ANL-5685 Reactors - Power

ARGONNE NATIONAL LABORATORY P. O. Box 299 Lemont, Illinois

20-MW D_2O -MODERATED EXPERIMENTAL BOILING WATER REACTOR DESIGN STUDIES

by

H. P. Iskenderian

.

.

ję.

February, 1957

Operated by The University of Chicago under Contract W-31-109-eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

Criticality and reactivity calculations have been made for some specific lattice designs for use in the present EBWR reactor vessel. D_2O has been considered as a coolant-moderator.

More specifically, critical enrichments, temperature coefficients, the effects of small amounts of H_2O in the D_2O , and the effects of power excursions on reactivity have been studied. The accuracy of these calculations is limited by that of the method of the two-group diffusion theory and the four-factor formula.

The value of the constant " η " used in the four-factor formula refers to thermal energies and does not allow for the increased value of " α " (capture to fission ratio) of U²³⁵ at resonance energy levels. This has resulted in a lower critical enrichment than required. This should not affect appreciably, however, the accuracy of the various reactor characteristics studied in this report, such as temperature coefficient of reactivity, effects of H₂O additions in the moderator on reactivity, and power excursions.

20-MW D₂O-MODERATED EXPERIMENTAL BOILING WATER REACTOR DESIGN STUDIES

by

H. P. Iskenderian

Introduction

In this report are recorded the results of studies on a 20-mw, D_2O -cooled and moderated boiling reactor. The lattice designs were chosen to allow the core to be placed in the pressure vessel of the Experimental Boiling Water Reactor (EBWR), and to be compatible with the present arrangement of its control rods.

Lattice designs that could meet these requirements are shown in Figures 1 and 2. In design I, Fig. 1, 5-in. tubes enclosing a set of 8 parallel fuel plates are spaced 8 in. center to center. In design II, Fig. 2, the bottom grid of the present EBWR is used; the fuel tubes are inscribable in the fuel boxes of the present EBWR (3.6 in. diameter), only every other box space being used.

In design III, 3 out of 4 of the fuel boxes in the present EBWR are taken out and the remaining fuel boxes are enclosed in tubes. This design permits study of a reactor in which H_2O is replaced by D_2O , but in which no fuel element redesign is necessary.

It is estimated that the fuel elements of design I approximate the prototypes of D_2O -moderated power reactors, using a minimum U^{235} requirement. Design II, which uses the present grid of the EBWR, should result in a corresponding economy. However, this gain is nearly wiped out due to the greater amount of U^{235} required, as explained in this report.

In designs I and II, the fuel plates are of equal thickness and have uniformly enriched fuel elements. Spikes may be used for burnup allowances.

In design III, fuel plates enriched uniformly to 1.44% may be used. All the fuel plates of design III have a thickness of 0.205 in. (compared to 0.16 in. of design I and II), as are presently used in the EBWR.

The number of fuel tubes used in designs I and II are 32 and 56, respectively. The cores have nearly the same diameters of 4.25 ft but have heights of 4.75 ft and 4 ft, respectively. The average heat fluxes are 100,000 and 107,000 BTU/(sq ft)(hr), respectively, at a rated reactor power of 20 mw (Table I).

.

.

٠

•

\$

RE-6-16213-C

*

*

~

.

•

•

.

•

.

-

There are only 22 tubes used in design III, and the reactor power is only 9 mw, with a heat flux of 100,000 BTU/(sq ft)(hr). Power greater than 9 mw could be obtained in design III by using fuel tubes in the reflector region.

Thermal Power Calculations

The heating surface required is based on an average allowable heat flux of about 100,000 BTU/(sq ft)(hr). For a reactor power of 20 mw this surface is given by

$$\frac{20 \times 10^{\circ} \text{ watts}}{100,000 \frac{\text{BTU}}{(\text{sq ft})(\text{hr})} \times 0.293 \frac{\text{watts}}{\text{BTU/hr}}} = 683 \text{ sq ft.}$$

The core of design I (see Fig. 1), due to M. Treshow, was based on the above average heat flux with 32 tubes in the reactor.

Design II, with 56 tubes, has a heating surface of about 640 sq ft; the average heat flux will be, therefore, about 107,000 BTU/(sq ft)(hr) at rated power. The maximum to average neutron flux is thus nearly the same for these designs.

Calculations were made for design II to estimate the coolant velocity and pressure drop during operation. The velocity was found to be about 9 ft/sec and the pressure drop about 3 psi, both of which appear to be moderate. The choice of circular tubes (or shrouds) instead of rectangular was made in order to minimize possible damage during power excursions.

Forced circulation of coolant may be used in all three designs.

Reactivity Calculations

For criticality,

$$k_{eff} = \frac{k}{(1 + L^2 B^2)(1 + \tau B^2)} = 1$$

In the evaluation of k = $\eta \epsilon pf$, the constants p, f, ϵ and η were calculated as follows:

Resonance Escape Probability "p"

A typical cell is divided into two regions (radially) as follows:

<u>Region "0"</u> The fuel-bearing region is of radius r_0 , where fuel, D₂O and Zr are considered to be homogeneously distributed, but allowance is made for the shielding effect of resonance neutrons due to proximity of metals. The volume absorption term is that of uranium alloy.

<u>Region "1"</u> is taken as annular rim of D_2O associated with each cell. The radius r_1 , is determined from the condition

$$\pi r_1^2 = \frac{\text{volume of reactor core per unit length of core}}{\text{number of fuel tubes in core}}$$

The resonance escape probability is calculated from:

$$p = \exp\left(-\frac{f_r}{1 - f_r}\right) \tag{1}$$

where

 f_r = resonance utilization of uranium in the cell (or reactor)

= (resonance utilization of region "0" in cell)

x (resonance utilization of uranium in region "0").

$$f_{r} = \frac{\int_{V_{0}} \Sigma_{ro} \phi_{0} dV}{\int_{V_{0}} \Sigma_{ro} \phi_{0} dV + \int_{V_{1}} \Sigma_{r1} \phi_{1} dV} \times \frac{\int_{V_{0}} v_{U} \Sigma_{r}^{U} \phi_{U} dV}{\int_{V_{0}} v_{U} \Sigma_{r} \phi_{U} dV + \int_{V_{0}} v_{D_{2}O} \Sigma_{ro}^{D_{2}O} \phi_{D_{2}O} dV}$$

