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Executive Summary  
 
The objective of this project was to test new coupling algorithms and enable efficient and 
scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding 
the implementation of such algorithms in massively parallel environments. Numerical tests were 
carried out to verify the proposed approach and the examples included some reactor transients. 
The project was directly related to the Sodium Fast Reactor program element of the Generation 
IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the 
requirement of high-fidelity simulation as a mean of achieving the goals of the presidential 
Global Nuclear Energy Partnership (GNEP) vision.  
 
For decades, the modeling of nuclear cores has been divided into several distinct domains of 
physics: neutronics, hydraulics, heat transfer, … Yet, these physical models describe physical 
processes that are tightly intertwined and rely heavily on the solution field of one another. In the 
last decade or so, various existing mono-disciplinary codes have been coupled together in a 
naive "black-box" fashion, where the output of one code serves as the input of another code, 
producing nonlinearly inconsistent multiphysics solutions. Such schemes, which are still the 
main coupling paradigm today for solving nonlinear nuclear reactor physics equations, are 
based on a linearization of the coupling terms that is never resolved and that can lead to a loss 
of accuracy and stability in the solution procedure. In order to address the inconsistencies of 
traditional coupling strategies, a 3-D test-bed code based on reduced physical models has been 
developed.  It includes several physic components, namely, multigroup neutron diffusion, 
monophasic fluid conservation laws (mass, momentum, energy), nonlinear heat conduction. 
This test-bed code was used to demonstrate the loss of accuracy order due to traditional 
operator-split techniques used in conventional coupling schemes; to implement Jacobian-free 
full resolution coupling schemes; to develop adaptive preconditioning techniques; and to 
investigate high-order time discretizations and adaptive time stepping strategies. The test-bed 
code employs state-of-the-art algorithms and libraries, namely the Jacobian0free Newton-Krylov 
technique to solve consistently fully implicit tightly coupled simulations and the ANL’s PETSc 
library of linear and nonlinear solvers for scalability. We have demonstrated that the 
multiphysics solution procedure yields highly accurate solutions in space and time and is 
amenable for space/time adaptivity. This portion of the work is discussed in Part A of this report. 
 
It is widely agreed that high fidelity simulations is an utmost important tool for the conception, 
design and validation of complex physical systems such as nuclear reactors. Examples of such 
thrust can be seen in the ASCI program and the SciDAC program. GNEP strongly advocates 
the development of the next-generation simulation software with a far wider range of 
applicability than conventional tools. This will allow significant reductions in costs by diminishing 
(1) the cycle time for the development of new reactor designs and (2) the number of 
experimental verifications and the time needed to perform them. For instance, the CEA and ANL 
(among others), have initiated large efforts in developing new state-of-the-art neutronic 
[DESCARTES, UNIC] and thermal-hydraulic [NEPTUNE, TRIO, NEK] codes based on first 
principles. For instance, the UNIC and the NEK codes under development at ANL will be used 
to model with high accuracy prototypical fast reactors. The best performing techniques are 
proposed for implementation in the new neutronics / thermal-hydraulics code package, SHARP, 
for advanced fast reactor analyses.  SHARP (Simulation-based High-efficiency Advanced 
Reactor Prototyping) is based on the UNIC code (neutronics) and Nek-5000 code 
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(computational fluid dynamics) developed at ANL.  Part B of this report describes the recent 
advances in parallel computing applied to reactor simulations. The UNIC code system was 
developed and successfully performed with 294.912 processors on the XT-5 machine. 
 
Our recommendation for subsequent work is as follows: to fully model transients for SFR, a 3D 
coupled thermo-mechanical– heat conduction model to assess the structural mechanic 
feedback effects from core radial expansion is needed. However, the development and 
verification of such a complex model that would need to account for metal fuel and cladding 
expansion, assembly and core plate expansion, and possibly assembly bowing and flowering 
was outside of the scope of the project and should be considered in future work. 
 
One of the students supported by this project is now a computational post-doctoral fellow at the 
Mathematics and Computer Science division of ANL and works in close collaboration with 
Andrew Siegel, co-PI of this project. 
 
The table below summarizes the milestones status.   

Task # Task / Milestone Description Planned Completion  Actual 
Completion  

1 Bibliography, literature review 9/1/07 Completed 
2 Development of a 2D neutronic, 

sodium thermalhydraulic code 
package 

12/1/07 Completed 

3 Stability and accuracy study of 
conventional coupling techniques 

3/1/08 Completed 

4 ABR benchmark using conventional 
techniques 

6/1/09 Partial 
Completion 

5 Development of nonlinearly consistent 
methods based on Newton's method 

12/1/08 Completed 

6 Development and testing of Jacobian-
free techniques 

3/1/09 Completed 

7 Development of preconditioned 
Jacobian-free methods 

6/1/09 Completed 

8 ABR benchmark using nonlinearly 
consistent techniques 

6/1/09 Partial 
Completion 

9 Development of nonlinearly consistent 
methods based on Rosenbrock's 
method 

9/1/09 Completed 

10 Development and testing of Jacobian-
free techniques 

9/1/09 Completed 

11 Time step control 3/1/10 Completed 
12 ABR benchmark using Rosenbrock 

techniques 
3/1/10 Partial 

Completion 
13 archival journal articles write-up 6/1/10 Completed 
14.1 Reporting to DOE 6/1/08 Completed 
14.1 Reporting to DOE 6/1/09 Completed 
14.1 Reporting to DOE 6/1/10 Completed 
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Abstract

The modeling of nuclear reactors involves the solution of a multi-physics

problem with widely varying time and length scales. This translates math-

ematically to solving a system of coupled, non-linear, and stiff partial dif-

ferential equations (PDEs). Multi-physics applications possess the added

complexity that most of the solution fields participate in various physics

components, potentially yielding spatial and/or temporal coupling errors.

This dissertation deals with the verification aspects associated with such a

multi-physics code, i.e., the substantiation that the mathematical descrip-

tion of the multi-physics equations are solved correctly (both in time and

space).

Conventional paradigms used in reactor analysis problems employed to

couple various physics components are often non-iterative and can be incon-

sistent in their treatment of the non-linear terms. This leads to the usage of

smaller time steps to maintain stability and accuracy requirements, thereby

increasing the overall computational time for simulation. The inconsistencies

of these weakly coupled solution methods can be overcome using tighter cou-

pling strategies and yield a better approximation to the coupled non-linear

operator, by resolving the dominant spatial and temporal scales involved in

the multi-physics simulation.
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A multi-physics framework, karma (K(c)ode for Analysis of Reactor and

other Multi-physics Applications), is presented. karma uses tight coupling

strategies for various physical models based on a Matrix-free Nonlinear-

Krylov (MFNK) framework in order to attain high-order spatio-temporal

accuracy for all solution fields in amenable wall clock times, for various test

problems. The framework also utilizes traditional loosely coupled methods

as lower-order solvers, which serve as efficient preconditioners for the tightly

coupled solution. Since the software platform employs both lower and higher-

order coupling strategies, it can easily be used to test and evaluate different

coupling strategies and numerical methods and to compare their efficiency

for problems of interest.

Multi-physics code verification efforts pertaining to reactor applications

are described and associated numerical results obtained using the developed

multi-physics framework are provided. The versatility of numerical methods

used here for coupled problems and feasibility of general non-linear solvers

with appropriate physics-based preconditioners in the karma framework of-

fer significantly efficient techniques to solve multi-physics problems in reactor

analysis.
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Chapter 1

Introduction

‘All models are wrong, but some are useful.’

– George Box

High fidelity computer simulations of coupled multi-physics problems re-

quire solving large systems of non-linear, stiff, coupled equations. Many

examples of non-linearly coupled multi-physics phenomena exist in various

scientifical fields, raising a need to develop stable and accurate numerical

solution procedures. Some examples are:

1. Radiation diffusion where the radiation energy is strongly coupled to

the material temperature field [1], [2].

2. Nuclear reactor analysis where the thermal power generated due to

fission reactions in the fuel pin is strongly coupled with the thermal-

hydraulics fields [3], [4].

3. Fluid-Structure-Interaction (FSI): the fluid and structural vibrations

are coupled to each other. Applications in Automotive Systems, Nu-

clear Power Plants (NPP), Biomedical Applications, etc. [5], [6], [7].

1
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4. Thermo-mechanical coupling: the temperature distribution affects the

structural deformation and vice versa [8] [9].

Solution methods for non-linearly coupled multi-physics phenomena oc-

curring have often relied on operator-split coupling strategies that introduce

several types of errors in the solution fields. The new paradigm shift for

multi-physics simulations is to quantify and reduce the sources of the errors

due to the discretizations in space and time and the resolution technique

used to solve the non-linear coupling between the physics models. This re-

quires stable and accurate numerical schemes that can tackle non-linearly

coupled, stiff multi-physics problems arising from the discretization of the

various physics Partial Differential Equations (PDEs) with widely varying

characteristic time and length scales. The use of verified physical models

for problems of interest and the accurate resolution of these characteristic

physical scales are not trivial. This work is aimed at combining consistent

numerical methods with principles in software engineering to create a cou-

pled physics framework that is verifiable and can help better quantify these

simulation errors.

Numerical simulation using computers is considered as the third pillar of

science, besides theory and experiments. This dependence on computers as

a virtual laboratory has been recognized in recent years, due to rapid growth

in computer speed and affordable memory. Hence, cost effective development

and design of scientific applications can be considerably accelerated by the

use of simulations on powerful computing systems. In order to make use of

solutions from computer simulations for multi-physics problems, it is impor-

tant to predict the behavior of these non-linearly coupled systems. Predictive

science, defined as the development and application of verified and validated
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(V&V) computational simulations to predict the properties and dynamic re-

sponse of complex systems particularly in cases where routine, separable, ex-

perimental tests, while important, are difficult. This definition, borrowed

from the Predictive Science Academic Alliance Program (PSAAP) of the US

DOE-NNSA [10], is applicable to a wide variety of scientific and engineer-

ing applications. This emphasis on predictive capabilities has resurged the

need to create and utilize robust numerical techniques for solving coupled

problems with high resolution.

