Global optimization of data quality checks on 2-D and 3-D networks of GPR cross-well tomographic data for automatic correction of unknown well deviations

PDF Version Also Available for Download.

Description

Significant errors related to poor time zero estimation, well deviation or mislocation of the transmitter (TX) and receiver (RX) stations can render even the most sophisticated modeling and inversion routine useless. Previous examples of methods for the analysis and correction of data errors in geophysical tomography include the works of Maurer and Green (1997), Squires et al. (1992) and Peterson (2001). Here we follow the analysis and techniques of Peterson (2001) for data quality control and error correction. Through our data acquisition and quality control procedures we have very accurate control on the surface locations of wells, the travel distance ... continued below

Creation Information

Sassen, D. S. & Peterson, J. E. March 15, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Significant errors related to poor time zero estimation, well deviation or mislocation of the transmitter (TX) and receiver (RX) stations can render even the most sophisticated modeling and inversion routine useless. Previous examples of methods for the analysis and correction of data errors in geophysical tomography include the works of Maurer and Green (1997), Squires et al. (1992) and Peterson (2001). Here we follow the analysis and techniques of Peterson (2001) for data quality control and error correction. Through our data acquisition and quality control procedures we have very accurate control on the surface locations of wells, the travel distance of both the transmitter and receiver within the boreholes, and the change in apparent zero time. However, we often have poor control on well deviations, either because of economic constraints or the nature of the borehole itself prevented the acquisition of well deviation logs. Also, well deviation logs can sometimes have significant errors. Problems with borehole deviations can be diagnosed prior to inversion of travel-time tomography data sets by plotting the apparent velocity of a straight ray connecting a transmitter (TX) to a receiver (RX) against the take-off angle of the ray. Issues with the time-zero pick or distances between wells appear as symmetric smiles or frown in these QC plots. Well deviation or dipping-strong anisotropy will result in an asymmetric correlation between apparent velocity and take-off angle (Figure 1-B). In addition, when a network of interconnected GPR tomography data is available, one has the additional quality constraint of insuring that there is continuity in velocity between immediately adjacent tomograms. A sudden shift in the mean velocity indicates that either position deviations are present or there is a shift in the pick times. Small errors in well geometry may be effectively treated during inversion by including weighting, or relaxation, parameters into the inversion (e.g. Bautu et al., 2006). In the technique of algebraic reconstruction tomography (ART), which is used herein for the travel time inversion (Peterson et al., 1985), a small relaxation parameter will smooth imaging artifacts caused by data errors at the expense of resolution and contrast (Figure 2). However, large data errors such as unaccounted well deviations cannot be adequately suppressed through inversion weighting schemes. Previously, problems with tomograms were treated manually. However, in large data sets and/or networks of data sets, trial and error changes to well geometries become increasingly difficult and ineffective. Mislocation of the transmitter and receiver stations of GPR cross-well tomography data sets can lead to serious imaging artifacts if not accounted for prior to inversion. Previously, problems with tomograms have been treated manually prior to inversion. In large data sets and/or networks of tomographic data sets, trial and error changes to well geometries become increasingly difficult and ineffective. Our approach is to use cross-well data quality checks and a simplified model of borehole deviation with particle swarm optimization (PSO) to automatically correct for source and receiver locations prior to tomographic inversion. We present a simple model of well deviation, which is designed to minimize potential corruption of actual data trends. We also provide quantitative quality control measures based on minimizing correlations between take-off angle and apparent velocity, and a quality check on the continuity of velocity between adjacent wells. This methodology is shown to be accurate and robust for simple 2-D synthetic test cases. Plus, we demonstrate the method on actual field data where it is compared to deviation logs. This study shows the promise for automatic correction of well deviations in GPR tomographic data. Analysis of synthetic data shows that very precise estimates of well deviation can be made for small deviations, even in the presence of static data errors. However, the analysis of the synthetic data and the application of the method to a large network of field data show that the technique is sensitive to data errors varying between neighboring tomograms.

Source

  • SEG International Exposition and 80th Annual Meeting, Denver, Colorado, October 17-22, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3339E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 991953
  • Archival Resource Key: ark:/67531/metadc1015623

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 15, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 6:14 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sassen, D. S. & Peterson, J. E. Global optimization of data quality checks on 2-D and 3-D networks of GPR cross-well tomographic data for automatic correction of unknown well deviations, article, March 15, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1015623/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.