - L = 6$ inches
Figure C-6

CROSS- PLOT OF DECONTAMINATION FACTOR
VS. BED DEPTH
No. 55 Fiberglass

Δ - \(\rho_p = 3.0 \text{ pcf.}, V = 20 \text{ fpm.} \) Θ - \(\rho_p = 9.0 \text{ pcf.}, V = 5 \text{ fpm.} \)
∇ - \(\rho_p = 3.0 \text{ pcf.}, V = 50 \text{ fpm.} \) V - \(\rho_p = 9.0 \text{ pcf.}, V = 30 \text{ fpm.} \)
X - \(\rho_p = 6.0 \text{ pcf.}, V = 30 \text{ fpm.} \)
Figure C-7
CROSS- PLOT OF DECONTAMINATION FACTOR
VS. PACKING DENSITY
No. 55 Fiberglas
○ - L = 6 inches, V = 10 fpm.
X - L = 6 inches, V = 50 fpm.
△ - L = 9 inches, V = 10 fpm.
□ - L = 9 inches, V = 5 fpm.
Figure C-8

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 55P Fiberglass, $\rho_p = 3.0$ pcf.

$\Theta - L = 6$ inches
$X - L = 12$ inches

Superficial Velocity - fpm.
Figure C-9

GRAPH OF DECONTAMINATION FACTOR VS. SUPERFICIAL VELOCITY

AA Fiberglas, \(p = 0.6 \) pcf.

\(\Theta - L = 0.5 \) inch
\(X - L = 1.0 \) inch
\(\Delta - L = 1.5 \) inches
Figure C-10

GRAPH OF DECONTAMINATION FACTOR

VS. SUPERFICIAL VELOCITY

AA FIBERGLAS

\[\Delta - \rho_p = 1.2 \text{ pcf.; } L = 0.25 \text{ inch} \]
\[\times - \rho_p = 1.2 \text{ pcf.; } L = 0.50 \text{ inch} \]
\[\Theta - \rho_p = 1.8 \text{ pcf.; } L = 0.50 \text{ inch} \]
Figure C-11

CROSS-PLT OF DECONTAMINATION FACTOR

VS. BED DEPTH

AA Fiberglass

- $\rho_p = 0.6 \text{ pcf.}, V = 5 \text{ fpm.}$
- $\rho_p = 0.6 \text{ pcf.}, V = 20 \text{ fpm.}$
- $\rho_p = 1.2 \text{ pcf.}, V = 5 \text{ fpm.}$
- $\rho_p = 1.2 \text{ pcf.}, V = 40 \text{ fpm.}$
Figure C-12
CROSS- PLOT OF DECONTAMINATION FACTOR VS. PACKING DENSITY
AA FIBERGLAS
L = 0.5 inch
O - L = 10 fpm.
X - L = 20 fpm.
A - L = 40 fpm.
Figure C-13

GRAPH OF DECONTAMINATION FACTOR VS. SUPERFICIAL VELOCITY

B (L and R) Fiberglas, $\rho = 4.0\text{ pcf}$.

\(X - L = 0.50\text{ inch}\)
\(\Theta - L = 0.25\text{ inch}\)
Figure C-14

GRAPH OF DECONTAMINATION FACTOR

VS. SUPERFICIAL VELOCITY

B Fiberglas, \(\rho_p = 0.7 \text{ pcf.} \)

\(L_e = 1.0 \text{ inch} \)
Figure C-15

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 450 Fiberglas, $\rho_p = 5.7$ pcf.

$L = 8$ inches
Figure C-16

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 600 Fiberglas, \(\rho_p = 5.1 \text{ pcf.} \)

\(L = 7 \text{ inches} \)
Figure C-17

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 800 Fiberglas, \(\rho = 6.6 \text{ pcf.} \)

\(L = 8 \text{ inches} \)

Superficial Velocity - fpm.
Figure C-18

GRAPH OF DECONTAMINATION FACTOR VS. SUPERFICIAL VELOCITY

No. 115 Fiber, \(\rho_p = 3.8 \text{ pcf.} \)

\(\bigcirc - L = 10 \text{ inches} \)
\(\bigtriangleup - L = 20 \text{ inches} \)
Figure C-19

CROSS-PLLOT OF DECONTAMINATION FACTOR
VS. BED DEPTH

No. 115 Fiber $\rho = 3.8$ pcf.

- X - V = 2 fpm.
- Θ - V = 10 fpm.
- Δ - V = 25 fpm.
- \Box - V = 50 fpm.

