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Summary

Mislocation of the transmitter and receiver stations of GPR 
cross-well  tomography  data  sets  can  lead  to  serious 
imaging artifacts  if  not  accounted  for  prior  to  inversion. 
Previously,  problems  with  tomograms  have  been  treated 
manually  prior  to  inversion.   In  large  data  sets  and/or 
networks of tomographic data sets, trial and error changes 
to  well  geometries  become  increasingly  difficult  and 
ineffective.  Our approach is to use cross-well data quality 
checks and a simplified model of borehole deviation with 
particle swarm optimization (PSO) to automatically correct 
for  source  and  receiver  locations  prior  to  tomographic 
inversion.  We present a simple model of well deviation, 
which  is  designed  to  minimize  potential  corruption  of 
actual  data  trends.   We also  provide  quantitative  quality 
control measures based on minimizing correlations between 
take-off angle and apparent velocity, and a quality check on 
the  continuity  of  velocity  between  adjacent  wells.  This 
methodology is shown to be accurate and robust for simple 
2-D synthetic test cases.  Plus, we demonstrate the method 
on actual field data where it is compared to deviation logs. 
This study shows the promise for automatic correction of 
well  deviations  in  GPR  tomographic  data.   Analysis  of 
synthetic  data  shows that  very  precise  estimates  of  well 
deviation can  be  made  for  small  deviations,  even  in  the 
presence of static data errors.  However, the analysis of the 
synthetic data and the application of the method to a large 
network of field data show that the technique is sensitive to 
data errors varying between neighboring tomograms.

Introduction

Significant errors related to poor time zero estimation, well 
deviation  or  mislocation  of  the  transmitter  (TX)  and 
receiver  (RX)  stations  can  render  even  the  most 
sophisticated  modeling  and  inversion  routine  useless. 
Previous  examples  of  methods  for  the  analysis  and 
correction of data errors in geophysical tomography include 
the  works  of  Maurer  and  Green  (1997),  Squires  et  al. 
(1992) and Peterson (2001).  Here we follow the analysis 
and techniques of Peterson (2001) for data quality control 
and  error  correction.   Through  our  data  acquisition  and 
quality control procedures we have very accurate control on 
the surface locations of wells, the travel distance of both 
the transmitter and receiver within the boreholes, and the 
change in  apparent  zero time.   However,  we  often have 
poor control on well deviations, either because of economic 
constraints or the nature of the borehole itself prevented the 
acquisition  of  well  deviation  logs.   Also,  well  deviation 

logs can sometimes have significant errors. 

Problems with borehole deviations can be diagnosed prior 
to inversion of travel-time tomography data sets by plotting 
the  apparent  velocity  of  a  straight  ray  connecting  a 
transmitter  (TX)  to  a  receiver  (RX)  against  the  take-off 
angle of the ray (Figure 1).  

Figure1. Scatter plots of the calculated velocity of a straight ray 
between source and receiver pairs verses the take-off angle.  The 
QC scatter plots for the correct well geometry without static errors 
(A), and a for a deviated well (B) show variations in correlation 
between apparent velocity and take-off angle.

Issues with the time-zero pick or distances between wells 
appear  as  symmetric  smiles  or  frown in these QC plots. 
Well deviation or dipping-strong anisotropy will result in 
an asymmetric correlation between apparent velocity  and 
take-off angle (Figure 1-B).  In addition, when a network of 
interconnected GPR tomography data is available, one has 



the  additional  quality  constraint  of  insuring  that  there  is 
continuity  in  velocity  between  immediately  adjacent 
tomograms.  A sudden shift in the mean velocity indicates 
that either position deviations are present or there is a shift 
in the pick times. 

Small errors in well geometry may be effectively treated 
during  inversion  by  including  weighting,  or  relaxation, 
parameters into the inversion (e.g. Bautu et al., 2006).   In 
the  technique  of  algebraic  reconstruction  tomography 
(ART), which is used herein for the travel time inversion 
(Peterson et  al.,  1985),  a small  relaxation parameter will 
smooth  imaging  artifacts  caused  by  data  errors  at  the 
expense of resolution and contrast  (Figure 2).  However, 
large  data  errors  such  as  unaccounted  well  deviations 
cannot  be  adequately  suppressed  through  inversion 
weighting schemes.  Previously, problems with tomograms 
were treated manually.  However, in large data sets and/or 

networks  of  data  sets,  trial  and  error  changes  to  well 
geometries become increasingly difficult and ineffective.  

