Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 {+-} 17 antihypertritons ({sub {bar {Lambda}}}{sup 3}{bar H}) and 157 {+-} 30 hypertritons ({sub {Lambda}}{sup 3}H). The measured yields of {sub {Lambda}}{sup 3}H ({sub {bar {Lambda}}}{sup 3}{bar H}) and {sup 3}He ({sup 3}{ovr He}) are similar, suggesting an equilibrium in coordinate ...
continued below
Publisher Info:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
Place of Publication:
Berkeley, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 {+-} 17 antihypertritons ({sub {bar {Lambda}}}{sup 3}{bar H}) and 157 {+-} 30 hypertritons ({sub {Lambda}}{sup 3}H). The measured yields of {sub {Lambda}}{sup 3}H ({sub {bar {Lambda}}}{sup 3}{bar H}) and {sup 3}He ({sup 3}{ovr He}) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Collaboration, STAR & Abelev, Betty.Observation of an Antimatter Hypernucleus,
article,
July 5, 2010;
Berkeley, California.
(digital.library.unt.edu/ark:/67531/metadc1015251/:
accessed April 23, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.