Bed Depth - Inches

Decontamination Factor
Figure C-20

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 115K Fiberglas, $\rho_p = 1.5$ pcf.

- Θ - $L = 6$ inches
- X - $L = 12$ inches
- Δ - $L = 18$ inches
Figure C-21

GRAPH OF DECONTAMINATION FACTOR VS. SUPERFICIAL VELOCITY

No. 115K Fiberglas, $\rho_p = 3.0$ pcf.

- $\bigcirc - L = 6$ inches
- $\times - L = 12$ inches
- $\bigtriangleup - L = 18$ inches

Superficial Velocity - fpm.
Figure C-22

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY
No. 115K Fiberglas, \(\rho = 6.0 \) pcf.

- \(\Phi \) - \(L = 6 \) inches
- \(X \) - \(L = 12 \) inches
- \(\Delta \) - \(L = 18 \) inches

Decontamination Factor

Superficial Velocity - fpm.
Figure C-23

GRAPH OF DECONTAMINATION FACTOR
VS. SUPERFICIAL VELOCITY

No. 115K Fiberglas, \(\rho_p = 9.0 \) pcf.

\(\Theta \) - L = 6 inches
\(X \) - L = 12 inches

Decontamination Factor

Superficial Velocity - fpm.
Figure C-24

CROSS-Plot of Decontamination Factor vs. Bed Depth

No. 115K Fiberglass

X - $\rho = 1.5$ pcf., $V = 15$ fpm. \(\square\) - $\rho = 6.0$ pcf., $V = 50$ fpm.
\(\Theta\) - $\rho = 3.0$ pcf., $V = 25$ fpm. \(\nabla\) - $\rho = 9.0$ pcf., $V = 5$ fpm.
\(\Delta\) - $\rho = 6.0$ pcf., $V = 15$ fpm.

Bed Depth - Inches

Decontamination Factor
Figure C-25

CROSS- PLOT OF DECONTAMINATION FACTOR
VS. PACKING DENSITY

No. 115K Fiberglas

- X - L = 6 inches, V = 15 fpm.
- Δ - L = 6 inches, V = 30 fpm.
- ◊ - L = 12 inches, V = 5 fpm.
- ◊ - L = 12 inches, V = 15 fpm.
- ◊ - L = 12 inches, V = 40 fpm.
- □ - L = 18 inches, V = 5 fpm.
Figure D-1

Nomograph of the Permeability Characteristics of No. 55 Fiberglas

\[\Delta P = K_{55} L V \rho_p^{1.6} \]

Where

- \(\Delta P \) = Pressure Drop, Inches of Water
- \(K_{55} \) = Constant
- \(L \) = Bed Depth, Inches
- \(V \) = Superficial Velocity, fpm
- \(\rho_p \) = Packing Density, pcf
Figure D-2

Nomograph of the Permeability Characteristics of AA Fiberglas

\[
\Delta P = K_{AA} L V \rho_p^{1.5}
\]

where

- \(\Delta P \) = Pressure Drop, Inches of Water
- \(K_{AA} \) = Constant
- \(L \) = Bed Depth, inches
- \(V \) = Superficial Velocity, fpm.
- \(\rho_p \) = Packing Density, pcf.
Nomograph of the Permeability Characteristics of No. 115K Fiberglas

\[\Delta P = K_{115K} L V \rho_p^{1.5} \]

Where

- \(\Delta P \) = Pressure Drop, Inches of Water
- \(K_{115K} \) = Constant
- \(L \) = Bed Depth, inches
- \(V \) = Superficial Velocity, fpm
- \(\rho_p \) = Packing Density, pcf

Figure D-3

<table>
<thead>
<tr>
<th>L - INCHES</th>
<th>(\Delta P)</th>
<th>V - fpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>.10</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>.07</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>.05</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>.04</td>
<td>6</td>
</tr>
<tr>
<td>.2</td>
<td>.03</td>
<td>5</td>
</tr>
<tr>
<td>.10</td>
<td>.02</td>
<td>4</td>
</tr>
<tr>
<td>.01</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>.01</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>.01</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(p = \text{pcf} \)
Nomograph of the Efficiency Characteristics of No. 55 Fiberglas

DF = \(\frac{C_{55} \cdot L^{0.9} \cdot \rho_p^{1.1}}{V^{0.4}} \)

Where
- \(DF \) = Decontamination Factor
- \(C_{55} \) = Constant
- \(L \) = Bed Depth, inches
- \(\rho_p \) = Packing Density pcf.
- \(V \) = Superficial Velocity, fpm.
Figure D-5

Nomograph of the Efficiency Characteristics of AA Fiberglas

DF = \frac{C_{AA} L^{0.8} \rho_p^{1.0}}{V^{0.2}}

Where

DF = Decontamination Factor

C_{AA} = Constant

L = Bed Depth, inches

\rho_p = Packing Density, pcf.

