
LLNL-CONF-422873

A ROSE-based OpenMP 3.0
Research Compiler Supporting
Multiple Runtime Libraries

C. Liao, D. Quinlan, T. Panas

January 26, 2010

The International Workshop on OpenMP
Tsukuba, Japan
June 14, 2010 through June 16, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A ROSE-based OpenMP 3.0 Research Compiler
Supporting Multiple Runtime Libraries ?

Chunhua Liao , Dan Quinlan and Thomas Panas

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{liao6,dquinlan,panas2}@llnl.gov

Abstract. OpenMP is a popular and evolving programming model for
shared-memory platforms. It relies on compilers for optimal performance
and to target modern hardware architectures. A variety of extensible and
robust research compilers are key to OpenMP’s sustainable success in
the future. In this paper, we present our efforts to build an OpenMP 3.0
research compiler for C, C++, and Fortran; using the ROSE source-to-
source compiler framework. Our goal is to support OpenMP research for
ourselves and others. We have extended ROSE’s internal representation
to handle all of the OpenMP 3.0 constructs and facilitate their manipu-
lation. Since OpenMP research is often complicated by the tight coupling
of the compiler translations and the runtime system, we present a set of
rules to define a common OpenMP runtime library (XOMP) on top of
multiple runtime libraries. These rules additionally define how to build
a set of translations targeting XOMP. Our work demonstrates how to
reuse OpenMP translations across different runtime libraries. This work
simplifies OpenMP research by decoupling the problematic dependence
between the compiler translations and the runtime libraries. We present
an evaluation of our work by demonstrating an analysis tool for OpenMP
correctness. We also show how XOMP can be defined using both GOMP
and Omni and present comparative performance results against other
OpenMP compilers.

1 Introduction

OpenMP is a popular parallel programming model for shared memory plat-
forms. By providing a set of compiler directives, user level runtime routines and
environment variables, it allows programmers to express parallelization oppor-
tunities and strategies on top of existing programming languages like C/C++
and Fortran. As a proliferation of new hardware architectures become available,
OpenMP has become a rapidly evolving programming model; numerous improve-
ments are being proposed to broaden the range of hardware architectures it can
? This work performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We
thank Bronis de Supinski for his suggestion of emphasizing supporting multiple run-
time libraries.

accommodate. A variety of robust and extensible compiler implementations are
the key to OpenMP’s sustainable success in the future. The reason is that it
is an OpenMP compiler’s responsibility to delivery portable performance. Open
source OpenMP compilers permit active research for this rapidly evolving pro-
gramming model.

Developed at Lawrence Livermore National Laboratory, the ROSE com-
piler [1] is an open source compiler infrastructure to build source-to-source pro-
gram translation and analysis tools for large-scale C/C++ and Fortran applica-
tions. Given its stable support for multiple languages and user-friendly interface
to build arbitrary translations, ROSE is particularly well suited to build refer-
ence implementations for parallel programming languages and extensions. It also
enables average users to create customized analysis and transformation tools for
parallel applications. In this paper, we present our efforts to build an OpenMP
research compiler using ROSE. Our goal is to support OpenMP research for
ourselves and others. For example, we have extended ROSE’s internal represen-
tation to faithfully represent the latest OpenMP 3.0 constructs and facilitate
their manipulation; allowing the construction of custom OpenMP analysis tools.

More generally, OpenMP research is often complicated by the tight coupling
of the compiler translations and the runtime system upon which they are de-
pendent. It is often a major effort to change the existing compiler translations
to utilize a new runtime library. Conversely, it can be difficult to change the
runtime system where new features require support from compiler translations.
As a result, this tight coupling impedes research work on the OpenMP pro-
graming model. We seek to use ROSE as a testbed to decouple the compiler
translations from dependence upon the OpenMP runtime libraries. A common
runtime library interface and a set of corresponding compiler translations have
been designed and developed within ROSE. As a preliminary evaluation, we
demonstrate an OpenMP analysis tool built using ROSE and the initial perfor-
mance results of ROSE’s OpenMP implementation targeting both GCC 4.4 and
Omni 1.6’s OpenMP runtime libraries.

The remainder of this paper is organized as follows. In the next section, we
introduce the design goal of ROSE and its major features as a source-to-source
compiler framework. Section 3 describes the OpenMP support within ROSE,
including internal representation, a common runtime library, and translation
support. Section 4 presents a preliminary evaluation of ROSE’s OpenMP sup-
port. Related work is discussed in Section 5. Section 6 concludes this paper and
discusses future work.