Since, for thin plates, $\overline{\phi} \stackrel{U}{_{ro}} = \overline{\phi} \stackrel{D_2O}{_{ro}} = \overline{\phi} \stackrel{}{_{ro}}$, then using averaged values (i.e., writing $\int_{V_0} \Sigma_{ro} \phi_0 \, dV = \overline{\Sigma}_{ro} \overline{\phi}_0 \, V_0$) and noting that

$$\overline{\Sigma_{ro}} = v_{U} \Sigma_{r}^{U} + v_{D_{2}O} \Sigma_{ro}^{D_{2}O}$$

where v denotes the volume fraction, the expression for f_r becomes:

$$f_{\mathbf{r}} = \frac{\int_{\mathbf{V}_{0}} \mathbf{v}_{\mathbf{U}} \Sigma_{\mathbf{r}}^{\mathbf{U}} \phi_{\mathbf{0}} \, d\mathbf{V}}{\int_{\mathbf{V}_{0}} \Sigma_{\mathbf{r}0} \phi_{\mathbf{0}} \, d\mathbf{V} + \int_{\mathbf{V}_{1}} \Sigma_{\mathbf{r}1} \phi_{\mathbf{1}} \, d\mathbf{V}} = \frac{\mathbf{v}_{\mathbf{U}} \Sigma_{\mathbf{r}}^{\mathbf{U}}}{\Sigma_{\mathbf{r}0} + \Sigma_{\mathbf{r}1} \left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{0}}\right) \left(\frac{\overline{\phi}_{1}}{\overline{\phi}_{0}}\right)} \quad (2)$$

where

 $\overline{\phi}_1/\overline{\phi}_0 \equiv \text{Disadvantage Factor "F"}.$

The average flux (or integrated flux) in regions 9 to 1 are obtained from one-group diffusion theory equations:

,

Region "0":
$$D_0 \nabla^2 \phi_{ro} + \Sigma_{ro} \phi_{ro} + Qv_{D_2O} = 0$$

Region "1": $D_1 \nabla^2 \phi_{r1} + \Sigma_{r1} \phi_{r1} + Q = 0$

$$(3)$$

where the constants are defined as follows:

Region "0":

$$\Sigma_{\mathbf{r}}^{\mathbf{U}} = \frac{\mathbf{N}^{\mathbf{U}}}{\delta} \left(\int \frac{\sigma_{\mathbf{r}} \, d\mathbf{E}}{\mathbf{E}} \right)_{\text{eff}}$$

where

$$\begin{split} \delta &= \ln \frac{E_{h}}{E_{1}} \\ \Sigma_{r}^{D_{2}O} &= \frac{\left(\xi \Sigma_{s}\right) D_{2}O}{\delta} \\ \Sigma_{r}^{Zr} &= \frac{\left(\xi \Sigma_{s}\right) Zr}{\delta} \quad \text{negligible for resonance neutrons} \\ \left(\int \frac{\sigma_{r} dE}{E}\right)_{eff} &= A \left[1 + \alpha \frac{S(1 - C)}{M}\right] \text{ evaluated under heading of } \\ \left(\int \frac{\sigma_{r} dE}{E}\right)_{eff} &= A \left[1 + \alpha \frac{S(1 - C)}{M}\right] \text{ evaluated under heading of } \\ \Sigma_{ro} &= v_{U} \Sigma_{r}^{U} + v_{D_{2}O} \Sigma_{r}^{D_{2}O} \\ \Sigma_{tro} &= v_{U} \Sigma_{r}^{U} + v_{D_{2}O} \Sigma_{r}^{D_{2}O} \\ \Sigma_{tro} &= v_{U} \Sigma_{tro}^{U} + v_{D_{2}O} \Sigma_{tro}^{D_{2}O} + v_{Zr} \Sigma_{tro}^{Zr} \\ D_{0} &= \frac{1}{3 \Sigma_{tro}} \end{split}$$

where values of constants are referred to resonance energy levels.

Q is the source term in the moderator.

Region 1:

Same as region "0," except only moderator terms appear.

Solution of the above diffusion equations (3) (in the radial direction) are

$$\phi_{0}(\mathbf{r}) = A_{0} I_{0}(\kappa_{0} \mathbf{r}) + \frac{Q V_{D_{2}}O}{\Sigma_{\mathbf{r}O}}$$

$$\phi_{1}(\mathbf{r}) = A_{1} I_{0}(\kappa_{1} \mathbf{r}) + C_{1} K_{0}(\kappa_{1} \mathbf{r}) + \frac{Q}{\Sigma_{\mathbf{r}1}}$$
(4)

where

$$\kappa_{i}^{2} = 3 \sum_{ri} \sum_{tri}$$

The constants $A_0,\,A_1$ and C_1 are obtained from the three boundary conditions:

$$\begin{cases} \left[\phi_{0} = \phi_{1} \right]_{r} = ro \\ \left[D_{0} \quad \nabla \phi_{0} = D_{1} \quad \nabla \phi_{1} \right]_{r} = ro \\ \left[D_{1} \quad \nabla \phi_{1} \right]_{r} = r_{1} = 0 \end{cases}$$

Substitutions of the ϕ_i 's in equation (2) yields f_r and hence p.

Thermal Utilization f

Using thermal energy constants, the procedure outlined above was used to obtain f, except for the inclusion of the terms:

$$\Sigma_{a}^{\mathbf{Zr}}$$
, $\Sigma_{a}^{\mathbf{Xe}}$ and $\Sigma_{a}^{\mathbf{Sm}}$

In these calculations, it was assumed that all of the zirconium was homogeneously distributed in the fuel zone "0" where it is mostly located.

Fast Fission Constant, \in

The fast fission constant was evaluated by an extension of the method outlined in Glasstone and Edlund¹ to a mixture of fuel, coolant and zirconium in the fuel zone "0."

¹S. Glasstone and M. C. Edlund, "Nuclear Reactor Theory," (D. Van Nostrand Co. Inc., New York, 1952) In criticality calculations, $\eta^{\mathbf{U}}(\mathbf{E})$ was obtained from

$$\eta \mathbf{U}(\mathbf{E}) = \frac{\eta \mathbf{U}^{235}}{1 + \frac{1 - \rho}{\rho} \frac{\sigma \mathbf{U}^{238}(\mathbf{E})}{\sigma \mathbf{U}^{235}(\mathbf{E})}}$$

where $\rho = \text{enrichment of } U^{235}$ in atom fraction. Values of $\eta^{U^{235}}$, $\sigma^{U^{235}}_{a}$ (E), and $\sigma^{U^{238}}_{a}$ (E) were obtained from BNL-325.² The $\frac{1}{v}$ correction for $\sigma^{U^{238}}_{a}$ was obtained from Figure 3.

Having determined the microscopic constants p, f, ϵ , and η of the reactor, the macroscopic constants L^2 and τ were calculated as shown below in the section "Calculation of Reactor Constants." Criticality calculations were then made, for operating conditions, by two-group diffusion theory, an iteration procedure being used in the usual manner. Values of the critical enrichments and the bucklings are given in Tables II and IV.

In order to determine changes in reactivity at various operating conditions, changes in reflector savings, and hence bucklings, were evaluated by the use of Volkoff's method.³ Values for operating conditions were normalized with the two-group diffusion theory values.