V = Superficial Velocity, fpm.
Figure D-6

Nomograph of the Efficiency Characteristics of No. 115K Fiberglas

DF = \frac{C_{115K} L^{0.9} \rho_p^{0.9}}{V^{0.4}}

Where

DF = Decontamination Factor

C_{115K} = Constant

L = Bed Depth, inches

\rho_p = Packing Density, pcf

V = Superficial Velocity, fpm
Figure E-1

COLLECTION EFFICIENCY
AND PRESSURE DROP
VS. \(\xi \) - FUNCTION

No. 55 Fiberglas

\[L = 2'' \quad \rho_p = 6.0 \text{ pcf.} \]
\[V = 25 \text{ fpm.} \]
Figure E-2

COLLECTION EFFICIENCY
AND PRESSURE DROP
VS. - FUNCTION

No. 55 Fiberglas

\[L = 4'' \quad \rho = 3.0 \text{ pcf.} \]
\[V = 25 \text{ fpm.} \]
Figure E-3

COLLECTION EFFICIENCY AND PRESSURE DROP

VS. - FUNCTION

No. 115K Fiberglas
L = 2" \(\rho_p = 6.0 \text{ pcf.} \)
V = 25 fpm.

\(\zeta - \text{Function Grains/ft.}^2 \)
Figure E-4

COLLECTION EFFICIENCY
AND PRESSURE DROP
VS. ∑ FUNCTION

No. 115K Fiberglas

L = 6"
ρ = 6.0 pcf.

V = 25 fpm.
Figure E-5

GRAPH OF PRESSURE DROP

VS. \(\Sigma \) - FUNCTION FOR THE FIRST SAND FILTER TEST UNIT

\(\Theta \) - 2 inches of Type IV Sand
\(\Delta \) - 12 inches of Type V Sand
\(\Box \) - 3 inches of Type VI Sand
\(X \) - Entire filter unit
Figure E-6

GRAPH OF PRESSURE DROP
VS. Σ - FUNCTION
FOR THE SECOND SAND
FILTER TEST UNIT

- - 12 inches of Type II Sand
□ - 12 inches of Type III Sand
△ - 6 inches of Type IV Sand
X - 12 inches of Type V Sand
▽ - 3 inches of Type VI Sand
Θ - Entire filter unit.

Superficial Velocity - 5 fpm.
Figure E-7

GRAPH OF PRESSURE DROP VS. Σ - FUNCTION FOR THE THIRD SAND FILTER TEST UNIT

- Π - Inches of Type II Sand
- - Types II - III Interface
- • - 10 Inches of Type III Sand
- ▲ - Types III - IV Interface
- ◊ - 4 Inches of Type IV Sand
- ▲ - Types IV - V Interface
- □ - 10 Inches of Type V Sand
- X - Types V - VI Interface
- V - 2 Inches of Type VI Sand
- © - Entire Filter Unit

Superficial Velocity - 5 fpm.

Interfacial layers extended one inch above and one inch below the line of demarcation.
Figure E-8

GRAPH OF THE RADIOACTIVITY DISTRIBUTION
IN A PLANT SAND FILTER

O - Tube No. 1
X - Tube No. 2
Figure E-9

GRAPH OF PRESSURE DROP
VS. Σ - FUNCTION

Θ - 5 inches of No. 55 Fiberglas at 9.0 pcf. Protecting

Δ - 0.25 inch of AA Fiberglas at 1.2 pcf.

Superficial Velocity - 50 fpm.
Figure E-10

GRAPH OF PRESSURE DROP
VS. ∑ - FUNCTION

○ - 11 inches of No. 55 Fiberglas at 6.0 pcf. Protecting
□ - 0.25 inch of AA Fiberglas at 1.2 pcf.
Superficial Velocity - 50 fpm.
Figure E-11

GRAPH OF PRESSURE DROP

VS. Σ - FUNCTION

○ - 5 inches of No. 55 Fiberglas at 3.0 pcf. Protecting
□ - 11 inches of No. 55 Fiberglas at 6.0 pcf.
Superficial Velocity - 50 fpm.
Figure E-12

GRAPH OF PRESSURE DROP VS. Σ - FUNCTION

- 12 inches of No. 450 Fiberglas at 5.7 pcf. Protecting
- 5 inches of No. 55 Fiberglas at 3.0 pcf.