The current work focuses primarily on the development and usage of

existing analysis and numerical methods for creating a unified and verified

tool with predictive capability in the field of multi-physics nuclear reactor

computation. Typically the current practice of multi-physics simulations in

reactor applications, combines models or algorithms from a diverse set of dis-

ciplines. The path towards the predictability of such computations requires

the effective integration of both software and numerical methods. Gener-

ally speaking, the three pillars of predictive science include code verification,

model validation, and uncertainty quantification in the computed solution.

The project is concerned with the development of a multi-physics soft-

ware platform and the verification of numerical methods for multi-physics

applications and an application of uncertainty propagation. Verification is

typically an exercise in mathematics, where one assures that the equations

are solved correctly, i.e., the software has been coded precisely and imple-

mented according to the physics specifications and requirements. This is

an integral part of any software development cycle for simulating physical

phenomena.

The need to quantitatively predict the behavior of physical phenomena

requires that the sensitivity of the solution fields to uncertainties in the
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parameters involved in the simulated physical models need to be ascertained.

If not, the value of the simulations in comparison to real world experimental

results is limited. Noting these as the basic requirements for a complex

multi-physics code, we shall systematically develop relevant physical models

and use efficient, high resolution numerical techniques in the current work.

In the next subsection, a short background on the current state of cou-

pling methods is provided along with an introduction to the coupling meth-

ods that are implemented in the current work.

1.1 Background

Let the non-linear vector-valued function representing a coupled PDE system

be written in a general form as

F(y) = N(y)y − b = 0, (1.1)

where y is the solution vector that is dependent on both space and time

respectively and F : Rn → Rn, F is the non-linear operator representing

the coupled system and n is the total number of unknowns. For ease of

comprehension, we can write F as in the second equality of Eq. (1.1), where

N is also a non-linear operator and b is the load vector. It helps to represent

y as a vector comprised of the solution vector for each of the M physics

components involved, i.e., [y1, y2, . . . ,yM ]T . A similar definition holds for

F(y) and its m-th component is the non-linear residual stemming from the

m-th physics component and may depend effectively on all other fields, e.g.,

Fm(y) = Fm(y1,y2, . . . ,yM ).

In the next subsections, the application of different coupling strategies

to resolve the non-linear problem in Eq. (1.1) is presented.
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1.1.1 Loose Coupling Strategies

In the past few decades, high fidelity modeling of non-linear multi-physics

problems has been subdivided into several distinct domains of physics and

solved individually as mono disciplinary blocks with specialized codes, with-

out rigorous coupling between the different physics. Although naive, this

coupling strategy, mathematically described as Operator-Split (OS) tech-

nique, is widely used. With the advent of Parallel Virtual Machines (PVM)

and Message Passing Interfaces (MPI) in the 1990’s, the OS coupling of sev-

eral existing specialized single physics codes has become the main multi-physics

paradigm in reactor analysis. This kind of modeling is based on coupling sev-

eral existing specialized mono-disciplinary codes using a ’black-box’ strategy,

where the input of one code is the output of other, thereby producing solu-

tions that are weakly coupled. The schematics of such models is shown on

Fig. 1.1, where the system of PDEs arising from the spatial and temporal

discretization of physical models is decomposed into simpler sub-problems.

Each physics component is solved by an independent, specialized single-

physics code and the data between codes is exchanged through message pass-

ing paradigms. Often, this strategy is non-iterative and the non-linearities

due to the coupling in between the physics components are not resolved over

a time step, reducing the overall accuracy in the time stepping procedure

to first-order O(∆t), even though high-order time integration might have

been used for the individual physics components; see [11, 12]. Note that

this explicit linearization of the problem in the OS strategy does not resolve

the non-linearities between the different physics. Yet, these isolated physical

models in reality describe physical phenomena that are tightly intertwined

and rely heavily on the solution field of one another.
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For illustration, consider the non-linear coupled system shown in Eq. (1.1).

In OS loose coupling strategy, the non-linear operator is linearized as follows

through an explicit treatment:

F(y`+1) = N(y`)y`+1 − b, (1.2)

Hence the new update to the solution is obtained by solving the system

N(y`)y`+1 = b. (1.3)

Although OS allows parts of the problem to be treated implicitly and

others explicitly, the lack of iterations in the conventional strategy degrades

the solution accuracy in time to first order and the explicit linearization

imposes a conditional stability limits for the time-step selection. The direct

implication of using smaller time steps to achieve a reasonable accuracy is

that the computations need greater CPU time and resources. Despite these

drawbacks, this is still one of the major coupling paradigms used today for

solving non-linear multi-physics systems.
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(a) Simultaneous OS coupling

(b) Staggered OS coupling

Figure 1.1: Two Low-order OS Coupling Strategies

The attractive feature of such a coupling strategy is that the legacy of

many man-years of mono disciplinary code development and V&V (valida-

tion and verification) is preserved. It is of prime importance to analyze the

coupling strategies that can produce highly accurate solutions even in the

complex scenarios usually encountered in multi-physics applications. As

mentioned before, nuclear reactor analysis is a good example of highly non-
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linear, coupled multi-physics problem and the non-linearities at the heart of

reactor design, analysis and safety calculations provide a good state-space to

test high-fidelity numerical methods for multi-physics problems. Physical

phenomena such as the ones found in reactor accidents, involve rapidly vary-

ing transients that are represented by a stiff system of differential equations.

Stiff problems are characterized by solutions having fast varying modes to-

gether with slower varying modes, requiring time integrators that can handle

such disparate time scales. Stiff problems necessitate the use of implicit time

discretization for stability reasons, indicating that OS coupling could prove

disadvantageous in terms of efficacy (cost for obtaining a certain accuracy

in the solution).

Current examples of OS coupling in the field of nuclear reactor analysis

involve the following pairs of neutronics/thermal-hydraulics codes: CRONOS/FLICA

[13, 14], PARCS/TRACE [15] and NESTLE/RELAP [16]. Even though

more advanced OS strategies exist and can be up to second-order accurate

in time, they are complicated to use in coupled legacy codes and hence are

not currently employed. For more details regarding these higher order OS

schemes, we refer the reader to [17, 18, 19, 20]

1.1.2 Tight Coupling Strategies

An alternative to loosely coupled OS strategies is to converge the non-

linearities between the physics at every time level to obtain a tightly cou-

pled solution that is consistent with the non-linear system of PDEs. This

preserves higher order temporal accuracy of specialized schemes that can

be used for resolving the disparate temporal scales in the different physics.

Even though the cost/time step can be larger than that of an OS time step,
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it is essential to stress that the stability of the higher order discretization

scheme can be maintained using this procedure, unlike the explicit lineariza-

tion method where the solution is only conditionally stable.

To devise such a tightly coupled solution procedure, a non-linear iterative

scheme needs to be applied to solve the coupled physics and converge the

non-linearities to within user’s specified tolerances. Two techniques for non-

linear system of equations are mentioned next: the Fixed-point or Picard

iteration technique and the well known Newton’s method.

1.1.2.1 Picard Iteration

Picard iteration technique is a simple non-linear iterative method can be

used to converge the non-linearities over the different physics when an OS

coupling technique is employed to couple multiple physics codes. Picard

iterations can restore the convergence order of a higher order scheme and

eliminate the loss of accuracy due to the crude explicit linearization in loosely

coupled strategy. The schematic for such a method is shown in Fig. 1.2.

This essentially involves iterating over the solution obtained by successively

solving Eq. (1.3).
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Figure 1.2: High-order, Converged OS Coupling Strategy

The advantage of such a coupling scheme is that it is non-intrusive and

can easily use existing framework of codes to obtain a tightly coupled solu-

tion. But the primary disadvantage of using such a strategy to restore the

accuracy is the increase in computational cost and memory usage to converge

the solution.

Since Picard iteration is only linearly convergent, some form of non-

linear acceleration techniques are necessary to make this scheme efficient

and feasible [11]. Previous research using Aitken’s iterated ∆2 technique

suggests that usage of such acceleration schemes can be advantageous and

efforts to apply Wynn-Epsilon [21] and other schemes should be pursued as

future extensions.

1.1.2.2 Newton Iteration

Current OS strategies may offer flexibility in the way the different physics

are solved but involve complexities in terms of resolving the non-linearities

and finding an high-order accurate solution. Instead, the coupled non-linear
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problem can be tackled by recasting it as a root finding problem, in a form

amenable for the application of Newton-type methods.

Applying a Newton’s method to system of equations in Eq. (1.1), we

obtain the following recurrence equation:

J(y`)δy = −F(y`) (1.4)

y`+1 = y` + δy, (1.5)

where ` is the Newton iteration index, δy is the solution update, and J(y`)

is the Jacobian matrix evaluated at y`. The Jacobian matrix is defined as

J(y) =
∂F(y)

∂y
. (1.6)

Note that in Eq. (1.6), the Newton linearization accurately accounts for the

true Jacobian of the non-linear system while the OS linearization in Eq. (1.3)

neglects a term in the Jacobian matrix expansion (J(y) = N(y) + ∂yN ·
y ≈ N(y)). This additional term contributes to the stability and robust

convergence properties of the Newton iteration as compared to the Picard

iteration shown earlier.

At each Newton’s iteration, a linear system of equations involving the

Jacobian matrix, Eq. (1.4), needs to be solved. As the number of physics

components grows, so do the total number of unknowns, resulting in a large

memory usage to store the Jacobian matrix. However, employing a Jacobian-

free approximation avoids the need for the expensive Jacobian calculation

and storage of the matrix since only the action of the Jacobian on a vector

is needed to solve the linear system.

Noticing the similarities between the tightly coupled methods with Pi-

card iteration by solving recursively Eq. (1.3) and with Newton iteration by
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solving Eq. (1.4), we introduce a unified framework that is referred hence-

forth as the Matrix-free Non-linear Krylov (MFNK) method. Note that this

is based on the Jacobian-free Newton-Krylov (JFNK) method proposed by

Brown and Saad in the early 1990’s [22], that has enjoyed much success in

recent years in several multi-physics applications [23]. When Newton’s iter-

ation is used as the non-linear solver, MFNK reduces to the original JFNK

technique.