2 The ROSE Compiler

ROSE [1] is an open source compiler infrastructure to build source-to-source pro-
gram transformation and analysis tools for large-scale C/C++ and Fortran ap-
plications. It also has increasing support for parallel applications using OpenMP,
UPC and MPI. Similar to other source-to-source compilers, ROSE consists of
frontends, a midend, and a backend, along with a set of analyses and optimiza-

tions. Essentially, it provides an object-oriented (IR) with a set of analysis and
transformation interfaces allowing users to quickly build translators, analyzers,
optimizers, and specialized tools. The intended users of ROSE could be either
experienced compiler researchers or library and tool developers who may have
minimal compiler experience.

A representative translator built using ROSE works as follows. The EDG [2]
front-end is used to parse C and C++ applications. Language support for For-
tran 2003 (and earlier versions) is based on the open source Open Fortran Parser
(OFP) [3]. ROSE converts the intermediate representations (IRs) produced by
the front-ends into an intuitive, object-oriented abstract syntax tree (AST). The
AST exposes interface functions to support transformations, optimizations, and
analyses via simple function calls. Example AST analysis interface supports anal-
ysis for call graph, control flow, data flow(live variables, def-use chain, reaching
definition, alias analysis, etc.), class hierarchy, data dependence and system de-
pendence. Representative program optimization and translation interfaces cover
partial redundancy elimination, constant folding, inlining, outlining [4], and loop
transformations. Through a mechanism called persistent attribute, the ROSE
AST also allows user-defined data to be attached to any node as a way to ex-
tend the IR to store any additional information. The ROSE backend generates
source code in the original source language from the transformed AST, with all
original comments and C preprocessor control structures preserved. Finally, a
vendor compiler is optionally called to continue the compilation of the generated
(transformed) source code; generating a final executable.

3 OpenMP Support in ROSE

ROSE supports parsing OpenMP constructs, creating their internal representa-
tion as part of the AST, and regenerating source code from the AST. Additional
support includes a set of translations targeting multiple OpenMP 2.5/3.0 run-
time libraries, with the help from XOMP, a common OpenMP runtime library
that abstracts the details of any specific runtime libraries.

3.1 Parsing and Representing OpenMP

Neither EDG (as of version 4.0 and earlier versions) nor OFP recognizes OpenMP
constructs. The raw directive strings exist in the ROSE AST as pragma strings
for C/C++ and source comments for Fortran. Thus, we had to develop two
OpenMP 3.0 directive parsers within ROSE, one for C/C++ and the other for
Fortran. This, however, has significant advantages for users since they can easily
change our parsers to test new OpenMP extensions without dealing with EDG
or OFP.

ROSE’s OpenMP parsers process OpenMP directive strings and generate
a set of data structures representing OpenMP constructs. These data struc-
tures are attached to relevant AST nodes as persistent AST attributes. Us-
ing persistent AST attributes as the output of the parsers simplifies the work

for parsing since only minimum changes are needed to existing ROSE AST.
In fact, this light-weight representation for OpenMP is also used as the out-
put of ROSE’s automatic parallelization module [5]. As a result, the remaining
OpenMP-related processing can work on the same input generated either from
user-defined OpenMP programs or automatically generated OpenMP codes.

After that, a conversion phase is used to convert the ROSE AST with persis-
tent attributes for OpenMP into an AST with OpenMP-specific AST nodes,
which include statement style nodes for OpenMP directives and supporting
nodes (with file location information) for OpenMP clauses. Compared to the aux-
iliary persistent attributes attached to AST nodes, the newly-introduced AST
nodes for OpenMP directives and clauses are inherently part of the ROSE AST.
Thus, most existing AST traversal, query, scope comparison, and other manip-
ulation interfaces developed with ROSE can be directly reused to manipulate
OpenMP nodes. For instance, a regular AST traversal is able to access all vari-
ables used within the AST node for an OpenMP clause with a variable list. This
significantly simplifies the analysis and translation of OpenMP programs.