Superficial Velocity - 50 fpm.
Figure E-13

GRAPH OF PRESSURE DROP
VS. Σ - FUNCTION

O - 12 inches of No. 600 Fiberglas at 6.8 pcf. Protecting
□ - 12 inches of No. 450 Fiberglas at 5.7 pcf.
Superficial Velocity - 50 fpm.
Figure E-14
GRAPH OF PRESSURE DROP
VS. \(\Sigma \) - FUNCTION

- 12 inches of No. 800 Fiberglas at 6.6 pcf. Protecting
- 12 inches of No. 600 Fiberglas at 6.8 pcf.
Superficial Velocity - 50 fpm.
Figure E-15
GRAPH OF PRESSURE DROP
VS. Σ - FUNCTION

- 8 inches of No. 55 Fiberglas at 6.0 pcf. Protecting
- 0.25 inch of AA Fiberglas at 1.2 pcf.
Superficial Velocity - 25 fpm.
Figure E-16

GRAPH OF PRESSURE DROP

VS. Σ - FUNCTION

- 5 inches of No. 55 Fiberglas at 3.0 pcf. Protecting
- 8 inches of No. 55 Fiberglas at 6.0 pcf.
Superficial Velocity - 25 fpm.

Σ - Function - grains/ft.²

Pressure Drop - inches of water
Figure - E-17

GRAPH OF PRESSURE DROP

VS. Σ - FUNCTION

☐ - 5 inches of No. 115 Fiber at 3.8 pcf. Protecting
Θ - 5 inches of No. 55 Fiberglas at 3.0 pcf.
Superficial Velocity - 25 fpm.

Pressure Drop - inches of water

Σ - Function - grains/ft.²
Figure E-18

GRAPH OF PRESSURE DROP

VS. Σ - FUNCTION

○ - 12 inches of No. 450 Fiberglas at 10 pcf. Protecting
□ - 5 inches of No. 115 Fiber at 3.8 pcf.
Superficial Velocity - 25 fpm.

Pressure Drop - Inches of water

Σ - Function - grains/ft.2
Figure E-10

Graph of Pressure Drop

O 14 inches No. 55 Fiberglas at 1.5 pcV. Protecting
& 5 inches No. 55 Fiberglas at 3.0 pcV.
Superficial Velocity - 15 fpm.
Figure E-20

GRAPH OF PRESSURE DROP

VS. Σ - FUNCTION

- 12 inches of No. 450 Fiberglas at 10.0 pcf. Protecting
- 14 inches of No. 55 Fiberglas at 1.5 pcf.
Superficial Velocity - 25 fpm.
Figure E-21

GRAPH OF PRESSURE DROP VS. Σ - FUNCTION

- 24 inches No. 450 Fiberglas at 5.0 pcf. Protecting
- 14 inches No. 55 Fiberglas at 1.5 pcf.

Superficial Velocity 25 fpm.

Pressur Drop - Inches of water

Σ - Function - grains/ft.²
Figure E-II
GRAPH OF PRESSURE DROP
VS. Σ - FUNCTION

- 10 inches No. 55 Fiberglas at 1.5 pcf. Protecting
- 5 inches No. 55 Fiberglas at 3.0 pcf.
Superficial Velocity - 25 fpm.
Figure E-23

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

Θ - 24 inches of No. 450 Fiberglas at 2.0 pcf, protecting.
□ - 14 inches of No. 55 Fiberglas at 1.5 pcf.

Superficial Velocity - 25 fpm.
Figure E-24

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

Θ - 24 inches of No. 800 Fiberglas at 5.0 pcf.
Protecting

Q - 14 inches of No. 55 Fiberglas at 1.5 pcf.

Superficial Velocity - 25 fpm.
Figure E-25

GRAPH OF PRESSURE DROP VS. \(\Sigma \) FUNCTION FOR A COMPOSITE UNIT OPERATED AT 50 fpm.