Calculation of Reactor Constants

1) Effective Resonance Integral
$$\int \left(\frac{\sigma dE}{E}\right)_{eff}$$
, for the uranium alloy,
 $\int \left(\frac{\sigma dE}{E}\right)_{eff} = 8 \left[(1 + \beta \Delta T) + 3.18 (1 + 2\gamma \Delta T) \frac{S_{eff}}{M} \right]$ (5)

where

 $\beta = \text{Doppler coefficient, } 1.4 \ge 10^{-4}/\text{C}$ $\gamma = \text{metal expansion coefficient, } 2.84 \ge 10^{-5}/\text{C}$ $\Delta T = \text{rise in uranium metal temperature}$ $S_{eff} = \text{effective surface of parallel fuel plates.}$ For n parallel plates of area 2A per plate, $S_{eff} = 2A + (n - 1) 2A(1 - C)$

²D. J. Hughes and J. A. Harvey, "Neutron Cross Sections," BNL-325 (July 1, 1955)

³G. Volkoff, "Lectures in Pile Theory" MTL-5

 $\eta \mathbf{U}$

FIG. 3 Variations in " $\sigma_a^{U"}$ and "f"-factor of U^{238} With Most Probable Energy (kt)

where

C = self-shielding factor due to proximity of metals

= 2 E_3 ($\Sigma_s d$) for infinite parallel plates (see Appendix).

2) In resonance calculations, δ = $ln\frac{E_h}{E_1}$ = 2.7 was used in accordance with ANL-5058.4

3) Fermi Age $\tau_{\mathbf{F}}$. In view of the low concentration of metal in D_2O reactors, as well as due to the good slowing down properties of U^{238} for high energy neutrons, and some contribution to slowing down by zirconium due to its scattering properties, the value of the Fermi τ , $\tau_{\mathbf{F}}$, in the cold reactor core was taken to be that of cold water.

At higher moderator temperatures, values of τ_F were evaluated by allowing for the usual void effects in water (i.e., noting that

$$\tau_{\mathbf{F}} \propto (\frac{1}{(\text{density})^2_{\text{moderator}}}).$$

In making two-group calculations, two-group $\tau_{\rm 2G}$ was obtained from:

$$\tau_{2G} = \frac{e^{\tau_{F} B^{2}} - 1}{B^{2}}$$

For reactor studies with mixtures of H₂O in D₂O, the values of τ were evaluated from:

$$\tau_{\text{mixture}} = \int_{.025 \text{ ev}}^{2 \text{ mev}} \frac{\frac{dE}{E}}{3(\xi \Sigma_{s})_{\text{mixt}} (\Sigma_{tr})_{\text{mixt}}} \approx \frac{\frac{1}{3} \int_{.025 \text{ ev}}^{2 \text{ mev}} \frac{dE}{E}}{(\xi \overline{\Sigma}_{s})_{\text{mixt}} (\overline{\Sigma}_{tr})_{\text{mixt}}}$$
$$\approx \frac{\frac{6}{(\overline{\xi} \overline{\Sigma}_{s})_{\text{mixt}} (\overline{\Sigma}_{tr})_{\text{mixt}}}}$$

where

$$\overline{(\xi \Sigma_s)}_{mixt} = x \overline{(\xi \Sigma_s)}_{H_2O} + (1 - x) \overline{(\xi \Sigma_s)}_{D_2O}$$

$$\overline{(\Sigma_{tr})}_{mixt} = x \overline{(\Sigma_{tr})}_{H_2O} + (1 - x) \overline{(\Sigma_{tr})}_{D_2O}$$

$$x = \text{volume concentration of } H_2O \text{ in } D_2O.$$

$$\overline{\Sigma}_{tr}^{H_2O} = \frac{1}{3D_c} = 0.2916 \text{ at room temperature.}$$

tr
$$3D_{f}_{H_2O}$$

 $\overline{\Sigma}_{tr}^{D_2O} = \frac{1}{3D_{f}_{D_2O}} = 0.2681$ at room temperature.

⁴ANL-5058 (Oct. 1953), p. 78

 $\tau_{\rm F}^{\rm H_2O}$ = 30 at room temperature.

$$T_{\rm F}^{\rm D_2O}$$
 = 127 at room temperature.

 $\xi \Sigma_{\rm S}$ may be obtained from τ and $\Sigma_{\rm tr}$ values, from the above equation for $\tau,$ i.e.,

$$\xi \overline{\Sigma}_{s}^{H_2O} = \frac{6}{30 \times 0.2916} = 0.6859; \xi \overline{\Sigma}_{s}^{D_2O} = \frac{6}{127 \times 0.2681} = 0.1762$$

η.

Recent neutron age measurements made at Savannah River Laboratory⁵ on mixtures of light and heavy water for H₂O concentrations of up to 8 volume per cent, have indicated a uniform rate of decrease of τ with concentration - 4 cm² per percent of H₂O.

With this rate of decrease, the τ values of mixtures of 5 and 10 volume percent of H₂O are smaller than our calculated values, all listed below:

Comparison	of	Measured	and	Calculated $ au$

Volume per cent of H ₂ O	0	5	10
Calculated τ	127	110.5	98
Measured $ au$	127	107	87
Discrepancy	-	3.3%	12.5%

In the present study, the calculated values of τ for different mixtures of H₂O and D₂O were used unless otherwise indicated.

Fast Diffusion Constant $(\overline{D_{\rm f}})$ of Mixtures

The fast diffusion constant for the mixtures $(\overline{D_f})_{mixture}$, is evaluated in the manner indicated above in obtaining $\tau_{mixture}$, from

 $(\overline{D_f})_{\text{mixture}} = \frac{1}{3(\overline{\Sigma}_{\text{tr}})_{\text{mixture}}}$

Diffusion Length, L, and Diffusion Coefficient, D_s^{5a}

$$\frac{\underline{L}}{\underline{L}} = \frac{\left(\frac{V_0}{F} + V_1\right)^2}{3\left\{\left(\frac{\Sigma_{ao}}{F} + \Sigma_{a1}}{V_1}\right)\left(\frac{\Sigma_{tro}V_0}{F} + \Sigma_{tr1}V_1\right)\right\}}$$

⁵J. W. Wade, "Neutron Age in Mixtures of Light and Heavy Water," DP-163 (June 1956).

