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DISLOCATION-SOLUTE ATOM INTERACTIONS IN ALLOYS

ABSTRACT

During the past contract year, the. following projects have
been completed and are in various stages of write-up: (a) alloy
hardening and softening in body centered cubic metals; (b) car-
bon-vacancy interactions in austenitic alloys; and (c) Snoek
anisotropy in body centered cubic metals. In the same period
two new programs have been initiated on: (a) effects of solute
gradients on strengthening in materials; and (b) mechanical be-
havior of hydrogenated body centered cubic metals. In the com-
pleted programs, the new results 6btained include: (a) the
ubiquitous role of solute interactions in causing alloy softening
in Nb and Ta base alloys has been verified experimentally and has
been rationalized analytically; (b) c-v binding in austeniticalloys  has been found  to be large   (#  0.4  ev) from damping studies
and analysis of diffusion data; (c) single crystal anisotropy of
the Snoek phenomena in Ta-Re-N and Ta-Re-0 alloys, coupled with
thermodynamic studies of these alloys using damping techniques,
has permitted detailed knowledge of substitutional-interstitial
solute interactions; and (d) the relaxation strength of the C
Snoek spectrum in textured commercial steels has been success-
fully rationalized from complementary studies of the inverse pole
figures.  Results from the newly initiated programs, which are
only preliminary at present, are described briefly.
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DISLOCATION-SOLUTE ATOM INTERACTIONS IN ALLOYS

A.  Alloys Hardening and Softening in Body Centered Cubic Metals

In previous contract periods, we have reported that various

alloys of Nb and Ta exhibit alloy hardening if a solute, either

substitutional or interstitial, is added to the high purity metal.

Yet, it was generally found that the same solute, if added to an

impure metal or to a high purity metal to wliich another intersti-

tial solute had also been added, can cause the phenomenon of alloy

softening at temperatures T < 0.15 T where Tm  is the meltingm'

temperature. Alloy softening is generally observed as a decrease

in the. yield or flow stress of a material with respect to the addi-

tion of a particular solute.  A typical result from work that we

have done on Nb-W alloys intentionally contaminated with 0 is

given in Fig. 1.

In the present contract period with the completion of the Ph.

D. thes<s of A.K. Vasudevan, we have completed our investigations
.-- --.

on alloy hardening and softening in many Nb and Ta alloys. Re-

sults such as those given in Fig. 1 are completely general for all

materials investigated.  All of the following high purity binary

alloys exhibited only alloy hardening at all test temperatures:

Nb-0, Nb-N, Nb-C, Nb-H, Nb-Mo, Nb-W, Nb-Re. All of the following

impure:binary alloys exhibited alloy softening at T < 0.15 Tm:

Nb-0, Nb-Mo, Ta-0, Ta-N. All of the following high purity ternary

alloys,also exhibited alloy softening at T < 0.15 T : Nb-O-N,
m

Nb-0-H, Nb-0-C, Nb-Mo-0, Nb-Mo-C, Nb-W-0, Nb-Mo-Re, Ta-0-N. In

the last two categories, alloy softening was not observed at

temperatures approximately T t 0.15 T consistent with the re-m,
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sults obtained in other less systematically studied bcc metals

such as V, Mo, W, Cr, Fe and K.

From results such as these we have been able to conclude

that interactions between various solute atoms, at least one of

which is usually an interstitial solute, are responsible for alloy

softening in bcc materials. The solute interactions appear to in-

fluence mainly the distribution of thermally activatable obstacles

on a dislocation glide plane, although in several alloys the ac-

companying decrease in the total number of obstacles has an addi-

tional large importance. This conclusion comes from detailed

. analysis  of the general equation (1) .

T = aBYU/L

where: a is a function that describes the orientation, shape and

distribution of obstacles; B is the obstacle distortion; y is a

function that describes the character of the moving dislocation;

p is the shear modulus; and L is the obstacle spacing. Our analy-

sis, presented in preliminary form in Vasudevan's thesis, indicate

that a often varies significantly between the binary and ternary

alloys we have investigated.