Methods

Our method consist of three parts: 1) a forward model to 
describe a deviated well  in  Cartesian coordinates,  2)  the 
calculation  of  a  merit  function  related  to  QC  of  well 
deviation, and 3) a global optimization method to minimize 
the merit function.  

In selecting a model for well deviation we considered that 
many  of  our  GPR  data  sets  are  from  within  shallow 
aquifers,  where  the  overall  length of  wells  are  relatively 
small. We also assumed that deviations would be relatively 
small over the length of the well with no sudden changes in 
direction.  Complicated  models  of  well  deviation  that 
includes several changes in azimuth and dip were purposely 

Figure 2.  Inversion results generated from travel time picks from FDTD simulation of a geostatisical model of dielectric properties (C).  
Panels A and B show the results for a pair of parallel tomograms with a relaxation weight R of 0.05 and 0.5, respectively.  Panels D and E 
show the effects of a deviated well when the wells are assumed to be parallel for a relaxation weight R of 0.05 and 0.5, respectively.  Panel 
F show the inversion results when the correct well geometry is used for the deviated well.



avoided  to  prevent  the  possibility  of  inadvertently 
removing  natural  heterogeneity  trends.   Our  model  is  a 
simple straight well with a single deviation angle with the 
pivot point located at the surface location of the well.
The model  of a  network of interconnected tomograms is 
most  efficiently  described  in  terms  of  network  notation. 
Two  and three-dimensional networks of GPR tomograms 
are described by set  of nodes and connections,  or edges, 
where the nodes represent the boreholes of the GPR TX’s 
and  RX’s,  and  the  tomography  data  represents  the 
connections between the nodes.

The coordinate of each transmitter and receiver (x’n,y’n,z’n) 
is given by
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where  Rn   is the distance down the borehole of the TX or 
RX station, θn  is the angle of deviation of well n, and φn is 
the  azimuth  of  the  deviation,  and  (xn,yn,zn)  are  the 
coordinates of the station when perfectly vertical wells are 
assumed.  The  angle  of  deviation  θn for  each  well  is 
constrained to less than or equal to 10º, while the azimuth 
is  free  to  rotate  though  all  360º.   In  the  case  of  a  2-D 
network φn is held constant.

The  merit  function  of  the  optimization  consists  of 
quantitative checks on the continuity of velocity between 
connections of the network, and checks to ensure that there 
is minimal correlation between apparent velocity and the 
take-off angle.  The first quality control is given by,
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where vnˉ is the mean apparent velocity of the subset of the 
tomography data Cn connected to node n, vi is the velocity 
of connection i of the subset Cn, and N is the total number of 
nodes.  The second quality control is given by,
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where Rc
u is the correlation coefficient of connection c for 

upgoing take off angles versus apparent velocity and Rc
d is 

the  correlation  coefficient  of  connection  c for  the  down 
going rays.   The sum of these two measures of data quality 
defines  the  merit  function.   Together  the  two  measures 
provide  counter-weight  between  continuity  of  velocity 
between  tomograms  and  the  quality  of  individual 
tomograms.   To  minimize  this  merit  function,  and  thus 
maximize  quality,  we  utilize  a  global  optimization 
algorithm known as particle swarm optimization (PSO).

The PSO algorithm of Kennedy and Eberhart (1995) is a 

technique based loosely on the observed behavior of large 
swarms. This algorithm optimizes the quality control merit 
function by moving “particles”,  or solutions of the merit 
function,  around  in  a  search  space  towards  the  optimal 
solution. The movements of the particles are controlled by 
communication between the particles of the best solution of 
all  of  the  particle's  past  positions,  and  the  best  current 
solution.  We utilized the PSO FORTRAN code of Mishra 
(2006),  which  has  been  extensively  tested  for  finding 
global minima of complicated test functions.

Validation on synthetic data for a 2-D network

To test our method we utilized travel-times picked from a 
numerical model of electromagnetic propagation through a 
geostatistical  model  of  the  distribution  of  dielectric 
permittivity  and  electrical  conductivity  (Figure  3).   The 
numerical  model  is  a  2-D  TE mode  implementation  the 
ADI-FDTD  algorithm  of  Namiki  (1999),  and  the  travel 
times  were  automatically  picked  with  the  algorithm  of 
Crosson and Hesser (1983).  The structure and variance of 
the  geostatistical  model  is  based  on  high  resolution 
geophysical  logs  acquired  at  our  test  field  site.   Source 
positions were situated at the location of the open circled 
on the edges and the RX locations were situated along the 
black lines in figure 3.

Figure 3.  The geometry of deviated wells between two vertical 
wells.  