^{5a}B. I. Spinrad, "Anisotropic Diffusion Lengths in Diffusion Theory," J. Appl. Phys. 26 548-550 (1955). In axial direction,

$$L_{z}^{2} = \frac{D_{0s} V_{0} + D_{1s} V_{1}}{\sum_{a0} V_{0} + \sum_{a1} V_{1}} = \frac{\frac{V_{0}}{3\Sigma_{tro}} + \frac{V_{1}}{3\Sigma_{tr1}}}{\sum_{a0} V_{0} + \sum_{a1} V_{1}}$$

 $D_s)$

In radial direction,

$$D_{s} = \frac{\frac{V_{0}}{F} + V_{1}}{3\left(\frac{V_{0}}{F}\Sigma_{tro} + V_{1}\Sigma_{tr1}\right)}$$

In axial direction,

$$D_{s} = \frac{\frac{V_{0}}{F\Sigma_{tro}} + \frac{V_{1}}{\Sigma_{tr1}}}{3\left(\frac{V_{0}}{F} + V_{1}\right)}$$

Reflector Savings

The reflector savings for the operating reactors were obtained by two-group diffusion theory and by Volkoff's method³ noting their ratios. All other reflector savings calculations were made by the method of Volkoff, but normalized to two-group values with the aid of the above ratios.

Equilibrium Xenon and Samarium

$$\frac{\sum_{a}^{Xe} + \sum_{a}^{Sm}}{\sum_{a}^{U^{235}}} = \frac{0.1516 \times 10^{-18} \phi_0}{2.47 \times 10^{-5} + 3.04 \times 10^{-18} \phi_0} + 0.01182$$

where ϕ_0 = average reactor flux.

Initial Conversion Ratio, ICR

$$ICR = \frac{\Sigma_{\text{th}}^{U^{238}} + \eta U^{235} (1-p) \in e^{-\tau^{\ell} B^{2}} + \frac{\Sigma_{\text{c(fast)}}^{U^{238}}}{\Sigma_{\text{th}}^{U^{235}}}$$
$$= \frac{\eta U^{235} - \eta U}{\eta U} + 2.08 (1-p) \in e^{-\tau^{\ell} B^{2}} + f \frac{\left[\frac{\sigma_{\text{c(fast)}}}{\sigma_{\text{f(fast)}}}\right] U^{238}}{1 + \alpha^{25}}$$

where

$$f = \frac{\text{fast fission in } U^{238}}{\text{thermal fission in } U^{235}}$$

is obtained from

$$\varepsilon = 1 + f \frac{\nu^{28} - 1 - \alpha^{28}}{\nu^{25}}$$

 τ^{ℓ} is the neutron age down to resonance levels of U²³⁸.

Discussion of Results

Design I

As already stated, this design was considered to approximate optimum conditions for a replacement of the H_2O core in the D_2O version of this reactor, retaining the pressure vessel and the five central control rods.

This study covers calculations for criticality, temperature and void coefficients, and of effects of power excursions on reactivity. It was considered to be of interest to determine the effects of small amounts of H_2O in the D_2O moderator. Hence, these calculations were made for mixtures of 0, 5, 10, and 15 volume percent H_2O in D_2O .

The physical and nuclear characteristics are shown on Tables I and II. The flux distributions (radial and axial) for the all D_2O reactor are shown in Figs. 4 and 5.

A. Effects of Small Amounts of H₂O in the Moderator on Reactivity

The effects of adding small amounts of H_2O in the moderator of this reactor are to increase p and to reduce f, τ , L^2 and reflector savings. The overall effects are a reduction in k and in $\Lambda = (1+L^2B^2)(1+\tau B^2)$ (see Figs. 6, 7, and 8, and Table II).

Figure 7 shows graphs of $k_{eff} = \frac{k}{\Lambda}$ vs. concentration of H₂O as based on our calculated values of τ and the values of τ measured at Savannah River Laboratory. When using the "measured" values of τ , there is a rise in reactivity of 1.7% for H₂O concentrations of about 10%.

Data of Table II were obtained by two-group diffusion theory, for the operating reactor, using "calculated" τ values. When using "measured" τ values, corrections were made to allow for reduction in reflector savings by Volkoff's method (see Table IIA for evaluation of k_{eff}, based on measured τ values).

Table I

16

Physical constants of a $\mathrm{D}_2\mathrm{O}\text{-}\mathrm{MODERATED}$ EBWR

		Design I	Design II	Design III
Reactor power		20	20	9
Core height (ft)		4.75	4	4
Core diameter (ft)		4.25	4.25	4.25
I.D. of reactor tank (ft)		7	7	7
Number of fuel tubes		32	56	22
Diameter of fuel tubes (in.)		5	3.75	3.75
Number of fuel plates per tube		8	6	6
Thickness of fuel plates (in.)		0.16	0.16	0.205
Thickness of meat in plate (in.)		0.12	0.12	0.165
Water gap thickness (in.)	0.34	0.25	0.46	
Tons of uranium		1.55	1.535	1.0
Tons of zirconium		0.55	0.54	0.32
Moderator to U-Metal ratio		23.4	19.4	24.3
Total heating surface (sq. ft.)		681	640	308
BTU/sq. ft./hr. for 20 mw (aver	rage)	100,000	107,000	100,000
Kilograms of U ²³⁵ (in excess of in natural U)	that	10.47	13.07	6
Cell constants				
Volume of fuel zone/Volume of	cell	0.3067	0.314	0.25
Volume of fractions in fuel zone	vυ	0.1284	0.1474	0.1538
	v_{Zr}	0.1195	0.149	0.1489
	v_{Cb}	0.0046	0.0052	0.0057
	v_{Mod}	0.7476	0.698	0.6915
Average operating voids in fuel	zone	25%	25%	25%
Operating temperature (°F)		486	486	486

Table II

REACTOR CHARACTERISTICS OF A 20-mw EBWR, Design I, MODERATED BY D_2O OR MIXTURES OF D_2O AND H_2O

		All D ₂ O		5 v/o H ₂ O + 95 v/o D ₂ O	10 v/a	$15 v/o H_2O +$ 85 v/o D ₂ O		
	Cold	Hot	Boiling	Boiling	Cold	Hot	Boiling	Boiling
р	0.8700	0.8441	0.8408	0.876	0.9154	0.0918	0.8995	0.915
f(no Xe)	0.9772	0.9783	0.9784	-	0.8595	0.8913	0.8944	
f(with Xe)			0.9425	0.901,			0.8643	0.832
•	1.022	1.023	1.024	1.024	1.022	1.023	1.024	1.024
וי	1.5925	1.5741	1.5741	1.5590	1.5873	1.5691	1.5691	1.5803
k∞(no Xe) (with Xe)	1.3837	1.3298	1.3259 1.2773	-	1.2763	1.2902	1.2928 1.2492	1.2319
L ²	65	100	98	87	51	77	75	61
^r 2-group	133	208	2435	208	101	157.5	184	165
B ²	0.000899	0.000797	0.00077	0.000838	0.00104	0.000959	0.000918	.000983
$(1 + L^2B^2)(1 + \tau B^2)$	1.1863	1.2651	1.2773	1.2600	1.1660	1.2427	1.2494	1.2319
k _{eff} (no Xe)	1.1664	1.0511	1.038	-	1.0946	1.0382	1.0347	-
$k_{eff}(with Xe)$			1.00	1.00			1.00	1.00
$\Delta k_{eff}(cold to hot)$			-0.115				-0.0564	
$\Delta k_{eff}(hot to boil)$			-0.013				-0.0035	
$\Delta k_{eff}(Xe + Sm)$			-0.038				-0.038	
$\Delta k_{eff}(total)$			0.166				-0.098	
Enr critical			0.0146	0.0140			0.0144	0.0148
ICR			0.63	0.57			0.53	0.49
Excess grams of U ²³⁵ mw*			523	485			511	540
Mean neutron Lífe tíme 2.7x10 ⁻⁴ sec.					2.5 x 10 ⁻⁴ sec.			
${}^{\dot{\psi}}$ average			1.5 x 10 ¹³					
(ϕ_{\max}/c_{av}) radial			1.23					
$(\phi_{\max} / \phi_{av})$ axial			1.17					
(ϕ_{\max}/ϕ_{av}) inside tube			1.13					
$(t_{\rm max}/t_{\rm av})$ reactor			1.63					