3.2 OpenMP Translation and Runtime Support

A major task of an OpenMP implementation is to translate OpenMP applica-
tions into multi-threaded code with calls to a supporting runtime library. To offer
maximal freedom and optimization opportunities to OpenMP implementations,
the OpenMP specification does not mandate the interface between a compiler
and a runtime library. It is up to an implementation to decide on what work to
be put into a runtime library and the way compiler translation interacts with
a library. Therefore, an OpenMP compiler’s translation is traditionally tightly
coupled with a given runtime library’s interface. It is often a major effort to
change the existing compiler translation to utilize a new runtime library. For
an OpenMP research compiler for OpenMP, it would be especially desirable to
support multiple OpenMP runtime libraries.

Fortunately, although the interface varies from one library to another, there
are many similar or overlapped runtime library functions. For example, most
portable OpenMP runtime libraries rely on the Pthreads API to create and
manipulate threads. Such a library usually provides a function which accepts a
function pointer and a parameter to start multiple threads. The same is true for
loop scheduling. Many loop scheduling policies have well defined behaviors and
the runtime support for them significantly overlap.

We have introduced a common OpenMP runtime library, XOMP, so that min-
imal changes are needed in ROSE to support multiple OpenMP runtime libraries
(RTLs) . Depending on the similarity among runtime libraries, three rules are
used in order to define XOMP and the corresponding compiler transformations.

– Rule 1. Target RTLs have some functions with similar functionalities. Those
functions often differ by names and/or parameter lists. For each of the func-
tions, we define a common function name and a union set of parameters in
XOMP. The implementation of the common function will handle possible

type conversion, parameter dispatch, inclusions/exclusions of functionality
(to compensate minor differences) before calling different target RTLs in-
ternally. By doing this, one translation targeting XOMP’s functions can be
reused across multiple RTLs.

– Rule 2. A target RTL (referred as libA) has an extra function (referred as
funcA()) compared to others.
1. This may be caused by some need to explicitly call funcA() to work with

libA while other libraries do not have similar need or meet the need
transparently. We define an interface function in XOMP for this function.
The XOMP function’s implementation is conditional based on target
runtime libraries, either calling funcA() for libA or doing nothing for all
others. Compiler translation targets the same XOMP interface as if all
RTLs had the explicit need.

2. funcA() implements some common functionality which is indeed suitable
to be put into a runtime library. Other libraries lack the similar support
and rely on compiler translation too much. We define an XOMP function
for the common functionality. The XOMP function either calls funcA() for
libA or implements the functionality which is absent in another RTLs.
Compiler translation targets the XOMP function.

3. funcA() implements some functionality which is indeed suitable to be di-
rectly implemented by compiler translation. We develop compiler trans-
lation to generate statements to implement the functionality without
leveraging any runtime support. Still, the compiler translation can work
with all RTLs.

– Rule 3. There may be a situation that none of the above options apply
nicely. For example, the translation methods and the corresponding runtime
support for an OpenMP construct can be dramatically different. In this case,
we expose all the runtime functions in XOMP and have different translations
for different XOMP support depending on the choice of implementation.

Finally, OpenMP translations share many similar tasks regardless of their
target runtime libraries. These tasks include generating an outlined function
to be passed to each thread, variable handling for shared and private data,
replacing directives with a function call, and so on. We have developed a set
of AST transformation functions to support these common tasks. For example,
the ROSE outliner [4] is a general-purpose tool to extract code portions from
both C and C++ to create functions. It automatically handles variable passing
according to variable scope and use information.

3.3 Translation Algorithm

We use the following translation algorithm for each input source file using
OpenMP:

1. Use a top-down AST traversal to make implicit data-sharing attribute ex-
plicit, including implicit private loop index variables for loop constructs and
implicit firstprivate variables for task constructs.

2. Use a bottom-up AST traversal to locate OpenMP nodes and performance
necessary translations.
(a) Handle variables if they are listed within any of private, firstprivate,

lastprivate and reduction clauses of a node.
(b) For (omp parallel) and (omp task) constructs, generate outlined functions

as tasks and replace the original code block with XOMP runtime calls.
(c) For loop constructs, normalize target loops and generate code to calcu-

late iteration chunks for each thread, with the help from XOMP loop
scheduling functions.

(d) Translation for other constructs, such as barrier, single, and critical are
relatively straightforward. Details have been reported in other papers [6].