1 - 18 inches of No. 55 Fiberglas at 1.5 pcf.
2 - 6 inches of No. 55 Fiberglas at 3.0 pcf.
3 - 8 inches of No. 55 Fiberglas at 6.0 pcf.
4 - 1 inch of AA Fiberglas at 1.2 pcf.
5 - entire filter unit.
Figure E-26A

GRAPH OF PRESSURE DROP VS. Σ FUNCTION FOR A COMPOSITE

TEST UNIT OPERATED AT 25 fpm.
1 - 1st. inch of No. 55 Fiberglass at 1.5 pcf.
2 - 2nd and 3rd inches of No. 55 Fiberglass at 1.5 pcf.
3 - 1st inch of No. 55 Fiberglass at 3.0 pcf.
Figure E-26 B

GRAPH OF PRESSURE DROP VS. Σ FUNCTION FOR A COMPOSITE
TEST UNIT OPERATED AT 25 fpm

1 - 14 inches of No. 55 Fiberglas at 1.5 pcf.
2 - 8 inches of No. 55 Fiberglas at 3.0 pcf.
3 - 8 inches of No. 55 Fiberglas at 5.0 pcf.
4 - 6.75 inches of AA Fiberglas at 1.2 pcf.
5 - entire filter unit.
Figure E-27

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- 8 inches of No. 55P Fiberglas at 6.0 pcf protecting
- 0.75 inch of AA Fiberglas at 1.2 pcf.

Superficial Velocity - 25 fpm.
Figure E-28

GRAPH OF PRESSURE DROP VS. \sum FUNCTION

- 6 inches No. 55P Fiberglas at 3.0 pcf. protecting
- 8 inches No. 55P Fiberglas at 6.0 pcf.

Superficial Velocity - 25 fpm.
GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- 18 inches of No. 55P Fiberglas at 1.5 pcf. protecting
- 8 inches of No. 55P Fiberglas at 3.0 pcf.
 Superficial Velocity - 25 fpm.
Figure E-30

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- 8 inches of No. 115K Fiberglas at 9.0 pcf.
- 3/4 inch AA Fiberglas at 1.2 pcf.

Superficial Velocity - 50 fpm.
Figure E-31

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- 6 inches of No. 115K Fiberglas at 6.0 pcf. protecting.
- 8 inches of No. 115K Fiberglas at 9.0 pcf.
- 1st inch of No. 115K Fiberglas at 6.0 pcf.

Superficial Velocity - 50 fpm.
Figure E-32

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- 6 inches of No. 115K Fiberglas at 3.0 pcf. protecting.
- 8 inches of No. 115K Fiberglas at 6.0 pcf.

Superficial Velocity - 50 fpm.
GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- 12 inches No. 115K Fiberglas at 1.5 pcf. protecting.
- 6 inches No. 115K Fiberglas at 3.0 pcf.

Superficial velocity - 50 fpm.
Figure E-34

Graph of Pressure Drop vs. Σ Function

- 8 inches No. 115K Fiberglas at 9.0 pcf. protecting.
- 3/4 inch AA Fiberglas at 1.2 pcf.
Superficial Velocity - 25 fpm.

Σ Function - Grains/ft.²
Figure E-35

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

Θ - 6 inches No. 115K Fiberglas at 6.0 pcf. protecting.

□ - 8 inches No. 115K Fiberglas at 9.0 pcf.
Superficial velocity - 25 fpm.
Figure E-36

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

6 inches No. 115K Fiberglas at 6.0 pcf.
Superficial Velocity - 25 fpm.
Figure E-37

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

Θ - 6 inches No. 115K Fiberglas at 3.0 pcf. protecting.

□ - 8 inches No. 115K Fiberglas at 6.0 pcf.

Superficial Velocity - 25 fpm.
Figure E-38

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

Ο - 6 inches No. 115K Fiberglas at 3.0 pcf. protecting.

□ - 8 inches No. 115K Fiberglas at 6.0 pcf.

Superficial Velocity - 25 fpm.
Figure E-39

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

Θ - 3 inches No. 115K Fiberglas at 3.0 pcf. protecting.

□ - 6 inches No. 115K Fiberglas at 6.0 pcf.

Superficial Velocity - 15 fpm.

Σ Function - Grains/ft.²
Figure E-40

GRAPH OF PRESSURE DROP VS. Σ FUNCTION

- First one inch increment of 12 inches No. 115K Fiberglas at 1.5 pcf.
- 12 inches of No. 115K Fiberglas at 1.5 pcf.
- 6 inches of No. 115K Fiberglas at 3.0 pcf.

Superficial Velocity - 25 fps.