Most of the detailed results, analyses and interpretations

have. been presented in other recent contract reports, theses and

publications and are not reproduced here. (See the enclosed list-

ing at the end of the report.) The remaining analytical and in-

terpretive efforts in this area should be largely completed in
the next year. Complete analyses of the large body of results ob-

tained by K.V. Ravi, M.G. Ulitchny and A.K. Vasudevan in their

theses research is anticipated.
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B.  Effects of Solute Gradients on Strengthening in BCC Materials.

A logical extension of the research described in section A

on effects of microscopic or atomic level solute distribution on

strengthening is to consider effects of larger, macroscopic solute

gradients. Such effects are or can be of importance in many prac-

tical materials problems, e.g., coatings on materials; surface

oxidation; decarburization or volatalization in service environ-

ments; composite materials etc. In this section we describe our

initial progress in such a program initiated during the past year

by Mr. V.K. Sethi.

The system selected for investigation is oxygen in niobium

for the reasons that

I (a) hardening caused by homogeneously distributed oxygen in

niobium is well documented (2-4);

(b) the techniques (solid state outgassing) for purification

of niobium have been perfected in our laboratories to give us

interstitial impurity contents of less than a few atomic ppm (parts

per million); and

(c) the degree of homogenization of oxygen can be controlled

easily (as described elsewhere in this section).

Nioboum single crystals, oriented near the center of the

stereographic triangle, are grown  in  the  form  of  'u  25  cm  long,

and 'u 3 mm diameter rods. Tensile specimens are prepared from

these rods by centerless grinding, and are then chemically po-

lished to remove surface damage. The tensile specimens are then

purified by heating at 'u 2200°C in vacuum ·(4 10-9 mm Hg).   Re-

sidual resistivities of # 2000 have been measured indicating that
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the amount of interstitial impurities is less than a few at.ppm.

(5)Controlled amounts of oxygen are added using anodic oxidation

followed by a diffusion anneal in vacuum at 1000°C. The gradients

are obtained by varying the diffusion anneal time. Figure 2 shows
% -f

a few gradients, the distribution is calculated from the series

solution of the diffusion equation in cylindrical co-ordinates.

Microhardness measurements across the cross-section of the speci-

men are being used to check the distribution profiles. Figure 3
e--

shows the microhardness vs. oxygen concentration curve which we

plan to use as our standard curve. The possibility of using the

microhardness measurements made at lower temperatures(6,7), where

the effects of oxygen are expected to be larger is being looked

into.

Tensile specimens, with characterized gradients are tested

at a base  shear strain rate of 0 7.5 x 10-4 sec at a wide range

of temperatures. A few of the shear stress vs. shear strain

curves for some gradients tested at 77°K are shown in Figure 4

(different gradients are labeled with the diffusion anneal times).

Figure 5 shows the variation of yield strength with diffusion an-
--.

neal time for the specimens anodized at 40V (CH - concentration

on homogenization 'u 600 at.ppm), 20V (CH '6 400 ppm)  and pure Nb.

Pure Nb specimens were given the same treatment as anodized speci-

mens. This was done to make sure that the effects we are seeing

are truely caused by gradients, and not by anything which is picked

up by the specimens during the diffusion anneal.

Figure 5 shows that with decreasing diffusion anneal time--&1.-
the yield strength is increased for the same total amount of oxy-
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gen and a maximum exists in the vicinity of 'u 200 sec below which

the yield strength drops very rapidly to values close to that of

pure niobium. Such a behavior was expected, and can be explained

on the basis of a model which considers the specimen with the gra-

dient as a Fomposite of a strong case and a weak core. Decreasing

diffusion anneal times correspond to decreasing the ratio of the

cross-sectional area of the case to the cross-sectional area of

the core. Such a model was proposed for composite-materials by

Hecker and Hamilton(8), and we hope we can use it to explain our

data on the macroscopic level.