Several researchers have analyzed (a) the applicability of this tightly cou-

pled method to obtain high-order accurate solutions and (b) the feasibility

of the method in terms of total computational cost [24, 25, 26]. These prior

results indicate that this scheme can tackle the widely varying time scales

occurring in multi-physics problems efficiently, as compared to an OS cou-

pling strategy. Note that the application of these tight coupling methods

based on Picard or Newton iteration is not only limited to PDEs written in

the conservative form alone as in Eq. (1.1).

With the aforementioned background ideas, the motivations for the cur-

rent research work is laid out next.

1.2 Research Motivation

To overcome the issues stated in section 1.1, a fully implicit treatment of the

coupling terms needs to be used to preserve accuracy and obtain uncondi-

tional stability. The difficulties in implementing such a scheme is that the

spatial and temporal discretizations of all the physics need to be non-linearly

consistent. With such discretizations, the coupling terms in the physics are

also treated implicitly and hence higher order accuracy is ensured by resolv-

ing the non-linearities accurately. In the current work, a new code system is
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created based on the MFNK framework with higher order spatio-temporal

schemes for all the physics in addition to the ability to simultaneously test OS

coupling schemes side-by-side. Also, most existing mono-disciplinary codes

for reactor physics simulation were written one to three decades ago to run

on computers that existed during that period. Due to the current advances

in computing, it would be rather imprudent to develop a new multi-physics

code that does not take advantage of the state-of-the-art multi-core, multi-

processor parallel architectures that are available now and with expandability

to more advanced technologies in the future.

Predictability of the solution is a driving factor in this research and hence

it is imperative to obtain a completely verifiable code where the numerical

convergence order from the spatial and temporal treatment of the coupled

PDEs can be measured against the theoretical orders seamlessly. With com-

putational efficiency in mind, the matrix-free approach through MFNK for

the non-linear solve eliminates large storage requirements of the discretized

systems and competent numerical and physics based preconditioning tech-

niques [27] can be used to considerably reduce the cost of the linear Krylov

iterations. Previous work using JFNK for non-linear diffusion-reaction and

advection-reaction problems [28] have shown promising results and serve as

the basis for the new coupling strategy being implemented here. It is ex-

pected that such a scheme will enable achieving the higher orders of spatio-

temporal accuracy for all coupled solutions.

The prime motivation behind the new code is not to employ high fi-

delity physics models coupled to each other with high resolution but rather

to create consistent coupling methodologies that can test the feasibility of

using physics-based preconditioned MFNK schemes for real-world problems

in reactor design and safety analysis.
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1.3 Work Organization

The layout for this project is as follows: in Section. (2) we discuss the equa-

tions for the physics models used to describe nuclear reactor cores and the

governing relations that couple the different physics. In Section. (3) we pro-

vide a detailed overview of the different spatio-temporal discretizations, the

numerical techniques based on JFNK scheme, and the preconditioning meth-

ods employed to reduce the number of Krylov iterations. In Section. (4), a

new code system that implements the physics models of Section. (2) and

the numerical methods of Section. (3) is introduced and details regarding

the software architecture are provided. Next, the code system is put to

test using problems created with Method of Manufactured Solutions (MMS)

and benchmarks to verify higher order treatment of all the physics models

in Section. (5). Finally, in Section. (6) we discuss the details of using the

MFNK framework to solve eigenvalue problems occurring commonly in nu-

clear reactor analysis and compare it to state-of-art schemes like Arnoldi

and Jacobi-Davidson iterations. Also, the MFNK technique is applied to a

stiff non-linear multi-physics problem based on a radiation diffusion physics

model to emphasize the flexibility of applying the implemented code for prob-

lems not related to nuclear reactor simulations. Then, we draw conclusions

and point out avenues for future research in Section. (7).



Chapter 2

Physics Models

‘The more you see how strangely Nature behaves, the harder it is

to make a model that explains how even the simplest phenomena

actually work.’

– Richard Feynman

In this section, details regarding the physics models used in this work

are provided. All models have been deliberately chosen to be of “coarse”

fidelity as the purpose of this research work is not to validate the physical

models themselves but to present a multi-physics verification study that

will help develop better intuition regarding efficient coupling strategies. At

a later stage, when the details about the implementation code are given,

a description will be provided for employing higher fidelity physical mod-

els interchangeably within the MFNK framework, when they are deemed

necessary for the physics being solved.

In the realm of reactor analysis, there are three primary domains of

physics that play a pivotal role in determining core operation and safety.

These are:

15
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1. Neutronics - Describes the neutron population distribution and the

interaction of neutrons with the material in the reactor core. The

primary solution fields calculated is the scalar flux as a function of

position, time and neutron energy.

2. Thermal conduction - Describes the distribution of temperature in the

fuel pin due to the sensible heat generated from the energetic neu-

tron fission reactions. The solution fields of interest are usually the

temperature profile in the fuel element from which the peak fuel tem-

perature and the maximum clad temperature at the surface of the pin

are obtained.

3. Coolant channel flow - Describes the flow of coolant fluid through the

core that removes the thermal energy from the fuel pins. The models

used can be for single or multi-phase fluid to calculate the density,

momentum in all directions, total energy, temperature and the pressure

drop across the core.

Other physics components include structural mechanics that describes

the behavior of thermal expansion in the fuel pins and structures comprising

the core, kinetics of chemical reactions occurring due to flow of borated water

in PWRs. In the current research, only the three basic physics models listed

above have been used to create a multi-physics model to analyze nuclear

reactor transients.

2.1 Neutronics

Neutronics is the branch of physics that deals with the calculation of neu-

tron flux and neutron reaction rates in the different materials inside the
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reactor core. These reaction rates need to be calculated accurately in order

to determine the power produced in a nuclear reactor and to calculate the

temperature solution fields, which are strongly coupled to thermal energy

generated in the fuel.

High-fidelity description of neutronics is usually provided by a neutron

balance equation or the ‘neutron continuity equation’ for discrete energy

groups that describes the neutron population in the phase-space domain.

But finding a numerical solution to the neutron scalar flux φ from the neu-

tron continuity equation is an arduous task in itself, without coupling to

other physics, especially when the reactor domain is large and heterogeneous

and when many neutron energy groups G and delayed precursor groups K

are employed. We base our neutronics model on the time-dependent Multi

Group Neutron Diffusion (MGND) equation to solve for the neutron scalar

flux.

1

vg
∂φg(~r, t)

∂t
− ~∇·Dg(~r, t)~∇φg(~r, t) + Σt,g(~r, t)φ

g(r, t)

=

G∑

g′=1

Σg′→g
s (~r, t)φg′(~r, t) + χg

p

G∑

g′=1

(1− βg′)νΣg′

f (~r, t)φ
g′(~r, t)

+

J∑

j=1

χg
d,jλjCj(~r, t) ∀g ∈ [1, G], ∀~r ∈ D (2.1)

The notations used here are standard [29]. The system of equations is closed

with appropriate boundary and initial conditions. We can see that the neu-

tron flux φ is dependent on the position in the core, the energy of neutrons

and on time.

A nuclear core is typically composed of hundreds of different materials

and isotopes, each with different crosssections. The crosssection of a mate-

rial is greatly affected by the temperature and density of the material and
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depends on the energy of the incident neutron. In this coarse grain neutron

diffusion model, the heterogeneity of the materials have been averaged to

create fuel assembly homogenized material crosssections (piece-wise constant

crosssection values per assembly) that preserve the total reaction rates in the

core. The crosssections are usually tabulated, or provided in a closed form

approximation, as a function of fuel and coolant temperatures (extension to

additional parameters, such a boron concentration, void history, control rod

history, . . . , is straightforward). The tabulated crosssection values are ob-

tained using table look-up and Rp interpolation, where p is the total number

of parameters used.

The Ordinary Differential Equations (ODEs) for the evolution of delayed

neutron precursor concentrations are given by

dCj(~r, t)

dt
+ λjCj(~r, t) = βj

G∑

g′=1

νΣg′

f (~r, t)φ
g′(~r, t) ∀j ∈ [1, J ]. (2.2)

The precursor concentration balance is obtained based on the rate of pro-

duction from fission reactions and losses due to radioactive decay given by

the half-life λ.

The energy production due to the fission or radiative capture events is

given by

Q(r, t) =

G∑

g=1

[
κgfΣ

g
f + κgcΣ

g
c

]
(~r, t)φg(~r, t), (2.3)

where the κ coefficients represent the amount of energy released per reaction

event, the subscript f represents fission reactions and subscript c represents

radiative capture reactions.

The design of reactors is often carried out in Steady-State (SS) where the

distribution of the neutron flux is considered to be in equilibrium. In this

static state with fissile material present and no external source, the MGND
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equation reduces to an eigenvalue problem. The dominant eigenvalue of the

system, called the effective multiplication factor keff, is defined as

keff =
Number of neutrons in one generation

Number of neutrons in the preceding generation
(2.4)

The determination of this parameter is done by solving the following modified

form of the MGND equation Eq. (2.1),

−~∇·Dg(~r, t)~∇φg(~r, t) + Σt,g(~r, t)φ
g(~r, t)−

G∑

g′=1

Σg′→g
s (~r, t)φg′(~r, t)

=
χg
p

keff

G∑

g′=1

νΣg′

f (~r, t)φ
g′(~r, t) ∀g ∈ [1, G].(2.5)

with appropriate boundary conditions.

This generalized eigenvalue problem relates the fundamental eigenvalue

(dominant) representing the keff and its corresponding eigenmode represent-

ing the scalar flux φg(r, t) for SS conditions. Since the flux is obtained as a

solution of the eigenproblem, only the shape of the flux can be ascertained

and the magnitude is determined based on the total power load chosen dur-

ing operation. Criticality provides information for the design of a reactor and

also serves as a tunable parameter to determine the conditions for continuous

power output.

In the current work, the statics are governed by Eq. (2.5) and the dynam-

ics of solution field evolution is described by the MGND equation Eq. (2.1)

and precursor equations Eq. (2.2). These closed set of equations, along with

boundary and initial conditions, form the neutronics model of this work.

2.2 Thermal Conduction Model

The energy production due to the fission reaction in the fuel elements gen-

erate sensible heat energy which is deposited locally in the fuel. This energy
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is conducted outward towards the surface of the fuel pellet, the gap and the

outer cladding so that it can be transferred to the coolant. The conservation

equation to model this physics in Cartesian coordinates (~r = x, y, z) can be

written simply as

ρ(T )Cp(T )
∂T (~r, t)

∂t
− ~∇·k~∇T (~r, t) = q(~r, t), (2.6)

with appropriate boundary conditions on the outer trace of domain D.