*Grams of U²³⁵ in excess over that contained in natural-U.

.

ŀ

FIG. 4 Radial Flux Distribution in D₂O Moderated EBWR (Initially Critical Reactor) (Operating Temperatures)

FIG. 5 Axial Flux Distribution in D_2O Moderated EBWR (Initially Critical Reactor at Operating Temperatures)

FIG. 6

Variations in Resonance Escape Probability p, and Thermal Utilization f, Due to Addition of Small Amounts of H₂O in the Moderator (D₂O), for the Same Enrichment for Criticality. (Operating Reactor)

FIG. 7

Variations in k_{∞} , $\Lambda = (1 + L^2B^2) (1 + \tau B^2)$ and k_{eff} Due to Addition of Small Amounts of H₂O in D₂O For the Same Enrichment of U-235 Variations in Enrichment for Criticality, Enr_{crit}, for Different Concentrations of H₂O in Moderator (Operating Reactor)

. 4

FIG. 8 Variations in τ_2 Group and L² Due to Addition of Small Amounts of H₂O in D₂O, at Operating Temperatures

Table II A

OPERATING CHARACTERISTIC OF A 20-mw EBWR MODERATED BY MIXTURES OF H_2O AND D_2O , AS INDICATED

(Note: τ values are based on Savannah River Laboratory measurements)

5 v/o H_2O	10 v/o H ₂ O		
87	75		
201	161		
0.000840	0.000938		
1.1688	1.1510		
1.0731	1.0703^{5}		
1.2542	1.2320		
1.2722	1.2531		
1.0144	1.0171		
	$\frac{5 \text{ v/o } \text{H}_2\text{O}}{87}$ 201 0.000840 1.1688 1.0731 1.2542 1.2722 1.0144		

The effect of adding 10 v/o of H_2O to the D_2O moderator is seen (Table II) to reduce Δk_{eff} (cold to hot) from -0.115 (for the all D_2O moderator) to -0.0564, and Δk_{eff} (hot to boil) from -0.013 to -0.0035. It follows, as expected, that for greater concentrations of H_2O , a positive temperature coefficient of reactivity may result.

B. Study of Power Excursions

In the study of the inherent safety of this reactor, two cases which may result in accidental increases in reactivity are of interest:

> Type I: The effect of rapid increases in reactivity, resulting in rapid rise of metal temperature, but no loss of coolant.

۳_ή

Type II: The effect of large but slow increases in reactivity resulting in the rise of metal temperature and expulsion of coolant from the fuel tubes.

Type I

The reactor is assumed to be initially at room temperature. This should be the most serious case.

The change in reactivity is given by:

$$-\frac{\partial \rho}{\partial \mathbf{T}} = -\frac{1}{\mathbf{k}_{eff} \mathbf{p}} \frac{\partial \mathbf{p}}{\partial \mathbf{T}} = \frac{\frac{\partial \mathbf{f}_{\mathbf{r}}}{\partial \mathbf{T}}}{\mathbf{k}_{eff} (1 - \mathbf{f}_{\mathbf{r}})^2} = \frac{\sum_{\mathbf{r}}^{\mathbf{M}} \frac{\partial}{\partial \mathbf{T}} \sum_{\mathbf{r}o}^{\mathbf{U}} - \sum_{\mathbf{r}o}^{\mathbf{U}} \frac{\partial}{\partial \mathbf{T}} \sum_{\mathbf{r}o}^{\mathbf{M}}}{\mathbf{k}_{eff} (\sum_{\mathbf{r}o}^{\mathbf{U}} + \sum_{\mathbf{r}}^{\mathbf{M}})^2 (1 - \mathbf{f}_{\mathbf{r}})^2} = \frac{\sum_{\mathbf{r}}^{\mathbf{M}} \frac{\partial}{\partial \mathbf{T}} \sum_{\mathbf{r}o}^{\mathbf{U}} - \sum_{\mathbf{r}o}^{\mathbf{U}} \frac{\partial}{\partial \mathbf{T}} \sum_{\mathbf{r}o}^{\mathbf{M}}}{\mathbf{k}_{eff} (\sum_{\mathbf{r}o}^{\mathbf{M}})^2}$$
(6)

where

$$\Sigma \frac{M}{r} = \Sigma \frac{M}{r_0} + \frac{V_1}{V_0} F \Sigma \frac{M}{r_1}$$

$$\Sigma \frac{U}{r_0} = \frac{N}{\delta} 8 \left\{ (1 + \beta \Delta T) + 3.18(1 + 2\gamma \Delta T) \left[\frac{S_0 + S(1 - C)}{M} \right] \right\}$$
(7)
$$S_{eff} = S_0 + S(1 - C)$$

and,

$$\frac{\partial}{\partial T} \left(\Sigma_{ro}^{U} \right) = \frac{N}{\delta} 8 \left[\beta + 6.36\gamma \left(\frac{S_{eff}}{M} \right) - 3.18 \left(1 + 2\gamma \Delta T \right) \left(\frac{S}{M} \right) \left(\frac{\partial C}{\partial T} \right) \right] \quad (8)$$

$$\frac{\partial \Sigma \mathbf{r} \mathbf{r}}{\partial \mathbf{T}} = -\gamma \Sigma \mathbf{m} \mathbf{r} \mathbf{o}$$
(9)

Substitution of equations (8) and (9) in equation (6) yields.

$$-\frac{\partial \rho}{\partial T} = \frac{\Sigma_{r}^{M} (N/\delta) 8 \left[\beta + 6.36 \gamma \left(\frac{S_{eff}}{M}\right) - 3.18(1 + 2 \gamma \Delta T) \left(\frac{S}{M}\right) \left(\frac{\partial C}{\partial T}\right)\right] + \Sigma_{ro}^{U} \gamma \Sigma_{ro}^{M}}{k_{eff} (\Sigma_{r}^{M})^{2}}$$
(10)

The terms appearing in equation (10) give the total changes in reactivity during an excursion of Type I. These terms represent, in the indicated order (see Table III). (1) Reduction in reactivity due to Doppler broadening. (2) Reduction in reactivity due to increase in (S_{eff}/M) caused by expansion of metal: (3) Reduction in reactivity due to loss of coolant, hence increased utilization of resonance neutrons by U^{238} ; (4) Increase in reactivity due to a reduction in shielding of resonance neutrons caused by reduced spacing between fuel plates.