The theoretical basis of strengthening under solute gradients

are not well understood. The major source of knowledge comes from

a few theoretical predictions:

a) computer calculations indicate a 20% strengthening effect

if point obstacles on a glide plane are in an ordered array instead

of being distributed randomly (9,10) ;

b) Fleischer(9) argues that shape of microgradients, and·con-

centration dependence of the yield stress for the point obstacles

involved determine the extent of softening or strengthening;

c) Fleischer(11) has also analyzed dislocation-level strength-

ening when macroscopic gradients are present. His analyses suggest

that the strengthening observed will depend sensitively on the type

of defect distortion (e.g. cubic vs tetragonal), the detail shape

of the dislocation - solute atom interaction potential, and the

orientation of the distortion relative to the moving dislocation.

To what extent these predictions are compatible with macroscopic

theories concerning rules of mixtures for composite type materi-
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als (8)  has to be tested. '

When all the data at different temperatures, diffusion anneal

times, and various amounts of oxygen is obtained we hope to esta-

blish (1) the extent to which these various types of gradients

cause hardening, softening or no effect on mechanical strength

and (2) the extent to which the different theoretical predictions

are (or should be) internally consistent.

C.  Mechanical Behavior of Hydrogenated Body Centered Cubic Metals

Nb-H is one of several alloy systems in which we have noted

alloy softening when a second solute atom (e.g. 0) is added.. We

have also seen that the solute interactions have important effects

on the hydrogen embrittlement characteristics of Nb, although our

present results have been limited in the range of temperature,

(12,13)strain rate and composition over which they have been made

Because recent investigations, e.g. by Birnbaum and by Arsenault

and their co-workers (14) , confirm the importance of our previous

work in understanding hydrogen strengthening and embrittlement

phenomena, we have chosen to expand our efforts in these areas.

During the past year we have initiated an investigation to

examine effects of various solutes systematically added to Nb-H

alloys on hydrogen strengthening and embrittlement. Emphasis is

being placed on effects of solutes on hydrogen solubility and hy-

dride precipitation and on mechanical behavior during temperature

and strain rate cycling. The program was initiated by Mr. T.

Ramsey, who unfortunately had to discontinue his graduate studies

recently. The program is being continued by Dr. A.A. Sagues as

a post doctoral program. All base metal specimens for the inves-
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tigation have been prepared and initial experiments are underway.

D.  Carbon-Vacancy Interactions in Austenitic Alloys

Mr. John Slane has completed a M.S. Program in which he has
been able to verify and extend the previous work of Ulitchny and
Gibala(15) in which it was argued that the C-V interaction energy
in austenite is probably large, viz. t 9 kcal/mole.

He has demonstrated that the carbon "Snoek-type" intersti-
tial relaxation peak in Fe-Ni-C austenites is enhanced by 2 mev
electron irradiation near ambient temperature. (See Fig. 6.)
This is consistent with efficient trapping of vacancies by carbon

atoms into C-V clusters which contribute to the relaxation pro-
cess.

He has also quantitatively analyzed diffusion data by Mead
and Birchenall(16) and Gruzin et.al. (17) and has shown that the

enhancement b of self-diffusion in fcc Fe by C additions, is
given by

D(C) = D(0) Il + bC]

where: D(C) and D(0) are the self diffusion coefficients in the
carbon-containing and carbon-free y-Fe respectively; C' is the
atomic fraction of carbon; and b is approximately given by

b % 2
exp  -1- 1  [  "9, kT)

for the limiting assumption that the jump frequency of a vacancy
is not affected by the presence of carbon*. Slane has determined
that Ag, the binding free energy of C-V pairs, is 9.5 kcal/mole.

* A much more detailed analysis is given in Slane's thesis.

W--
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This work lends strong support tothe supposed importance

of C-V interactions in irradiation swelling of stainless steels

in reactor environments(15).  However, it will not be continued

byeond normal publication of these results.

