Single Ion Implantation and Deterministic Doping

PDF Version Also Available for Download.

Description

The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in ... continued below

Physical Description

10

Creation Information

Schenkel, Thomas June 11, 2010.

Context

This book is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this book can be viewed below.

Who

People and organizations associated with either the creation of this book or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this book. Follow the links below to find similar items on the Digital Library.

Description

The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion implantation is usually a highly statistical process, where high fluences of energetic ions, ranging from {approx}10{sup 9} to >10{sup 16} cm{sup -2} are implanted. For single atom device development, control over the absolute number of ions is needed and ions have to be placed with high spatial resolution. In the following sections we will discuss a series of approaches to single ion implantation with regard to single ion impact sensing and control of single ion positioning.

Physical Description

10

Language

Item Type

Identifier

Unique identifying numbers for this book in the Digital Library or other systems.

  • Report No.: LBNL-3622E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 985204
  • Archival Resource Key: ark:/67531/metadc1015139

Collections

This book is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this book?

When

Dates and time periods associated with this book.

Creation Date

  • June 11, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 7, 2017, 7:16 p.m.

Usage Statistics

When was this book last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Book

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Schenkel, Thomas. Single Ion Implantation and Deterministic Doping, book, June 11, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1015139/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.