MCNP Super Lattice Method for VHTR ORIGEN2.2 Nuclear Library Improvement Based on ENDF/B-VII

PDF Version Also Available for Download.

Description

The advanced Very High Temperature gas-cooled Reactor (VHTR) achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block creates a double-heterogeneous lattice, which needs to be addressed through the use of the newly developed prismatic super Kernel-by-Kernel Fuel (KbKF) lattice model method. Based on the new ENDF/B-VII nuclear cross section evaluated data, the developed KbKF super lattice model was then used with MCNP ... continued below

Creation Information

Chang, G. S. & Parry, J. R. October 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The advanced Very High Temperature gas-cooled Reactor (VHTR) achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block creates a double-heterogeneous lattice, which needs to be addressed through the use of the newly developed prismatic super Kernel-by-Kernel Fuel (KbKF) lattice model method. Based on the new ENDF/B-VII nuclear cross section evaluated data, the developed KbKF super lattice model was then used with MCNP to calculate the material isotopes neutron reaction rates, such as, (n,?); (n,n’); (n,2n’); (n,f); (n,p); (n,?). Then, the MCNP-calculated results are rearranged to generate a set of new libraries “VHTRXS.lib,” for the ORIGEN2.2 isotopes depletion and build-up analysis code. The libraries contain one group cross section data for the structural light elements, actinides, and fission products that can be applied in the VHTR related fuel burnup and material transmutation analysis codes. The efficiency and ease of use of the MCNP method to generate and update the ORIGEN2.2 one-group spectrum weighed cross section library for VHTR was demonstrated.

Source

  • SNA + MC2010, Joint International Conference on Supercomputing In Nuclear Applications + Monte Carlo,Tokyo, Japan,10/17/2010,10/22/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-10-17838
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 993169
  • Archival Resource Key: ark:/67531/metadc1015726

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 5:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chang, G. S. & Parry, J. R. MCNP Super Lattice Method for VHTR ORIGEN2.2 Nuclear Library Improvement Based on ENDF/B-VII, article, October 1, 2010; Idaho. (digital.library.unt.edu/ark:/67531/metadc1015726/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.