Here, the density (ρ) in kg/m3, specific heat (Cp) in J/kg −◦ C, and

conductivity (k) in W/m/◦C can depend on the temperature T (~r, t) and

hence Eq. (2.6) is a non-linear equation by itself.

The boundary term coupling the conducting solid to the fluid is given by

k(T )∂nT |w = hc(Tw, Tf )(Tw − Tf ), (2.7)

where Tw (◦C) is the (solid) wall temperature, Tf (◦C) is the coolant tem-

perature at the interface, and hc(Tw, Tf ) (W/m2/◦C) is the convective heat

transfer coefficient obtained by means of a closure relation.

The non-linear heat conduction model employed here represents the core

as a porous medium where the fuel, the fluid flowing in the channel and

the supporting structures are homogenized together and properties found

accordingly. This is stricty used to verify and to test the code implementation

since the model used is described typically in the same space as neutronics

and the equation is a simple scalar non-linear parabolic equation with non-

constant heat source and mixed or Robin BC at the solid-fluid interface.

As a refinement of the porous model described above, a two dimensional

diffusion-reaction equation in cylindrical coordinates can be used to find the

fuel profile in a pin with the given average power density distribution. This
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model is described by

∂ρCpT (~w, t)

∂t
− 1

r

∂

∂r
· (rkr

∂T (~w, t)

∂r
)− ∂

∂z
· (kz

∂T (~w, t)

∂z
) = qavg(~w, t), (2.8)

where qavg(~w, t) is the average power density in a fuel pin.

Using this model, the average temperature profile and behavior of a re-

gion (traditionally a full assembly or part of it in a lattice) can be ascertained

and used to find parameters to estimate the peak clad temperature (based

on oxidation limits) and other safety parameters such as the maximum fuel

temperature in order to eliminate the possibility of fuel melting. A sample

schematic 1-d subchannel model that is traditionally used in reactor analysis

codes is shown in Fig. 2.1.
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Figure 2.1: Subchannel Model

In such a subchannel model, the average power density corresponding to

an assembly location, for a given axial region can be calculated to provide

the necessary source terms for determining the temperature profile in the fuel

pin. This is representative of the average fuel behavior in that region. The

fuel surface temperature is coupled also to the coolant flow in the channel

and is accounted using appropriate boundary conditions Eq. (2.7).
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2.3 Coolant Fluid Flow Model

The coolant flowing in a channel outside the clad of the fuel element gains

enthalpy by convection and removes heat generated and conducted in the fuel

elements. The thermal hydraulics physics and heat conduction are coupled

due to the heat transferred from the fuel pin surface to the coolant by means

of convection. The temperature of the coolant is directly dependent on the

temperature of the outer clad surface, which, in turn, is a direct function of

the fission reaction rate, thereby making all physics coupled to one another.

In addition, a volumetric heat source can also be present in the bulk of the

coolant to model radiative capture energy release and direct gamma heating.

Typically, in nuclear reactors, the flow of the coolant/moderator fluid

occurs in channels of vertical columns. Higher fidelity descriptions may use

three-dimensional Navier-Stokes equations in either the conservative or non-

conservative variable sets with appropriate turbulence models. In the current

work, a simplified approach is taken and the coolant is modeled using a

single-phase fluid flowing vertically in one-dimensional channels. The model

allows for one or multiple 1-d average channels (the maximum number of

channels being the number of right prisms describing the fuel assemblies in

the neutronics model; a simple user-defined mapping is employed to assign

channels to fuel assemblies). The fluid convects the heat generated either in

the bulk of the fluid or at the fuel pin clad interface.

The governing equations for the fluid flow are solved in terms of the



CHAPTER 2. PHYSICS MODELS 23

conservative variables and are given as:

∂tρ+ ∂z(ρu) = 0 (2.9)

∂t(ρu) + ∂z(ρu
2) + ∂zP = fwρ|u|u+ ρbf (2.10)

∂t(ρE) + ∂z(u(ρE + P )) = ∂zq + S, (2.11)

where ρ is the fluid density, ρu its momentum, ρE its total energy, P

the pressure, fw is the ratio of dimensionless wall-friction factor and the

hydraulic diameter Dh, q the conduction of thermal energy in the fluid,

bf is the net body force acting in the direction of velocity v (for instance,

acceleration due to gravity in the downward direction) and S external source

terms (energy from the fuel pin) through convective transfer. An equation

of state closes the system of fluid equations:

P = fEoS(ρ, ρe), (2.12)

where the internal energy is ρe = ρE − 1
2ρu

2.

An example of a closure relation for the equation of state Eq. (2.12) is

given by the ideal gas law:

P = ρe(γ − 1), (2.13)

where γ =
Cp

Cv
, the ratio of specific heat at constant pressure to constant

volume. Alternately, a more generic closure relation can be written by means

of a linearized relation that is dependent on density and temperature:

P = P0 + α(ρ− ρ0) + β (T − T0) , (2.14)

where α, β are the constants that are valid about the linearization point

(P0, ρ0, T0). Note that α is related to the speed of sound in the fluid and



CHAPTER 2. PHYSICS MODELS 24

provides a simple way to alter the Mach number (Ma) in calculations em-

ploying manufactured solutions. This is useful in verifying the numerical

scheme used to treat this system of equations since they are stiff in the flow

regimes of concern in nuclear reactors where low Mach flows dominate.

α =

[
∂P

∂ρ

]

0

∝ 1

Ma2
, (2.15)

As the fluid velocity becomes small in magnitude compared to the speed

of sound in the medium, it is very difficult to solve the low-speed flow equa-

tions with a conventional compressible algorithm because of their slow con-

vergence. The difficulty in solving the compressible equations for low Mach

numbers [30] is associated with the large disparity between the acoustic wave

speed and the fluid speed, which contributes to stiffness, resulting in a in-

definite system of equations.

Efforts to derive schemes that can tackle all speed flows (from low Mach to

supersonic) using physics-based semi-discrete formulations [31, 32], linearized

perturbation equations [30] and methods based on asymptotic expansions

(pressure separation formulation) in terms of Ma [33] have been investigated

previously. In the current research we consider a variation of the method

introduced by Harlow [31] to tackle the stiff and low Mach flow regimes that

are encountered in nuclear reactor applications. It is also important to note

that the semi-discrete and asymptotic expansion methods share similar traits

in tackling low Mach flows and further investigations to derive an elegant

relation between these family of solvers is necessary to fully understand their

mathematical implications.
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2.4 Closing Remarks

The aim of the research presented in this project is to focus primarily on

using better coupling techniques for a given physical equation model. Hence

the physics models chosen in the current work are coarse but descriptive

enough to analyze transient problems occurring in nuclear reactors.



Chapter 3

Methods for Multi-physics

Simulations

‘Knowing thus the Algorithm of this calculus, which I call Dif-

ferential Calculus, all differential equations can be solved by a

common method... not only addition and subtraction, but also

multiplication and division, could be accomplished by a suitably

arranged machine.’

– Gottfried Wilhelm von Leibniz

In this section, details regarding the numerical methods employed to

tackle the coupled physics problems are provided. In addition to these cou-

pling techniques, which include a discussion of solution methods for non-

linear and linear systems and preconditioners, we also describe space and

time discretization techniques with adequate references to supporting mate-

rials.

26
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3.1 Spatial Discretization

Boundary Value problems (BVP) and Initial BVPs for PDEs are often used

to model physical phenomena and hence a consistent and accurate discretiza-

tion of these equations to resolve the length and time scales correctly is per-

tinent. Parabolic and Hyperbolic systems of PDEs or mixed systems are

typically encountered as governing equations for multi-physics applications.

Let the bounded solution domain Ω be in a d-dimensional space Rd with

boundary Γ. Appropriate boundary conditions should also be prescribed in

order to close the system and yield a well-posed problem.

There are several options available for treating the spatial terms in these

PDEs; Finite Difference (FD), Finite Volume (FV) and Finite Element (FE)

methods. All of these methods, in one form or other, rely on replacing

the true solution for the original differential equation with a discrete form

of the solution using approximate expansions in terms of piecewise (higher

order) polynomials. This reduces the problem to a finite system of coupled

equations.

The spatial discretization of the mathematical models in the current work

is performed using FE methods. This method is based on the variational

form of the boundary value problem. The primary reasons for this choice are

the ease of use for arbitrary geometries and irregular domains, the ability

to employ nonuniform meshes to reflect sharp solution gradients, and the

ability to obtain more easily high-order approximations. Also, rigorous a-

priori error estimates of the discretization error based on the order of the

polynomial basis functions are available, at reasonable costs, and can be used

to adapt the finite element mesh to automatically refine/coarsen a subportion

of the mesh based on a user-defined accuracy level.
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Here, a Continuous Galerkin (cG) FE method [34] is utilized for Ellip-

tic/Parabolic PDEs and a Discontinuous Galerkin (dG) FE method [35] is

employed for Hyperbolic systems. Details regarding the variational form

and the discrete equations obtained by applying solution approximations for

Elliptic/Parabolic and Hyperbolic systems are given in the following subsec-

tions.

3.1.1 Elliptic Systems: Continuous Galerkin Discretization

Consider a non-linear, second-order BVP given by the following Elliptic PDE

−~∇·D(~r, u)~∇u+ c(~r, u)u = q ∀~r ∈ Ω. (3.1)

where D(~r, u), c(~r, u) are smooth functions with D(~r, u) ≥ D0 > 0, c(~r, u) ≥
0 in Ω and q ∈ L2(Ω) with appropriate boundary conditions specified at the

boundary Γ. The Galerkin weak form of Eq. (3.1) is obtained by multiplying

the equation with a test function v and integrating by parts over domain Ω

to obtain

∫

Ω
D(~r, u)~∇u · ~∇v + v(c(~r, u)u− q)dΩ−

∫

Γ
vD(~r, u)~∇u · ~nds = 0 ∀~r ∈ Ω.