As we can see, our algorithm handles variables with OpenMP data-sharing
attributes in a separated phase before the rest translation. The motivation is to
eliminate OpenMP semantics from a code segment as much as possible so the
general-purpose ROSE outliner can easily handle the code segment. Combined
OpenMP variable handling and outlining would otherwise force us to tweak the
outliner to specially handle OpenMP data-sharing variables during outlining,
which is undesirable.

3.4 Examples

We take the GCC 4.4.1’s GOMP [7] library and Omni Compiler [8] (v1.6)’s
runtime library as two examples to demonstrate the definition of XOMP and
the corresponding reusable compiler translations. GOMP is a widely available
OpenMP runtime library and has recently added support for the task features
of OpenMP 3.0. The Omni compiler is a classic reference research compiler for
OpenMP 2.0/2.5 features. Supporting these two representative runtime libraries
within a single compiler is a good indication of extensibility of a research com-
piler.

Fig. 1 and Fig. 3 give an example OpenMP program using tasks and ROSE’s
OpenMP translation result for it targeting XOMP. ROSE uses a bottom-up
traversal to find OpenMP parallel and task nodes and generates three outlined
functions with the help from the outliner. These outlined functions are passed
to either XOMP parallel start() or XOMP task() to start multithreaded execution.

Some XOMP functions, such as XOMP parallel start(), XOMP barrier() and XOMP single(),
are defined based on Rule 1 as common interfaces on top of both GOMP and
Omni’s interfaces. Rule 2.1 applies to XOMP init() and XOMP terminate() which are
introduced by Omni to explicitly initialize and terminate runtime support while
GOMP does not need them. In another case, GOMP does not provide runtime
support for some simple static scheduling while Omni does. We decided to use
Rule 2.3, letting the translation to generate statements calculating loop chunks
for each thread and totally ignore any runtime support. Rule 3 applies to the
implementation for threadprivate. GCC uses Thread-Local Storage (TLS) to im-
plement threadprivate variables. The corresponding translation is simple: mostly
by adding the keyword thread in front of the original declaration for a variable

1 int main ()
2 {
3 #pragma omp paral le l
4 {
5 #pragma omp single
6 {
7 int i ;
8 #pragma omp task unt ied
9 {

10 for (i = 0 ; i < 5000 ; i++)
11 {
12 #pragma omp task i f (1)
13 proce s s (item [i]) ;
14 }
15 }
16 }
17 }
18 return 0 ;
19 }

Fig. 1. An example using tasks

1 class A
2 {
3 private :
4 int i ;
5 public :
6 void pararun ()
7 {
8 #pragma omp paral le l
9 {

10 #pragma omp cr i t i c a l
11 cout<<” i= ”<< i <<endl ;
12 }
13 }
14 } ;

Fig. 2. A C++ example

declared as threadprivate. On the other hand, Omni uses heap to manage thread-
private variables and relies on more complex translation and runtime support
to initialize, access the right place of heap as a private storage for each thread.
These two implementations represent two main methods to support threadprivate.
Each of them has well-known advantages and disadvantages. As a result, we de-
cided to support both methods and conditionally use different translation and/or
runtime support depending on the choice of the final target runtime library.
XOMP task is an exception case since Omni does not have corresponding support
and we defined it based on GOMP’s interface. In summary, less than 20% of the
XOMP functions are defined using Rule 3. This means that more than 80% of
the OpenMP translation can be reused across multiple RTLs.

Leveraging ROSE’s robust C++ support, we are also able to implement
OpenMP translation for C++ applications. Fig. 4 shows the translation result
of an example C++ program shown in Fig. 2. The ROSE outliner supports
generating an outlined function with C-bindings at global scope from a code
segment within a C++ member function. This is helpful since most OpenMP
runtime library’s thread handling functions expect a pointer to a C function,
not a C++ one. The outlined function at line 22 is also declared as a friend (at
line 11) in the host class to legally access all class members.

4 Evaluation

We evaluate ROSE’s support for both OpenMP analysis and translation.