Table III

CHANGES IN REACTIVITY FOR 1000C RISE IN U-METAL

Moderator	Doppler Broad- ening	Metal Expan~ sion	Loss of Coolant	Reduced Shielding of Res. Neutrons	Total	
All D ₂ O	-0.012	- 0.0029	-0.00094	+ 0.00056	-0.015	
90 v/o D_2O + 10 v/o H_2O	-0.0072	0.0020	-0.00054	+0.00034	-0.0094	

It appears from the above data that the greatest contributions to changes in reactivity are due to Doppler broadening and metal expansion; the other two terms are very small. It is also seen that the effect of the addition of 10 v/o of H_2O is to lower the magnitude of reduction in reactivity due to Doppler broadening and metal expansion. For a uniform temperature rise of 1000C in the fuel plates, these reductions would be 1.5% and 0.94%, respectively.

For an accurate evaluation of these reductions in reactivity it is necessary to obtain the spatial temperature distribution in the fuel elements. There should be a more uniform spatial flux and temperature distribution in the all- D_2O and 90 v/o $D_2O + 10$ v/o H_2O reactors, than in the H_2O -moderated EBWR. From this consideration alone, the D_2O -moderated EBWR should be able to withstand greater sudden reactivity increases than the present H_2O -moderated EBWR. The addition of 10% H_2O reduces the magnitude of the allowable sudden reactivity increases by a factor of 1.5, compared to the all- D_2O -moderated reactor. It should be noted, however, that in view of the long neutron lifetime in these D_2O reactors (2.5 x 10⁻⁴ to 2.7 x 10⁻⁴ sec), it is expected that the shutdown mechanism would be due to expulsion of the coolant from the fuel tubes, discussed below for small values of k_{ex} , corresponding to reactor periods of about 20 msec.

Type II Excursion

The effects of slow but large increases in reactivity, resulting in total expulsion of coolant from the fuel tubes, are shown in Tables V to VII (for a uniform rise of 1000C in fuel plates). No allowance has been made for decrease in reactivity due to "streaming" of neutrons during the total expulsion of coolant.

., <u>1</u> i

Data of Tables V to VII do not include (Xe + Sm) poisoning, except for the operating reactor.

It may be seen from data of Table VII that appreciable losses in reactivity will result due to power excursions of Type II, due mainly to large increases in flux leakage. The streaming effect of neutrons during such excursions would affect a further reduction in reactivity. These large increases in neutron leakage are typical of small D_2O reactors.

For a detailed view of the process of excursion and its effects on the reactor constants, values of constants involved in the calculation of p and f are listed in Tables V and VI.

For example, in a Type II excursion, C (the self-shielding factor due to proximity of U^{238}) increases; there is, therefore, a corresponding decrease in S_{eff}/M and in the effective resonance integral (R. I.). This decrease is, however, more than compensated for by the loss of coolant in the tubes, resulting in an over-all gain in resonance neutron utilization, and hence in a loss of p. In this evaluation, due account is also given to drop in the disadvantage factor (F) during excursion (Tables V and VI).

Loss of coolant results in a greater reduction in p of the D_2O moderated reactor than of the (10 v/o H_2O + 90 v/o D_2O)-moderated version. For similar reasons, the loss of coolant has greater effect on the p of a hot reactor, as compared to the cold reactor.

As expected, the effect of excursions on the f of the D_2O -moderated reactor is small. For the reactor with 10 v/o H_2O + 90 v/o D_2O , the effect of an excursion is an increase in f due to a reduction in parasitic absorption, allowing for a reduced disadvamtage factor.

The effects of excursions on the values of ϵ , k, L², τ , R.S. (hence the leakage factor Λ) and k_{eff} are given in Table VII. (Increase in ϵ , during excursion II, is due to increased collisions of high energy neutrons with U²³⁸ atoms.)

Design II

As previously stated, this design was considered so as to be able to use the present grid in the EBWR. The core height is 4 ft (compared with $4\frac{3}{4}$ ft for design I), and the diameter is about the same as in design I. The D₂O-to-U metal ratio is 19.4 (compared with 23.4 of design I). The same fuel plate thickness as in design I is used, and the total heating surfaces are the same, within about 7% (Table I).

Compared with design I (see Tables II and IV) f is nearly the same, but p is 2.3% lower. This reduction of p is due to the lower value of D_2O to-U metal ratio in design II. This ratio could be increased to nearly equal that of design I by reducing the fuel meat thickness from the present 0.12 in. to 0.10 in. This, however, would result in a relative increase in content of zirconium (for an unchanged minimum thickness of zirconium clad of 0.020 in.), and hence in a reduced f. In a previous study on large power reactors 0.12 in. thickness for the fuel meat thickness appeared to be a near optimum. On the basis of these considerations, the above fuel meat thickness of 0.12 in. was used for both designs I and II. The axial reflector thicknesses (top and bottom) for design II total 83.8 cm as compared to 61 cm of design I, which has a 3/4 ft longer core. The total buckling (in operation) of design II is greater by $\Delta B^2 = 0.000015$ over that of design I.

The enrichment required for criticality is 1.65%, as compared with 1.46% of design I, and the initial conversion ratio, 0.62, is nearly equal to that of design I (0.63). The excess grams of U^{235} required per mw of reactor power are 653 and 523, respectively. The costs of U^{235} (assuming \$25/gr of U^{235} in excess of that in natural uranium) are:

 $1.535(tons) \ge 907,000 \ge (0.01653 - 0.00714) \ge 25 = $327,300 - for design II$ $1.55(tons) \ge 907,000 \ge (0.01459 - 0.00714) \ge 25 = $262,000 - for design I$ or a difference of \$65,300.

Also in favor of design I is an increment of 0.01 in ICR, which is equivalent to about $\Delta \rho = 0.00064$ and hence a gain of \$24,000. The difference in cost of U²³⁵ now becomes about 86,000, which is of the same order as that of setting in a new grid in the EBWR.