(3.2)

where Green’s theorem or divergence theorem given below is employed.

∫

Ω
dΩ~∇·(vD~∇u) =

∫

Γ
vD~∇u · ~nds, (3.3)

with ~n being the outward unit normal vector on the boundary.

The variational form of the above problem is to find the solution u be-

longing to the Sobolev space H1 such that

a(u, v) = (q, v), ∀v ∈ Ω. (3.4)
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where

a(u, v) =

∫

Ω
(D(~r, u)~∇u · ~∇v + c(~r, u)uv)dΩ −

∫

Γ
vD(~r, u)~∇u · ~nds(3.5)

(q, v) =

∫

Ω
(qv)dΩ (3.6)

Now, for the purpose of finding the approximate numerical solution, a non-

overlapping partition of the domain Ω is introduced such that
⋃

K∈T
K = Ω

and T is a Triangulation of Ω. For simplicity, an assumption is made that

the geometry is exactly represented by the sum of the parts of the finite

partition. The discrete solution is sought in the finite dimensional trial space

Sh of piecewise continuous polynomial functions of order p. For Galerkin

FE method, the trial space and the test space are the same but continuity

requirements on the test space are usually less restrictive.

Expanding the numerical solution u and the weight function v in terms

of basis functions Φ(r),

u(~r) ≈ U(~r) =

K∑

i=1

UiΦi(~r), (3.7)

v(~r) ≈ V (~r) =
K∑

i=1

ViΦi(~r), (3.8)

where Ui and Vi are the degrees of freedom for the FE discretization. If

the basis functions Φ(r) are chosen to be interpolatory, e.g., Lagrange basis

functions, then the degrees of freedom satisfy Ui = U(~ri) and Vi = V (~ri).

The finite dimensional form of the problem can now be restated as follows:

Find uh ∈ Sh such that

ah(uh, vh) = (q, vh), ∀vh ∈ Sh. (3.9)

Inserting Eq. (3.8) in Eq. (3.9), the following weak form is obtained.

K∑

k=1

Ukah(Φk(r),Φi(r)) = (f,Φi(r)) for i = 1, . . . ,K (3.10)
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This discrete system of equations may be expressed in matrix-operator form

as

f(U) = S+H− (K+M+B)(U) = 0, (3.11)

where the K(U), M(U), and B(U) are operators (vector functions) corre-

sponding to the stiffness (diffusion), mass (reaction), and boundary terms,

respectively; S and H are the volumetric load vector and boundary load

vectors, respectively; and U is the vector of unknowns that approximates

the solution in the domain Ω. If the operators are evaluated using an appro-

priate linearization, the Jacobian matrix for the non-linear equations system

is simply

J̃elliptic(U) = −(K+M+B), (3.12)

where K, M, and B are now the stiffness, reaction, and boundary matrices

(evaluated at the linearization point). Appropriate preconditioners for diffu-

sion or reaction dominated problems based on the knowledge of the physics

can also be created based on the above description of the spatial discretiza-

tion for elliptic problems.

3.1.1.1 Boundary Conditions: Essential and Natural Conditions

Most often in BVPs, three boundary conditions, namely Dirichlet, Neu-

mann and Robin, are employed. To preserve generality, let boundary Γ =

ΓD+ΓN+ΓR. It is neccessary to understand how these conditions need to be

included in the variational formulation itself in order to avoid inconsistency

in the discretization. The derivation above for non-linear Elliptic/Parabolic

problems is general and does not tie itself down to any specific boundary

condition. In this section, we will discuss the methods to impose these var-

ious conditions for second order elliptic problems for the boundary integral
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term in Eq. (3.6) with a continuous Galerkin (cG) discretization.

3.1.1.2 Dirichlet BCs

On ΓD, the Dirichlet essential boundary conditions are specified as follows

u(~r, t) = α(~r, t), ~r ∈ ΓD (3.13)

There are several ways Dirichlet boundary conditions can be imposed. A

simple approach, which works for most interpolary bases like the standard

Lagrange polynomials used in the current work for continuous Galerkin dis-

cretization, is to assign function values Eq. (3.13) directly to the degrees

of freedom on the domain boundary ΓD. This idea of imposing Dirichlet

conditions directly on the solution is ‘strong’ in the sense that it does not

change the Dirichlet solution as a function of the mesh discretization.

Dirichlet conditions can also be imposed with a "‘penalty"’ method. In

this approach, essentially the L2 projection of the boundary values are added

to the linear system matrix. The projection is multiplied by some large factor

so that, in floating point numeric arithmetic, the existing (smaller) entries

in the matrix and right-hand-side load vector are effectively ignored. This

leads to modifying the boundary terms B(U), H(U) in Eq. (3.11) as

Bi(U) =

∫

ΓD

Φi

∑

k

ΦkUk(1 + %δik) (3.14)

Hi(U) = %

∫

ΓD

α(r, t)Φi (3.15)

where % is the penalty parameter, such that % >> 1.
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3.1.1.3 Neumann BCs

On ΓN , the Neumann natural boundary conditions are specified as follows

D(~r, u)
∂u(~r, t)

∂n
= β(~r, t), ~r ∈ ΓN (3.16)

These conditions are called ‘natural’ because they are imposed as part of the

variational formulation itself. Consider the boundary term in Eq. (3.6) and

applying the conditions Eq. (3.16),

∫

Γ
vD(~r, u)~∇u · ~nds =

∫

Γ
vβ(~r, t)ds, (3.17)

where ~n is the outward unit normal vector on the boundary.

This can be seen as the boundary L2 inner product on ΓN . This contri-

bution is added to the boundary operator H(U) and is imposed weakly on

the variational form.

3.1.1.4 Robin BCs

On ΓR, the Robin or mixed boundary conditions are specified as follows

D(~r, u)
∂u(~r, t)

∂~n
+ γu(~r, t) = β(~r, t), ~r ∈ ΓR. (3.18)

Imposing these mixed boundary conditions is very similar to that of the

Neumann conditions since it requires same modifications on the variational

formulation. Again, take the boundary term in Eq. (3.6) and applying the

conditions Eq. (3.18),

∫

Γ
vD(~r, u)~∇u · ~nds =

∫

ΓR

v(β(~r, t)− γRu(~r, t))ds. (3.19)

This boundary contribution is added to the operators H(U) and B(U).
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3.1.2 Hyperbolic Systems: Discontinuous Galerkin Discretiza-

tion

Consider a non-linear hyperbolic conservation equation with advection and

reaction of the form

~∇· ~G(u,~r, t) + c(~r, u)u(~r, t) = q(~r, t) (3.20)

where ~G(u), c(~r, u) are smooth functions with c(~r, u) ≥ 0 in Ω and q ∈
L2(Ω) with boundary conditions specified on the inflow boundary u(~r, t) =

α(~r, t),∀~r ∈ Γi, where ~G(u) · ~n < 0 and ~n is the outward unit normal vector

on Γi.

Then the Galerkin weak form of Eq. (3.20) is obtained by multiplying

the equation with a test function v and integrating over the domain Ω, like

in the elliptic case, to obtain

∫

Ω
v(~∇· ~G(u,~r, t) + c(~r, u)u− q)dΩ −

∫

Γ

~G(u(~r, t), ~r, t) · ~nvdΩ ∀~r ∈ Ω.

(3.21)

Let the numerical solution u be expanded in terms of basis functions (Leg-

endre polynomials) Φ(r) that are discontinuous functions of order p, defined

on the mesh Triangulation T of Ω,
⋃

K∈T
K = Ω.

uk(~r) ≈ Uk(~r) =

p∑

i=1

UiΦi(~r), (3.22)

where Ui are the degrees of freedom of the FE discretization.

Eq. (3.21) can now be rewritten as

∑

K

{−
∫

K
{~G(u)· ~∇v}+

∑

K

{
∫

K
{c(~r, ~u)uv}+

∫

∂K
{~G(u)·~nv}} =

∑

K

∫

K
{v S}.

(3.23)
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Because of the discontinuous nature of the solution approximation, the true

flux ~G(~u)·~n is not defined at the cell’s boundaries and this quantity is usually

replaced by a numerical flux HK(u+, u−, ~n) which approximates ~G(~u). Here,

u± represents the traces on the boundary edges from the interior/exterior of

an element K.

With the introduction of the numerical flux, the weak form for the dG

method can be rewritten as

∑

K

{−
∫

K
{~G(u)·~∇v}+

∫

K
{c(r, u)uv}+

∫

∂K
{HLLF (u

+, u−, ~n)v+}} =
∑

K

∫

K
{v S},

(3.24)

where HLLF (u
+, u−, ~n) is the Rusanov, or Local Lax-Friedrichs (LLF), nu-

merical flux given by

HLLF (u
+, u−, ~n) =

1

2

{
~G(u+) · ~n+ ~G(u−) · ~n+ λ(u+ − u−)

}
, (3.25)

with λ the largest eigenvalue (in absolute value) of the Jacobian matrix of ~G.

For the 1-dimensional non-linear conservation law used to model fluid flow

for reactor applications, the eigenvalue λ = sup{vx, vx + c, vx − c} where vx

is the velocity in the direction of flow and c is the sound speed that depends

on the medium pressure, density and temperature.

Alternately, an Upwind flux can be used instead of the Rusanov flux,

where the numerical flux function is given as

Hup(u
+, u−, ~n) =





~G(u+) if ~u · ~n ≤ 0

~G(u−) otherwise
(3.26)

As an aside, it is interesting to note that in higher order accurate dG meth-

ods, the choice of Riemann solver is not that crucial to resolve the spatial

scales correctly [36]. Hence, in the current work, the Upwind and Rusanov



CHAPTER 3. METHODS FOR MULTI-PHYSICS SIMULATIONS 35

flux function are used [37, 38] as the solver since it is easy and less expen-

sive to implement, whereas many other choices such as the Godunov, Roe,

Osher, HLL, HLLC, and HLLE solvers are available. Future tests to affirm

the conclusions of these previous results for problems occurring in nuclear

reactor analysis will be necessary to validate the current choice of Riemann

solver.