4.1 OpenMP Analysis

We have used ROSE to build a simple analysis tool which can detect a common
mistake of using OpenMP locks. As shown in Fig. 5, a lock variable (at line 3) is

1 #include ” libxomp . h”
2 struct OUT 1 1527 data { int i ; } ;
3 struct OUT 2 1527 data { int i ; } ;
4
5 stat ic void OUT 1 1527 (void ∗ ou t a r gv)
6 {
7 int i = (int) (((struct OUT 1 1527 data ∗) ou t a r gv) −> i) ;
8 int p i = i ;
9 p roce s s ((item [p i])) ;

10 }
11
12 stat ic void OUT 2 1527 (void ∗ ou t a r gv)
13 {
14 int i = (int) (((struct OUT 2 1527 data ∗) ou t a r gv) −> i) ;
15 int p i = i ;
16 for (p i = 0 ; p i < 5000 ; p i++) {
17 struct OUT 1 1527 data ou t a r g v 1 1 5 2 7 ;
18 ou t a r g v 1 1 5 2 7 . i = p i ;
19 /∗ void XOMP task (
20 ∗ void (∗ fn) (void ∗) , void ∗data , void (∗ cpyfn) (void ∗ , void ∗) ,
21 ∗ long arg s i ze , long arg a l i gn , boo l i f c l au s e , boo l untied)∗/
22 XOMP task(OUT 1 1527 ,& ou t a r gv1 1527 , 0 , 4 , 4 , 1 , 0) ;
23 }
24 }
25
26 stat ic void OUT 3 1527 (void ∗ ou t a r gv)
27 {
28 i f (XOMP single ()) {
29 int i ;
30 struct OUT 2 1527 data ou t a r g v 2 1 5 2 7 ;
31 ou t a r g v 2 1 5 2 7 . i = i ;
32 XOMP task(OUT 2 1527 ,& ou t a r gv2 1527 , 0 , 4 , 4 , 1 , 1) ;
33 }
34 XOMP barrier () ;
35 }
36
37 int main (int argc , int argv)
38 {
39 int s t a tu s = 0 ;
40 XOMP init (argc , argv) ;
41 /∗ void XOMP paral le l start (
42 ∗ void (∗ func) (void ∗) , void ∗data , unsigned num threads)∗/
43 XOMP paral le l start (OUT 3 1527 , 0 , 0) ;
44 XOMP parallel end () ;
45 XOMP terminate (s t a tu s) ;
46 return 0 ;
47 }

Fig. 3. Translated example using tasks

declared within a parallel region and then used within the same parallel region.
This won’t work since a lock has to be shared to be effective. A locally declared
lock is private to each thread.

Fig. 6 shows the ROSE AST analysis code (slightly simplified) needed to
find a mistaken use of locks mentioned above. Programmers only need to cre-
ate a class(OmpPrivateLock) by inheriting a builtin AST traverse class in ROSE
and provide a visitor function implementation. All AST nodes are visited dur-
ing a traversal to find a use of an OpenMP lock within any of OpenMP lock
routines (line 4-13). The code then detects if the use of the lock is lexically en-
closed inside a parallel region (line 16-18) and if the declaration of the lock is

1 #include ” libxomp . h”
2 struct OUT 1 1527 data { void ∗ t h i s p t r p ; } ;
3 stat ic void OUT 1 1527 (void ∗ ou t a r gv) ;
4 stat ic void ∗ x omp c r i t i c a l u s e r ;
5
6 class A
7 {
8 private :
9 int i ;

10 public :
11 friend void : : OUT 1 1527 (void ∗ ou t a r gv) ;
12 void pararun ()
13 {
14 class A ∗ t h i s p t r = this ;
15 struct OUT 1 1527 data ou t a r g v 1 1 5 2 7 ;
16 ou t a r g v 1 1 5 2 7 . t h i s p t r p = (void ∗) t h i s p t r ;
17 XOMP paral le l start (OUT 1 1527 ,& ou t a r gv1 1527 , 0) ;
18 XOMP parallel end () ;
19 }
20 } ;
21
22 stat ic void OUT 1 1527 (void ∗ ou t a r gv)
23 {
24 class A ∗ t h i s p t r =
25 (class A ∗) (((struct OUT 1 1527 data ∗) ou t a r gv) −> t h i s p t r p) ;
26 XOMP cr i t i ca l s tar t (& xomp c r i t i c a l u s e r) ;
27 std : : cout<<” i= ”<<(∗ t h i s p t r) . i<<std : : endl ;
28 XOMP crit ical end(&xomp c r i t i c a l u s e r) ;
29 }

Fig. 4. Translated C++ example

1 #pragma omp paral le l
2 {
3 omp lock t l ck ;
4 omp set lock (& l ck) ;
5 p r i n t f (”Thread = %d\n” , omp get thread num ()) ;
6 omp unset lock(& l ck) ;
7 }

Fig. 5. Using a private lock

also inside the same parallel region (line 21-22). The statement style OpenMP
node(SgOmpParallelStatement) for a parallel region enables users to directly reuse
AST interface functions, such as the function to find lexically enclosing node of a
given type (SageInterface :: getEnclosingNode<ParentType>(node)) and another function
to tell if a node is another node’s ancestor (SageInterface :: isAncestor(a node, c node)).