E.  Snoek Anisotropy in Body Centered Cubic Metals

We have made extensive use of Snoek anelasticity in bcc
metals as a means of· characterizing the interstitial solid solu-

tions for which we have investigated the mechanical behaviof.

Two related programs in this area have been completed in the past
year.

1.  Single crystal anisotropy of Snoek Anelasticity in Ta-Realloys.

We have previously reported our results of a complete study

of the concentration, temperature and orientation dependence of
N and 0 Snoek anelasticity in Ta-Re alloys.  These results, ob-

1--I- -

tained by Dr. A.A. Sagues, have now been completely analyzed and
show that (a) single N atoms, ReN pairs, Re2N triplets, single 0

atoms and RexO clusters (where X = 1,2, and possibly 3) relax in

these alloys, (b) the binding enthalpies are of the order 3-6

kcal/mole, and (c) the relaxation strength of N or 0 in the clus-
ters is as large as or slightly larger than that of the single

interstitial.

We have been able to combine such thermodynamic data with
data on the single crystal anisotropy to determine the most likely        i

cluster configurations in the alloys. Figs. 7-9 show this in one         I
.-

way for ReN or ReO clusters. Fig. 7a gives the orientation de-

pendence of the ReN relaxation which is entirely consistent with



9-

the defects DA or DC in Fig. 8a, but the detailed nature of the

interstitial dipole distortion makes possible the occurrence(18)

of DB relaxators. However, our data on the concentration and

temperature dependence of this relaxation (Fig. 9) is more con---:'

sistent with DA occupancy. In a similar way, we can argue that

the defect ECF is the most likely Re2N relaxator.

(9) »4<-These various results have now been published , are in

press, or are soon to be submitted for publication.

2.  Effects of preferred orientation on Snoek phonomena in
polycrystalline materials.

Because it is often necessary to use polycrystalline speci-

mens-to apply Snoek anelasticity to various problems,  we  have

examined the role of preferred orientation on ·the relaxation

strength. A first series of experiments on commercial steels

has been completed by Mr. R.P. Krupitzer and demonstrates that

the relaxation strength of a textured polycrystalline material

can be correlated in detail with its inverse pole figure through

a texture factor F defined as

n X
F = 100 E \   fi

i=l \Xmax/,
1

Here (X/Xmax)i is the fractional contribution of a given orien-

tation of crystallite to the total relaxation strength relative

to its maximum possible contribution if it were oriented for

maximum damping and fi is the volume fraction of that crystallite

t
as determined by inverse pole figure analysis.

Fig. ,10 gives one example of the type of correlation ob-

+ Details of this analysis will appear in a later report.
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tained. For a Si steel, for which the orientation to the rolling

direction could be varied by large amounts, one sees that the

relaxation strength and the texture factor F vary quantitatively
in the same manner. Similar results have been obtained for

three other steels.

We are now able to apply this analysis to any polycrystal-

line material for which we have obtained the inverse pole figure.
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EFFORT DISTRIBUTION OF THE PRINCIPAL INVESTIGATOR

During the contract period February 1, 1973 to January 31,

1974, the principal investigator, Professor Ronald Gibala, has

allotted his time to Contract No. AT(11-1)-1676 as follows:

1.  February 1, 1973 - May 31, 1973: 35% of these four months

of the academic year.  Of this amount, 30% has been financed by

the Contract and 5% represents the University's cost sharing.

2.  June 1, 1973 - July 31, 1973: 70% of these two months of

the summer session.

3.  August 1, 1973 - January 31, 1974 (estimated): 30% of these

six months while Professor Gibala is on sabbatical leave. During

this time he will be analyzing and writing-up several papers based

on the Contract research. None of this time is charged to the

Contract. 50% is supported by the University and 50% by the Centre

d'Etudes Nucleaires de Grenoble, Grenoble, France, where Professor

Gibala is located during the sabbatical.
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