In operator notation, Eq. (3.24) can be written in a general form as

f(U) = G(U) +B(U) +M(U) − S = 0 (3.27)

where the G(U),M(U), and B(U) are vector operators corresponding to

the advection, reaction, and boundary terms, respectively; S is the volu-

metric load vector; and U is the vector of unknowns that approximates the

solution in the domain Ω. If the operators are evaluated using appropri-

ate linearization, the Jacobian matrix for the non-linear equations system is

simply

J̃hyperbolic(U) = −∂(G+M+B)

∂U
, (3.28)

where ∂G
∂U , ∂M∂U , and ∂B

∂U are the partial Jacobian of advection, reaction, and

boundary operators respectively, evaluated at the linearization point. Form-

ing the Jacobian for the conservation law with higher order dG discretization

can be expensive and complicated. But recent work on steady state problems

[39] emphasizes that accurate evaluation of the Jacobian matrix can be cru-

cial to speed up convergence of the non-linear Newton iteration. Also, since

the numerical flux functions can be arbitrarily chosen for a given problem,

it is only required that the derivatives of the numerical flux H ′
u+ and H ′

u−

need to be calculated to assemble the Jacobian matrix correctly. Analytic

forms for the derivative are sometimes not available directly but a numerical

finite difference procedure can be performed to obtain these values. For the



CHAPTER 3. METHODS FOR MULTI-PHYSICS SIMULATIONS 36

Upwind and Rusanov fluxes, these values are straightforward to compute

and the analysis for other types will be left for future work.

Apart from directly computing the Jacobian from the dG residual in

Eq. (3.27), approximate Jacobian matrix for preconditioning the linear sys-

tem can be obtained based on the Implicit Continuous Eulerian (ICE) tech-

nique [31], in which a semi-implicit linearization treats the advection op-

erators explicitly. The unknowns are then eliminated through a Gaussian

elimination and substitution process, yielding a single pressure-Poisson equa-

tion [28]. This formulation is widely used for low Mach flow regimes as a

solver by itself and thus could be quite effective when utilized as a pre-

conditioner within the non-linear matrix-free framework used in the current

work. Detailed description of the linearized Jacobian matrix obtained via

perturbation of the numerical flux and the ICE preconditioner is provided

in Section. (3.3.3).

3.1.2.1 Boundary Conditions: Inflow and Outflow

For 1-dimensional conservation laws that resemble the inviscid Euler equa-

tions, there are three characteristic speeds corresponding to the eigenvalues

of G′(u) [40], namely

λ1 = vx − c, λ2 = vx, λ3 = vx + c (3.29)

According to the sign of the these characteristics, four different boundary

conditions are usually employed at the inflow and outflow boundaries.

1. Subsonic Inflow: λi < 0, i = 1, 2 and λ3 > 0

2. Subsonic Outflow: λi > 0, i = 2, 3 and λ1 < 0
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The supersonic inflow and outflow conditions have not been considered here

since the regimes that are dominant in reactor analysis problems for fluid

flows are primarily subsonic.

In order to provide details on the application of these boundary condi-

tions, notations regarding the boundary faces need to be specified. Let us

first subdivide the boundary Γ into the inflow boundary Γi and the out-

flow boundary Γo. Then split the element boundary terms into interior and

boundary face terms such that
∑
K

∫
∂K =

∑
K

∫
∂K\Γ

⋃∑
K

∫
∂K

⋂
Γ. Now define

the bilinear form of the weak statement to include the boundary face terms

as follows:

aΓ(u, v) =
∑

K∈Γ

∫

∂K
⋂

Γ
H(u+, u−, n)v+ds (3.30)

This boundary term consists of two parts in our case:

aΓ(u, v) = aΓi
(u, v) + aΓo(u, v) (3.31)

Depending on the domain boundary, these terms are specified in the weak

form as follows:

1. At the inflow boundary Γi, the outer trace u− is replaced by the given

boundary function g as

aΓi
(u, v) =

∑

K∈Γh

∫

∂K
⋂

Γi

H(u+, g, ~n)v+ds (3.32)

2. At the outflow boundary Γo, only one characteristic variable need to

be imposed. In many cases, the outflow variable specified is pressure

p = po. Hence on Γo, the outer trace u− is replaced by a modified

solution u− = u−o (u). Then

aΓo(u, v) =
∑

K∈Γh

∫

∂K
⋂

Γo

H(u+, u−o (u), ~n)v
+ds (3.33)
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Often the modified solution depends on the inner trace u+ and pre-

scribed pressure po such that u−o = (ρ, ρv, ρE(ρe, po)).

The specification and implementation of these boundary terms are dif-

ferent from that for elliptic PDE. Even though the Dirichlet conditions are

specified for each of the solution variables in the inflow boundary, impos-

ing these conditions occur naturally through the use of the numerical flux

functions. Even time-dependent Dirichlet conditions do not require special

treatment in order to be enforced consistently.

3.1.3 Spatial Coupling Error in Multi-mesh Approaches

Often times in multi-physics applications, each physics component is dis-

cretized on its own mesh, and the solution field from a given physics needs to

be exported onto another mesh. L2 projection or interpolation of the solu-

tion between the source and target meshes may cause non-negligible spatial

error [41]. In order to minimize the spatial coupling error due to the data

transfer between the different physics defined on non overlapping meshes,

several techniques have been developed [42]. Jiao and Heath [43] have de-

rived rigorous cost estimates for different remapping methods along with the

solution costs. The spatial coupling error due to, for instance, the use of

different meshes, is still an ongoing topic of research [44].

In the current research work, we employ high order quadrature rules for

the numerical integration of the terms residing on the target mesh, that ap-

proximates the spatial integrals to capture the multi-physics solution behav-

ior. This idea is applicable for arbitrary meshes, provided that the solution

for a physics can be evaluated at any point based on the expansion of the

solution in terms of the basis functions. Then, as the number of quadrature
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points is increased, the multi-mesh coupling error becomes ‘small enough’ as

compared to the non-linear error that is not resolved in the coupled physics

solution.

For illustration, let us consider two physics, indexed by 1 and 2. In the

weak formulation, the non-linear residual of physics 1, f1(y1,y2) is multi-

plied by a test function, bj
1. The following integral needs to be computed

accurately for every cell K1 of physics 1:

∫

K1

f1(u1(x),u2(x))b
i
1(x)dx. (3.34)

Expanding the solution fields onto the basis functions, u1(x) =
∑

i b
i
1(x)û

i
1

and u2(x) =
∑

i b
i
2(x)û

i
2, and replacing the integral by a numerical quadra-

ture (wq,xq) yield

∑

q

wqf1

(∑

i

bi
1(xq)û

i
1,

∑

i

bi
2(xq)û

i
2

)
bi
1(xq). (3.35)

For identical meshes, the values bi
1(xq) = bi

2(xq) are simple to obtain:

mapping K1 onto a reference element is advantageous since the basis func-

tions need only to be evaluated once at the quadrature points of the reference

element. However, when the meshes are different, (1) the numerical integra-

tion needs to be carried out on the physical element K1, and, (2) all the cells

of physics 2 overlapping K1 need to be retrieved and the basis functions b2

need to be evaluated at the quadrature points, (xq). For general unstruc-

tured meshes, one cannot obtain straightforwardly bi
2(xq) in the reference

element since this involves reverse lookups to find the correct target element

for physics 2 containing the physical point. Hence, the numerical integration

over a cell is carried out on the real geometry (the actual cell itself), and not

on its mapped reference element. Here, high order quadrature rules for each

physics are employed along with inverse mapping of the meshes in different
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physics in order to evaluate the basis functions at the given physical points.

This computation is necessary each time the residual for a given physics

needs to be evaluated and an efficient linked list data-structure is created to

store the required information in memory and speed up the integration over

cells.

The current work does not delve indepth into the issues related to cou-

pling the solution fields from several completely different legacy codes devel-

oped independently. These scenarios have solutions residing in meshes that

conform to spatial scales of each physics and the a-priori determination of

the number of quadrature points to perform the L2 projection accurately is

difficult. A workaround would be to create a ‘super’ mesh which is the union

of all the individual physics meshes given by ΩSuper
h = Ω1

h

⋃
Ω2
h

⋃
. . . ,

⋃
ΩN
h .

Then, the solution at all the mesh points can be interpolated, projected and

used uniformly with affordable loss of accuracy.

It is also important to note that, making use of available degrees of free-

dom, certain quantities such as total mass and energy need to be conserved

through these projections [42]. This needs special attention while devising

schemes to project these variables on a different mesh to be coupled with an-

other physics. Since this subject in itself involves considerable research, only

the ideas have been proposed here and demonstrations using two physics will

be presented in Section. (5).

3.2 Time Discretization

Tackling the whole coupled non-linear system provides tremendous flexibil-

ity to use high-order implicit time integrators. Implicitness is required for

stability due to the great disparity in time scales of the various phenomena
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involved in the simulations. Even though traditional codes dealing with stiff

individual physics systems tend to use semi-implicit (treat fast scales im-

plicitly and others explicitly), these schemes might not be as effective when

used in the context of coupled physics problems due to the introduction of

time scales that cause increased stiffness. But since the temporal treatment

in single physics problems are based on intimate knowledge of the physics,

these solution schemes and discretizations serve as excellent preconditioners

for fully coupled physics problems.

Consider a vector valued non-linear system of equations f , that is ob-

tained after appropriate spatial discretization using cG or dG FEM for the

different physics. This non-linear residual includes all the coupling details,

i.e., the contributions from one physics to another is accounted correctly.

The large system of time-dependent coupled non-linear ODEs describing the

problem can be generally written as

M
dU

dt
= f(t,U). (3.36)

where M is the mass matrix resulting from the spatial discretization of the

temporal derivative term (the use of a finite difference technique in space

or a lumped numerical quadrature results in M being the diagonal matrix

whose entries contain the cell volume).

The initial BVP has an initial solution prescribed at some given time

tinitial. Let the 1-dimensional time domain Θ = [tinitial, tfinal] be partitioned

in to N steps with
∑N

n=1 ∆tn = tfinal.