As demonstrated by the example, writing analysis tools using ROSE is straight-
forward since OpenMP constructs are represented as nodes which are inherently
part of the ROSE AST.

4.2 OpenMP Translation

A set of OpenMP benchmarks, including the NAS Parallel Benchmarks(NPB)[9]
and the Barcelona OpenMP Task Suite (BOTS) [10], have been used to evaluate
ROSE’s OpenMP translations and the corresponding XOMP interface. Those

1 void OmpPrivateLock : : v i s i t (SgNode∗ node)
2 {
3 // 1. Find an OpenMP lock rout ine
4 SgFunctionCallExp ∗ f u n c c a l l = isSgFunct ionCal lExp (node) ;
5 i f (! f u n c c a l l) return ;
6 std : : s t r i n g f name = fun c c a l l−>get name () ;
7 i f (f name != ” omp unset lock ” && f name != ” omp set lock ”
8 && f name != ” omp tes t l o ck ”) return ;
9

10 // 2. Grab the only rout ine parameter as the use of a lock
11 std : : vector<SgVarRefExp∗> exp vec =
12 Sage In t e r f a c e : : querySubTree<SgVarRefExp>(f u n c c a l l , V SgVarRefExp) ;
13 ROSE ASSERT(exp vec . s i z e () ==1);
14
15 // 3. I f the lock ’ s use i s ins ide a p a r a l l e l region
16 SgOmpParallelStatement∗ l o c k r e g i o n =
17 Sage In t e r f a c e : : getEnclosingNode<SgOmpParallelStatement >(exp vec [0]) ;
18 i f (l o c k r e g i o n)
19 {
20 // 4. Check i f the lock dec lara t ion i s a l so ins ide the same region
21 SgVar iab l eDec la rat ion ∗ l o c k d e c l = exp vec [0]−> g e t d e c l a r a t i o n () ;
22 i f (Sage In t e r f a c e : : i sAnce s to r (l o ck r eg i on , l o c k d e c l))
23 cerr<<”Found a pr i va t e lock with in a p a r a l l e l r eg i on ”<<endl ;
24 }
25 }

Fig. 6. A ROSE-based tool to find private locks

benchmarks have builtin correctness verification so they also test the correct-
ness of compiler implementations. All experiments were run on a Dell T5400
workstation with dual processors and 8 GB of memory. Each of the processors is
a 3.16 GHz quad-core Intel Xeon X5460 processor. In addition to ROSE, several
other OpenMP compilers were also used. They include GCC 4.4.1, Intel Compil-
ers 11.1.059, and the Mercurium 1.3.3 compiler with Nanos 4.1.4 runtime. GCC
4.4.1 was used as the backend compiler for all source-to-source implementations.
Compiler option -O3 was used whenever possible.

Fig. 7 shows the speedup of a subset of NPB (V 2.3 C version [11]) and
BOTS V 1.0 using up to 8 threads by different compiler/runtime configura-
tions. Results for the remaining benchmarks had similar patterns and are not
shown for brevity. ROSE-Omni’s speedup for the BOTS benchmarks (NQUEEN,
SORT, and STRASSEN) is not available since the Omni runtime library does
not support OpenMP tasking. In general, all implementations had comparable
performance. ROSE’s source-to-source translation and extra layer of runtime
support do not have any significant performance disadvantages compared to
other compilers.