It is estimated that the analysis applied to design I in regard to the effects of small amounts of H_2O , and of excursions, should yield here similar results, except for slight differences in the magnitudes of these effects.

Design III

This design involves the minimum of effort and cost in converting the present H_2O -moderated EBWR to its D_2O version. It involves the removal of 75% of the present fuel boxes and enclosure of the remaining 25%

Table IV

4

,

REACTOR CHARACTERISTICS OF A 20-mw EBWR, DESIGNS II AND III, MODERATED BY D_2O

	Design II			Design III			
	Cold	Hot	Boiling	Cold	Hot	Boiling	
р	0.8532	0.8276	0.8237	0.880	0.858	0.855	
$\begin{cases} f \\ f \text{ with } Xe \end{cases}$	0.9772	0.9783	$ \begin{cases} 0.9784 \\ 0.9425 \end{cases} $	0.977	0.978	{0.978 {0.943	
e	1.022	1.023	1.024	1.025	1.026	1.027	
η	1.638	1.621	1.621	1.588	1.569	1.569 (unif. enr. fuel)	
$\begin{cases} k (no Xe) \\ k (with Xe) \end{cases}$	1.3957	1.3426	$\begin{cases} 1.3377 \\ 1.2886 \end{cases}$	1.4009	1.3797	{1.348 1.299	
L ² (unif. enr. fuel)	44	80	83	49	92	96	
L^2 (nat. U)				80	150	152	
$^{ au}$ 2-Group	133	208	243.5	133	208	243.5	
B ²	0.00093	0.00083	0.00080	0.00093	0.00083	0.00080	
$(1 + L^2B^2)(1 + \tau B^2)$	1.1697	1.2505	1.273	1.1749	1.2622	1.2866	
(k _{eff} (no Xe) (k _{eff} (with Xe)	1.1932	1.0736	$ \begin{cases} 1.05 \\ 1.01 \end{cases} $	1.192	1.070	$\begin{cases} 1.047 \\ 1.009 \end{cases}$	
Δk_{eff} (cold to hot)			-0.1196			-0.122	
Δk_{eff} (hot to boil)			-0.0236			-0.023	
Δk_{eff} (Xe + Sm)			-0.0400			-0.040	
Δk_{eff} (total)			-0.1832			-0.185	
Enr _{cr}			0.0165			0.0144 unif. enr. fuel	
ICR			0.62			0.61 unif. car.	
Excess gr. of U^{235}/mw^*			653			655	
mean neutron life time	2.2x	10 ⁻⁴ sec	2.9x1	0 ⁻⁴ sec	2.5x1	10 ⁻⁴ sec	

*Grams of U²³⁵ in excess over that of natural-U.

26

Table V

	بطيبة اليك المسلم	44 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	020210 (22			/	
	Cold	Cold Exc I	Cold Exc II	Hot	Hot Exc I	Hot Exc II	Boil
С	0.57	0.561	0.937	0.624	0.614	0.937	0.688
s/m	0.19	0.203	0.080	0.175	0.185	0.080	0.1551
*R.I.	12.78	14.32	11.	12.62	13.87	11.	11.9
**Res.F	1.0983	1.1102	1,064	1.120	1.129	1.0764	1.0896
+f _r	0.1224	0.1340	0.1362	0.1450	0.1561	0.1630	
p	0.8699	0.8566	0.8541	0.8441	0.8311	0.8231	0.8408
	-	-1.53%	-1.82%	4 00	-1.54%	-2.49%	
**Th F	1.1935	1.1935	1.066	1.1355	1.1355	1.051	1.127
f	0.9772	0.9772	0.9782 +.1%	0.9783		0.9790 +.07%	-

VARIATIONS IN RESONANCE AND THERMAL CHARACTERISTICS DURING EXCURSIONS - (ALL D₂O MODERATED)

*RI = resonance integral

**Resonance and thermal disadvantage factors, as indicated.

⁺Resonance utilization

Table VI

VARIATIONS IN RESONANCE AND THERMAL CHARACTERISTICS DURING POWER EXCURSIONS - (90 v/o D_2O + 10% H_2O MODERATED)

	Cold	Cold Exc I	Exc II	Hot	Exc I	Exc II	Boil
С	0.491	0.49	0.937	0.554	0.544	0.937	0.627
s/m	0.215	0.229	0.080	0.1976	0.208	0.080	0.1744
*RI	13.4	15.23	11.5	12.96	14.70	11.5	12.38
**Res. F	1.086	1.103	1.064	1.131	1.132	1.071	1.121
+f _r	0.0812	0.0902	0.0918	0.0937	0.1041	0.1121	
p	0.9154	0.9056 -1.07%	0.9039 -1.26%	0.9018	0.8903 -1.275%	0.8813 -2.27%	0.8995
**Therm. F	1.5627	1.5627	1.4838	1.3807	1.3807	1.3078	1.395
f_{th}	0.8594		0.8825 +2.69%	0.8913		0.9105 +2.15%	

*RI = resonance integral

**Resonance and thermal disadvantage factors, as indicated.

⁺Resonance utilization

Table VII

DECREASE IN REACTIVITY DUE TO METAL TEMPERATURE COEFFICIENT AND LOSS OF COOLANT (DESIGN I)

(Excursion is of Type II, as Explained in Report)

All D ₂ O			r									
	р	<u> </u>	$\frac{1}{[no (Xe + Sm)]}$	η	$\frac{k_{\infty}}{[no (Xe + Sm)]}$	L ²	F	R.S. (Radial)	B ²	*^	k _{eff}	$\frac{\frac{\Delta k_{eff}}{k_{eff}} \times 100}{\frac{100}{100}}$
Cold	0.8700	1.022	0.9772	1.5982	1.3886	64.7	127	30.	.000900	1.1863	1.1705	-
Cold-Excursion	0.8541	1.046	0.9782	1.5982	1.3967	76.5	264	34.4	.000828	1.3235	1.0553	- 9.8
Hot	0.8441	1.023	0.9783	1.5741	1.3298	100.3	198.4	35.0	.000797	1.2651	1.0511	-10.2
Hot-Excursion	0.8231	1.046	0.9790	1.5741	1.3268	121.4	413	43.8	.000695	1.3847	0.9581	- 8.8*
**Operating	0.8408	1.024	0.9425	1.5741	1.2773	98.3	233	38.1	00077	1.2773	1.0	
90% D ₂ O + 10% H ₂	0											
Cold	0.9154	1.022	0.8595	1.5934	1.2812	51.3	97.7	22.8	.00104	1.1660	1.0988	
Cold-Excursion	0.9039	1.046	0.8825	1.5934	1.3295	59.6	203	29.3	.000907	1.2674	1.0490	- 4.5
Hot	0.9018	1.023	0.8913	1.5691	1.2902	76.8	152.6	26.6	.000959	1.2427	1.0382	- 5.5
Hot-Excursion	0.8814	1.046	0.9105	1.5691	1.3171	92.2	317.5	36.5	.000787	1.3769	.9565	- 7.8*
**Operating (with Xe + Sm)	0 .8995	1.024	0.864	1.5691	1.2492	74.9	179	28.6	000918	1.2492	1.0	

.