Without loss of generality, consider a Runge-Kutta (RK) method for

temporal discretization represented using the standard Butcher tableaux no-
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tation. Then, any RK method can be specified using the following notation:

C A

BT

, (3.37)

where B = [b1, . . . , bs]
T , C = [c1, . . . , cs]

T , and A = (aij)i,j=1,...,s. Let s be

the number of intermediary stages for the RK method, and ∆tn the size of

step n. The application of the RK method to Eq. (3.36) yields the solution

at tn+1 as

Un+1 = Un +∆tn

s∑

i=1

biki, (3.38)

where the intermediate vectors ki (i = 1, . . . , s) are obtained by solving the

following s non-linear systems

Mki = f


tn +∆tnci , Un +∆tn

s∑

j=1

ai,jkj


 , (3.39)

The above equation shows that the computation of a solution at tn+1 involves

performing at least s non-linear iterations for one single sweep and it is

necessary to converge the stage vectors ki in order to obtain the time solution

at the end of nth step. Since the derivation is still general, no assumptions

have been made about the structure of the Butcher matrix A to simplify the

equations. This will be dealt with separately once we have a fully discrete

system of equations.

Based on ideas by Hairer [45], a simple substitution of variables is intro-

duced next. Let

Zi = ∆tn

s∑

j=1

ai,jkj. (3.40)

Substituting Eq. (3.40) in Eq. (3.39), the modified set of s non-linear prob-

lems is

Mki = f (tn +∆tnci , Un + Zi) , (3.41)
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and, by recursion after simplification, this yields the modified non-linear

‘temporal’ residual equation defined by

F(Z) = (M⊗ Is)Z−∆tnAf(tn +∆tnC, Un + Z) = 0, (3.42)

where Z = {Z1 . . . ,Zs} and f(Z) = {f(Z1) . . . , f(Zs)}.
Now that we have arrived at a final non-linear system, the solution to

Eq. (3.42) for Z can be obtained by some form of non-linear iteration, using

either Picard or Newton method. Once Z is found and converged for all s

stages, we can substitute in Eq. (3.38) to find the solution at end of time

level n using

MUn+1 = MUn +∆tnB
T f(tn +∆tnC, Un + Z), (3.43)

It is important to note that all derivations leading up to Eq. (3.43) are

applicable to explicit and fully-implicit RK methods. Then, the selection

of the appropriate RK methods that can handle stiff PDEs [46, 45, 28] is

necessary in order to obtain high-order accurate solutions using the above

discretization method. These choices are usually based on several optimal

properties of the RK methods such as:

1. explicitness vs implicitness.

2. A-stability, (absolute stability) determines whether a method is con-

ditionally stable or unconditionally stable for all time step sizes ∆tn

[47] (i.e., it is the domain S ∈ <(z) such that S = {z ∈ C; |<(z)| ≤
1} where <(z) is the method’s characteristic polynomial applied to

Dahlquist’s equation y′ = λy and z = ∆tnλ). In coupled physics

systems, the disparity in the time scales leads to stiff systems that re-

quire A-stable methods in order to resolve the behavior of the physics

correctly.
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3. L-stability, is an essential property that indicates the rate of damping

of highly oscillatory modes independent of time step size [48] i.e., a

method is L-stable if it is A-stable and lim
z→∞

<(z) = 0. This property

is crucial to determine the success of a given method for stiff systems

since if all modes are not damped quickly over a transient, the solu-

tion procedure can become unstable due to oscillations, neccessitating

smaller time steps.

4. Efficiency: cost of solution method per time step. This is critical since

there needs to be a balance in terms of cost per step (s * Average CPU

cost per stage) versus accuracy in solution (Local Truncation Error

(LTE)) for solving the system.

A RK method of order p with s stages can be compared to the actual

Taylor series expansion of a non-linear system, to derive the order condi-

tions. For higher order methods, it gives the user great flexibility in deriving

a scheme with optimal order and stability properties to fit the needs of the

problem. This plasticity of the method and the ease of adjusting the co-

efficients to obtain embedded formulas make them attractive to adaptive

time-stepping when needed.

Next, specializations for different families of RK schemes will be dis-

cussed and the specific changes in the non-linear equation Eq. (3.42) and

step solution Eq. (3.43) will be shown.

3.2.1 Explicit-RK (ERK) Methods

If the Butcher coefficient matrix A is strictly lower diagonal, i.e., ai,j =

0,∀i = 1 . . . , s, j ≥ i, then the RK method is said to be explicit. This

is because the solution for any time step explicitly depends only on the
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previous solution and stages and hence these methods do not require any

non-linear iterations.

All explicit methods are conditionally stable but due to the reduced cost

in finding the solutions, they could be valuable when the physics dictates

the usage of very small time steps to resolve the temporal scales. This

‘asymptotic regime’, when the user-specified tolerance for LTE dominates

the solution, is suitable for the usage of such schemes.

Mki = f


tn +∆tnci , Un +∆tn

i−1∑

j=1

ai,jkj


 ∀i = 1 . . . , s(3.44)

Un+1 = Un +∆tnB
TK (3.45)

where K = {k1, . . . ,ks}.
Hence ERK methods are easy to implement and have cheap computa-

tional cost per step since there are no non-linear iterations or Jacobian matrix

solves other than the Mass matrix M at the end of each stage. However, they

have poor stability properties and are unable to resolve very fast changing

modes (explicit schemes are not suitable for stiff equations). To overcome

this problem and to utilize the advantages of these one step schemes, mod-

ifications to the existing ERK schemes can be made, as shown by Eriksson

et. al. [49], to extend the stability region.

In the current work, for the sake of completeness, we have chosen to

implement Forward Euler (FE), a two stage ERK method of order 2 and the

four stage ERK method by Kutta based on 3/8th Quadrature Rule of order

4. Apart from these standard schemes, an embedded ERK method, DOPRI

by Dormand-Prince [46] with stiffness detection, has been implemented as

well.

The notation for naming each of the RK methods is usually given as
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RKp, p′(s) where p is the true order of the method, p′ is the embedded order

and s is the number of stages. With this notation, the Butcher Tableaux for

each of the above methods are given below.

0 0

BT 1

(3.46)

FE 1(1)

0 0

2
3

2
3

BT 1
4

3
4

(3.47)

ERK 2(2)

0 0

1
3

1
3

2
3 −1

3 1

1 1 −1 1

BT 1
8

3
8

3
8

1
8

(3.48)

ERK 4(4)
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0 0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46832
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

BT 35
384 0 500

1113
125
192 −2187

6784
11
84 0

ET 71
57600 0 − 71

16695
71

1920 − 17253
339200

22
525 − 1

40

(3.49)

DOPRI 4,5(7)

In Eq. (3.49), ET is the error estimator coefficient that is useful in ob-

taining the Local Truncation Error (LTE) for the specified RK method. This

is derived along with the optimal higher order (p) step coefficients BT for

the embedded method. Then,

ET = BT − B̃T (3.50)

where B̃T are the coefficients for the lower order (p′) method. For brevity,

B̃T have not been shown and can be easily obtained if necessary.

The LTE (ε) for such an embedded method is

εn = ∆tnE
TK+O(∆tp

′+1
n ) (3.51)

A-priori estimates for the LTE are useful to create adaptive solution

procedures that can change the step size ∆tn and order p of the method

to reduce the local and global temporal error in the solution based on user
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specified tolerance. Based on principles in control theory, Gustafsson [50]

introduced the PI controller and applied it to adaptive step-size selection

for stiff ODE problems. Previous work for reactor problems [11] using these

adaptive controllers were successful and hence have been used in the current

research for use with embedded methods.

The PI controller predicts the new step size based on the evolution in

LTE, the selection of previous step size and a user specified tolerance. Then,

∆tn+1 = ∆tn

(
Tol

|εn|

)α( |εn−1|
|εn|

)β

(3.52)

where α and β are problem dependent constants. Gustafsson found after

some numerical computation that α ≈ 0.7
min|p,p′|+1 and β ≈ 0.4

min|p,p′|+1 are

usually good choices for stiff problems. The paper cited above provides

detailed derivation of the controller and the optimal parameters in Eq. (3.52).

3.2.2 Implicit RK (IRK) Methods

Implicit methods are either usually unconditionally stable (A-stable) or at

least have much larger stability regions than ERK methods. Even if an IRK

method is A-stable, it may not satisfy the required L-stability conditions

that are essential to accurately resolve stiff systems of equations. We can

also classify IRK methods based on the structure of the Butcher matrix A

in to two broad categories. We will discuss each family below along with the

implication on the cost for obtaining a solution per time level.

3.2.2.1 Diagonally-Implicit RK (DIRK) Methods

For DIRK methods, the Butcher coefficient matrix A is lower diagonal, i.e.,

ai,j = 0,∀i = 1 . . . , s, j > i. Note that the diagonal term is non-zero and
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hence the solution at each stage requires an implicit non-linear solve, unlike

with ERK methods.

The equations for the simplified non-linear system Eq. (3.42) at each

stage can be modified as

F(Zi) = MZi−∆tn

i∑

j=1

ai,jf(tn+∆tnci, Un+Zi) = 0 ∀i = 1 . . . , s (3.53)

Then, if the Jacobian matrix J(U) for the SS residual f(U) can be computed

approximately, the non-linear iteration to compute the solution update pro-

ceeds as

Ĵ(Zl
i)δZ

l
i = −F(Un + Zl

i) ∀i = 1 . . . , s (3.54)

Zl+1
i = Zl

i + δZl
i (3.55)

where l is the non-linear iteration index and the transient Jacobian matrix

Ĵ(Z) is

Ĵ(Zl
i) = M−∆tnai,iJ(tn +∆tnci, Un + Zl

i) ∀i = 1 . . . , s (3.56)

Now that we have determined the necessary components to solve the tran-

sient non-linear system, the solution to Eq. (3.54), Eq. (3.55) for Z =

{Z0 . . . ,Zs} can be obtained. The use of either a Picard or Newton method

as a non-linear solver will be discussed in the next section and the focus will

be shifted to solve this system efficiently under constraints of memory and

time.