In  this  tomography  network  the  two  end  wells  are 
unconstrained by neighboring tomography data.  Therefore, 
the  geometry  of  these  end  wells  was  held  constant,  and 
only  the  central  well  was  allowed  to  update  during  the 
inversion.   The  results  of  our  inversion  method  are 
summarized in table 1.  To check how robust the technique 
is to the presence of other data errors such as static time-
zero  shifts,  anisotropy,  and  incorrect  estimation  of  well 
separation, additional constant time shifts were added to the 
data in subsequent test.  Additionally, the possibility of a 
change in time-zero between the two tomography data sets 



was tested with a +1 ns and -1 ns shift in the time-picks of 
the two wells.
Table 1.  Inverted well deviation angles compared to the angle of 
deviation  used  to  generate  synthetic  data  (see  figure  3).   Each 
comparison is repeated with static shifts in time-zero to estimate 
the sensitivity to uncorrected static errors.

Zero Time Well Deviations Angles
Shift (ns) -5º 5.0K
no shift 0.294 2.519 -4.686 9.804 1.592

2 0.295 2.400 -4.415 9.273 1.531
-2 0.292 2.651 -4.994 10.408 1.658

-1 and +1 2.070 4.300 -6.462 7.988 -0.191

0º 2.5º 7.5º

The  results  show  that  the  technique  is  precise  for  low 
angles  of  deviation,  and tolerant  of  constant  data  errors, 
with  decreasing  precision  at  larger  deviation  angles  and 
more complicated geometries.  However, the technique is 
sensitive to changes in time picks between tomography data 
sets (eg. -1 and +1 ns).  Our experience is that shifts of this 
nature are rare, and we acquire travel times in free space 
before and after each tomography data set  to ensure that 
any drift or change in time-zero has not occurred.

Application to field data

Here we are attempting to use the well deviation inversion 
technique  to  correct  data  collected  at  the  Department  of 
Energy’s Integrated Field Research Challenge (IFRC) site 
near Rifle,  Colorado.   At  the site  we have a network of 
GPR  tomography  data  sets  consisting  of  12  wells 
interconnected  by  16  2-D  inverted  tomograms.   Initial 
inspection  of  neighboring  tomograms  showed  significant 
discontinuities  in  velocity  and structure.   Because of  the 
tight controls on other data errors that could lead to these 
sudden shifts, deviated wells were suspected and motivated 
this  study.   Subsequently  9  of  the  12  wells  have  been 
logged for deviation to compare with our inversion results. 
The  2-D  map  view  plots  of  the  inversion  estimated 
deviations and logged deviations are shown figure 4.

Figure  4.   Plot  of  well  deviations  estimated from the  inversion 
method  (gray)  and  the  plot  of  well  deviations  derived  from 
deviation logs (black).

While, the inverted deviations are nearly twice as large as 
the recorded deviations, both data sets show a systematic 
drift to the west.  The lack of better agreement may come 
from the model  trying to  correct  data  quality  issues  that 
stem from a series of small errors not obvious in the data 
quality control methods.

Discussion and Conclusions

This  study  has  shown  promise  for  automatic 
correction of well deviations in GPR tomography data.  The 
analysis of synthetic data shows that very precise estimates 
of well deviation can be made for even with constant data 
errors.   However,  the  analysis  of  the  synthetics  and  the 
application of the method to a large network of field data 
show that the technique is sensitive to varying data errors 
between  neighboring  tomograms.   We  are  investigating 
more sophisticated models including deviation bends, time-
zero shifts,  and anisotropy.  Our current attempts to deal 
with these additional complexities are complicated by their 
strong  correlation  with  our  QC  measures,  leading  to 
incorrect solutions.  We need QC measures that uniquely 
indicate particular data problems in the presence of noise 
and heterogeneity.  

The simplicity of our model will not remove all artifacts of 
deviation  from  the  inverted  tomograms.   This  residual 
deviation may be corrected with the method proposed of 
Cordua et al. (2008) and Cordua et al. (2009).  Their work 
on accounting for correlated data errors during inversion, 
using a non-diagonalized covariance matrix, demonstrated 
the ability to remove small spatially correlated data errors 
without losing resolution.   We feel  that  this method is a 
perfect  complement  to  our  approach  in  that  we  are 
attempting to remove only large general trends and leave 
small  spatially  correlated  data  errors  untouched to  avoid 
corrupting real information.  The eventual hope is that data 
errors in large networks of GPR tomography data sets can 
be mitigated to allow for 3-D monitoring of subtle changes 
in subsurface properties during field experiments.
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