 $*\Lambda = (1+L^2B^2)(1+TB^2)$

·

,

.

,

**Operating constants only include equilibrium (Xe + Sm) poisoning.

[†]Variation in R.S. from operating conditions are computed by method of G. Volkoff (MTL-5).

. . . .

with tubes. Fuel plates with 0.205 in. thickness only are considered as they more nearly approximate the thickness expected to be used in D_2O reactors.

With a D_2O -to-U metal ratio of 24.3, a value of p = 0.855 is obtained. This value is greater than those obtained in designs I and II (0.8408 and 0.8237, respectively). Assuming nearly the same f as in the other designs, and estimating its reflector savings, hence B^2 , the use of 1.44% enriched plates may result in a $k_{eff} = 1.009$.

The values of Δk_{eff} (cold to hot) and Δk_{eff} (hot to boil) are given in Table IV and are similar to those for designs I and II.

The effects of small amounts of H_2O on the reactivity are, again, expected to be qualitatively similar to design I.

The reactor power obtainable (about 9 mw) is, naturally, lower than for the other designs, since there are only 22 fuel tubes (on the basis of average heat flux of 100,000 BTU/(sq ft) (hr). Greater reactor power may, however, be obtained by the use of fuel tubes in the reflector region.

The effects of power excursions should also be similar to that of design I, except that we have here more moderator and tubes with smaller diameter; hence reduced effects due to these excursions may be expected.

Control of Reactor

It is expected that the present system of control rods for the H_2O moderated EBWR will be more than adequate for the D_2O -moderated reactor, where values of τ and L^2 are much greater.

Some approximate calculations are made herein to determine the worth of these rods, assuming that the absorption cross section of a rod is approximately that of its surface area.

Further assumptions made are as follows:

(1) The effective perimeter of the rod is that of the rectangle indicated to the right. \bigwedge

(2) The neutron flux very near the rod is $\frac{\phi_0}{5}$.

(3) The reduction in effectiveness of these rods due to shadowing effects nearly balances out the increase in effectiveness due to increased leakage caused by these rods.

(4) The control rods are thermally black or are the equivalents thereof.

30

The equivalent absorption cross section of a rod of length l = length of core will be, then,

$$\Sigma_{a}$$
 (CR) = $\frac{1}{5} \frac{(4) (2 a l)}{\pi R^{2} l}$ = 0.36 $\frac{a}{R^{2}}$

In the cold D_2O -moderated EBWR,

$$\Sigma_{a}$$
 (CR) = 0.36 x $\frac{12.7 \text{ cm}}{(61)^{2}}$ = 0.00123

For 9 rods assembled in a central region of about 24 in. radius, the statistical weight corresponding to $\frac{r}{R} \approx 0.78$ is 0.93; hence for 9 rods,

 Σ_a (CR) = 0.00123 x 9 x 0.93 = 0.0103 .

The averaged Σ_a (cold reactor) = 0.01356. Hence, the reduction in k will be:

$$\frac{\Delta k}{k} = \frac{0.0103}{0.01356 + 0.0103} = 0.43$$

Similar calculations for the use of 5 central rods only (using the same pattern of rods shown on Figures 1 and 2), results in

$$\Sigma_{a}$$
 (CR) $\approx 0.0123 \text{ x } 5 \text{ x } 0.93 = 0.0057$

and

$$\frac{\Delta k}{k} = \frac{0.0057}{0.01356 + 0.0057} \simeq 0.30$$

This is more than adequate to control the reactivities involved.

Similar calculations made for the H_2O -moderated EBWR were in fair agreement with results obtained by cell method plus Univac calculations, as indicated below:

	Worth of all 9 roo	ls
Cell method plus Univac	11.65	
Approximate method indicated above	11.3	

ACKNOWLEDGEMENT

The author wishes to acknowledge the contributions made by J. M. West and M. Treshow in the design of the core, and also that of Miss M. Schlopkohl for making many calculations of the two-group diffusion theory pertinent to this work.

6,01

e, ,1

Effective Surface of U^{238} Plates

The effective surface of U^{238} plates may be evaluated by allowing for shielding of resonance neutrons due to proximity of metals as described by Dancoff and Ginsberg.*

For a set of n plates of surface 2A per plate, the total effective surface S_{eff} will be:

$$S_{eff} = 2A + (n-1)(2A)(1-C)$$

= 2A [1 + (n-1)(1-C)]. (1)

C may be evaluated with reasonably good accuracy by assuming that the plates are infinite in dimensions.

According to CP-2157

$$C = \frac{1}{\pi A} \int \int dA \, dA' \, \cos \alpha \, \cos \alpha' \, \frac{e^{-|\mathbf{r} - \mathbf{r}'|/\lambda}}{|\mathbf{r} - \mathbf{r}'|^2}$$
(2)

where, for parallel plates (see Fig. A):

$$\cos \alpha = \cos \alpha^{1} = \frac{d}{r - r^{1}}; \ \overline{r - r^{1}} = \sqrt{d^{2} + x^{2}}$$

 $dA = 2\pi x dx; \ dA^{1} = 2\pi r^{1} dr^{1}$
 $\lambda = \text{mean free path for scattering of resonance neutrons} = \frac{1}{\Sigma_{r}}$.

By substitution of the above (1) becomes:

$$C = \frac{d^{2}}{\pi A} \int_{0}^{\infty} 2 \pi r' dr' \int_{0}^{\infty} 2\pi x dx \frac{e^{-|\vec{r} - \vec{r}'|}/\lambda}{|r - r'|^{4}}$$
$$C = \frac{d^{2}}{\pi A} A \cdot 2\pi \int_{0}^{\infty} x dx \frac{e^{-\sqrt{d^{2} + x^{2}}/\lambda}}{(d^{2} + x^{2})^{2}}$$

Making a transformation $d^2 + x^2 = y^2$

$$C = 2d^2 \int_{d}^{\infty} y^{-3} e^{-y/\lambda} dy$$
 (3)

*Dancoff and Ginsberg, "Surface Resonance Absorption in a Close-packed Lattice" CP-215 (Oct. 1944)

To express C as an E_3 function, we make a transformation of variable y, i.e., $\frac{y}{d} = v$.

Then (3) becomes:

$$C = 2 \int_{1}^{\infty} v^{-3} e^{-\frac{d}{\lambda} v} dv$$
(4)

or

$$C = 2 E_3 \left(\frac{d}{\lambda}\right) = 2 E_3 (\Sigma_s d)$$
.