5 Related Work

Some other OpenMP research compilers exist. Representative examples include
Omni [8], OdinMP [12] and OpenUH [6]. Most research compilers adopt the
source-to-source translation approach. Based on Open64, OpenUH supports
both source-to-source translation and generating the final binary code by it-
self. The Nanos Mercurium compiler [13] is another source-to-source compiler

0

1

2

3

4

5

6

7

8

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

CG FT MG NQUEEN SORT STRASSEN

Intel

Mercurium

GCC

ROSE-GOMP

ROSE-Omni

Fig. 7. Speedup of some NPB 2.3 and BOTS 1.0 benchmarks

aimed at fast prototyping for OpenMP. It was among the first to support the
OpenMP 3.0’s task feature and was used to evaluate the expressiveness and
flexibility of OpenMP task directives compared to using nested parallelism and
Intel’s taskqueues. More recently, Addison et. al. [14] presented the OpenMP
3.0 implementation in OpenUH [6] with an extended runtime system supporting
tasking. However, the corresponding compiler translation was done manually,
as reported in their paper. Leveraging GCC 4.4’s runtime library, ROSE is one
of the few OpenMP compilers supporting OpenMP 3.0. It might be the only
OpenMP research compiler with stable C++ source-to-source support, although
both OpenUH and Mercurium have similar goal. Finally, ROSE’s XOMP easy
translation interface enables ROSE to quickly implement translation targeting
different runtime libraries as demonstrated in this paper. Other compilers usually
target only a single runtime library.

6 Conclusion

In this paper, we have presented ROSE as an OpenMP research compiler for
C/C++ and Fortran. ROSE’s OpenMP support includes extensions to ROSE’s
AST to represent OpenMP constructs, a common runtime support interface
(XOMP), and a set of reusable translations which can target multiple OpenMP
runtime libraries. Our AST representation for OpenMP is inherently part of
the ROSE AST so most existing AST manipulating, analysis, and transforma-
tion interface functions can be easily reused to handle OpenMP applications.
Preliminary evaluation demonstrates that it is straightforward to write static
analysis tools for OpenMP. Also, ROSE’s OpenMP translation targeting two
mainstream OpenMP runtime libraries has competitive performance compared
to other OpenMP implementations. The latest ROSE OpenMP support has been
released as part of the ROSE distribution (downloadable from our website [1]).

In the future, we plan to add the OpenMP Fortran support and complete
the OpenMP 3.0 implementation, such as loop collapse. We will build more
static analysis tools to help users write correct OpenMP applications. With
ROSE’s unique C++ support, we are interested in exploring more C++-related
issues within OpenMP. The introduction of explicit tasks in OpenMP 3.0 gives
implementations and users more choices to optimize parameters related to tasks,
such as the cut-off depth of tasks, tied or untied tasks, or task scheduling policies
(including task aggregation granularity) and so on. We expect that empirical
tuning can play an important role in finding the best OpenMP compilation and
execution parameters for a given application on a particular platform. Finally,
we especially welcome external collaborations using ROSE for research specific
to the requirements of the OpenMP research community.

References

1. Quinlan, D.J., et al.: ROSE compiler project. http://www.rosecompiler.org/
2. Edison Design Group: C++ Front End. http://www.edg.com
3. Rasmussen, C., et al.: Open Fortran Parser. http://fortran-parser.

sourceforge.net/

4. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-source outlin-
ing to support whole program empirical optimization. In: The 22th International
Workshop on Languages and Compilers for Parallel Computing (LCPC), Newark,
Delaware, USA (2009)

5. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: IWOMP ’09: Proceedings
of the 5th International Workshop on OpenMP, Berlin, Heidelberg, Springer-Verlag
(2009) 28–41

6. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: an opti-
mizing, portable OpenMP compiler. Concurrency and Computation: Practice and
Experience 19(18) (2007) 2317–2332

7. : GOMP - an OpenMP implementation for GCC. http://gcc.gnu.org/projects/
gomp (2005)

8. Sato, M., Satoh, S., Kusano, K., Tanaka, Y.: Design of OpenMP compiler for an
SMP cluster. In: the 1st European Workshop on OpenMP(EWOMP’99). (Septem-
ber 1999) 32–39

9. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel
benchmarks and its performance. Technical Report NAS-99-011, NASA Ames
Research Center (1999)

10. : Barcelona OpenMP task suite. http://nanos.ac.upc.edu/content/

barcelona-openmp-task-suite

11. : C version NPB 2.3 in OpenMP. http://www.hpcs.cs.tsukuba.ac.jp/

omni-openmp/download/download-benchmarks.html

12. Brunschen, C., Brorsson, M.: OdinMP/CCp - a portable implementation of
OpenMP for C. Concurrency - Practice and Experience 12(12) (2000) 1193–1203

13. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental
evaluation of the new OpenMP tasking model. (2008) 63–77

14. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking imple-
mentation in OpenUH. In: Open64 Workshop at CGO 2009. (2009)