Once Z is found and converged for all s stages, we can substitute in

Eq. (3.38) to find the solution at end of time step n. This step involves

inverting the Mass matrix M which can be performed using a lumped-mass

approach [51] that has been proven to be quite effective for several test

problems.
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Several DIRK methods possess unconditional stability and optimal prop-

erties that help improve the efficiency of solution procedure. For instance,

it is advantageous to have the diagonal elements of the Butcher matrix A

to be the same i.e., ai,i = γ. These DIRK methods are popularly called

Singly-DIRK (SDIRK) methods. A variation of the SDIRK methods with

an explicit first stage, Explicit SDIRK (ESDIRK), was investigated intro-

duced by Kvaerno [52] and investigated further by Kennedy et al. [53] for

advection-diffusion-reaction equations. These methods simplify the solution

procedure to solving the non-linear system given in Eq. (3.54) since the tran-

sient Jacobian matrix Ĵ(t,U) that needs to be inverted is the same in all

stages. Hence if a direct method such as LU factorization can be used, then

the factorization need be performed only once and utilized for all the stage

computations. Note that in this case, the Jacobian is also lagged (computed

at start of step).

Based on the analysis of the properties of DIRK methods, few of them

have been chosen to be implemented: Backward Euler (BE), Implicit Mid-

point (IM), SDIRK2(2), SDIRK3(2), SDIRK3(3) [45]. Note that BE, SDIRK2(2),

SDIRK3(3) are A−, L− stable schemes but IM2(1) and SDIRK3(2) are only

A−stable and not L−stable. Since the provision for including arbitrary

DIRK methods exists in the framework introduced thus far, any DIRK/S-

DIRK method that can be represented by a Butcher Tableau can be tested

and used in the software implemented as part of the current work.

1 1

BT 1

(3.57)

BE 1(1)
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0.5 0.5

BT 1

(3.58)

IM 2(1)

γ γ

1 1− γ γ

BT 1− γ γ

(3.59)

SDIRK 2(2) with γ = 1− 1√
2

γ γ

1− γ 1− 2γ γ

BT 0.5 0.5

(3.60)

SDIRK 3(2) with γ = 3−
√
3

6

γ γ

1+γ
2

1−γ
2 γ

1 −6γ2+16γ−1
4

6γ2−20γ+5
4 γ

BT −6γ2+16γ−1
4

6γ2−20γ+5
4 γ

(3.61)

SDIRK 3(3) with γ = 0.435866521508459

3.2.3 Fully-Implicit RK (FIRK) Methods

FIRK methods have a full Butcher coefficient matrix, i.e., ai,j 6= 0,∀i, j =

1 . . . , s. One way to solve these systems would be to consider the full block
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non-linear system, all unknowns from the s stages, i.e., Z is the unknown

instead of Zi for individual stages, and perform non-linear iterations on these.

Due to memory restrictions for large scale fully discretized problems, this

could be prohibitive.

Alternately, an outer iteration can be used in conjunction with ideas for

solving DIRK methods, in order to converge the temporal step solution. This

procedure is based on splitting the block matrix operator as A = D+L+U

where D,L,U are the diagonal, strictly lower triangular and strictly upper

triangular terms of the coefficient matrix. With this splitting, a Block Gauss-

Seidel (BGS) iteration can be applied to obtain the residual as

F(Zl
ibgs) = MZl

ibgs −∆tn(L+D)⊗ Inf(tn +∆tnC, Z
l
ibgs)− (3.62)

∆tnU ⊗ Inf(tn +∆tnC, Z
l
ibgs−1) = 0 (3.63)

with the transient Jacobian matrix Ĵ(t,U) given by

Ĵ(Zl
ibgs) = M−∆tn(L+D)⊗ InJ(tn +∆tnci, Z

l
ibgs) (3.64)

where ibgs is the BGS iteration number. This iteration can also be relaxed

to improve the outer iteration convergence using block SOR scheme but

due to the difficulty in determining the optimal relaxation factor for all

multi-physics problems, this is left for future work.

Simply put, the solution procedure for FIRK methods involves perform-

ing multiple DIRK solves until convergence. Hence the cost of these methods

is cost per DIRK step*Number of outer iterations. Due to the cost involved

in computing the solution for FIRK methods, this is often not preferred

unless extremely stiff problems are encountered.

Hairer [45] notes that collocation methods based on Gauss and Radau

quadrature formulas can lead to FIRK methods with excellent stability prop-
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erties. These methods are in general A− and L− stable and stiffly accurate

(do not degrade convergence for stiff problems) [54].

An adaptive method using the RADAU5 scheme with a good error esti-

mator was implemented previously [11] for coupled simulations using Point

Reactor Kinetics Equations (PRKE) and lumped hydraulics models and the

success of these methods in predicting sudden changes in temporal scales

make them attractive. The use of such implicit adaptive techniques will be

essential to capture complex waxing and waning of temporal scales from dif-

ferent physics during critical transients [26] and needs further investigation.

The Butcher matrix for the fourth order methods based on Gauss quadra-

tures and third, fifth order methods based on RADAU IIA family are given

below.

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

BT 1
2

1
2

(3.65)

Gauss 4(2)
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4

1
4

(3.66)

Radau IIA 3(2)
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1
9

(3.67)

Radau IIA 5(3)

Until now, the subject of obtaining the solution of a non-linear system was

only briefly discussed. This is because the crux of the work in the temporal

solution procedure lies solely in this non-linear solve. Details regarding the

usage of Picard or Newton iteration as non-linear solvers are provided next.

3.3 Methods for Solving Large-scale Non-linear Sys-

tems

This section discusses the numerical techniques employed for solving the

non-linear equations arising from the fully discretized coupled physics sys-

tem. By controlling how the non-linearities are resolved, a tight coupling

or traditional loose coupling paradigm can be obtained. This allows testing

existing coupling strategies and comparing to new tightly coupled methods

in terms of accuracy and efficiency since all of these methods can be imple-

mented within the same framework.

The basis for this idea stems from the fact that if the linear operator

representing the Jacobian matrix used for solving the non-linear system is

block-diagonal, it represents the decoupled treatment of the different physics

and collapses to a Picard iteration strategy. This procedure can be iterated

to any given tolerance as long as the spectral radius of the linearized operator
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is less than one i.e., ρ(Ĵ) < 1. In other words, the convergence through Pi-

card iterations for coupled physics problems is guaranteed if the eigenmodes

due to the linearized terms are not dominant. Then, these iterations are

a natural formulation for weakly coupled physics models. But if ρ(J)

ρ(Ĵ)
> 1

where J is the consistent fully coupled Jacobian matrix, then the physics

are strongly coupled and much smaller time step sizes will be necessary in

order to make the linearization valid. Hence, with a combination of time

step control and appropriate linearizations, such iterative procedures over

the different physics can produce tightly coupled solutions.

The current framework employs Picard or Newton methods (outer non-

linear solves) and Krylov methods (inner linear solves) to solve the set of

discrete non-linear equations effectively and accurately. The Matrix-Free

(MF) approximation can be included such that the algorithm can be im-

plemented without explicitly building the Jacobian matrix needed in the

linear solve. Often, building the Jacobian matrix can be costly in CPU time

and memory, especially when different physics components reside in multi-

ple codes. The MF nature of the solvers relies on (i) the fact that Krylov

solvers build a solution subspace using only matrix-vector operations and (ii)

these matrix-vector operations can be approximated using a finite difference

formula that does not require knowledge of the matrix elements at all. Nev-

ertheless, Krylov methods may require a certain number of basis vectors to

be stored in order to find an accurate solution (i.e., the size of the subspace

may be large). The Krylov space size and the overall computing time can

be significantly reduced by the use of an appropriate preconditioner for the

linear solves. Therefore, the MF non-linear algorithm consists of 3 levels of

iterations:
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1. Nonlinear iteration,

2. Linear iteration,

3. Preconditioner iteration.

Since the equations and the methods provided here are generic and are

applicable to arbitrary non-linear systems, the same scheme can be utilized

for solving linear, non-linear single- and multi-physics coupled systems. The

following subsections provide details on the three levels of iterations that are

part of the framework used to perform these multi-physics simulations.

3.3.1 Nonlinear Iteration Methods

Consider a system of non-linear equations of the form

F(Z) = 0 (3.68)

obtained by space-time discretization of a problem with ξ physics compo-

nents coupled non-linearly to each other, leading to a system of ordinary

differential equations. Let us apply the traditional Picard iteration and

the Newton iteration introduced earlier to solve the fully-discrete non-linear

problem.

3.3.1.1 Picard Iteration

Picard iteration, also known as Fixed Point Iteration (FPI), is a viable and

an easy method to implement since it makes use of existing OS coupling

paradigm to linearize the coupled physics solution terms. In solving differ-

ential equations, Picard iteration is a constructive procedure for establishing

the existence of a solution to a discretized system of equations Eq. (3.68),

that passes through the fixed point (Z0).
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However, it is not very effective to iterate at every time step to converge

the non-linearities in order to restore the higher convergence order. This

is due to the fact that the Picard iterations are only linearly convergent

and hence the scheme converges slowly to the true solution. Such a solution

procedure takes a high iteration cost and usually requires longer computation

times. Additional modifications could accelerate the rate of convergence for

the vanilla non-linear Picard iterations in order to make it a viable candidate

for reactor analysis problems. Schemes such as Steffensen [55] and vector

Wynn-Epsilon algorithm [56] can be used to accelerate the convergence rate

of the sequence of vectors found using Picard iterations.

Also, by the nature of the Picard linearization, the coupling between the

different physics are treated explicitly. The system matrix arising from the

space-time discretization of these physics reflect this weak coupling between

different physics components. Let ZP be the solution fields corresponding

to a particular physics P . Then, the non-linear residual equation describing

the Picard linearization for each physics P can be written by splitting the

non-linear contributions from each physics, as:

F(Z`+1,Z`) = {Z`+1
P −NPP (Z

`+1
P )} −

ξ∑

P ′=1
P ′ 6=P

ÑP ′P (Z
`) (3.69)

where ` is the Picard iteration number, NPP (ZP ) represents the non-linear

residual describing the individual physics and ÑP ′P (Z) represents the non-

linear residual due to the coupling of physics P with physics P ′.

Since the diagonal coupled physics terms P ′ are computed at the previous

Picard iterate, the new solution can be obtained by performing the following
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sequence of iterations:

JFPI(Z
`)δZ` = −F(Z`+1,Z`) (3.70)

Z`+1 = Z` + δZ` (3.71)

where JFPI is simply in this case,

JFPI(Z) =




N11 0 · · · 0

0 N22 · · · 0
...

...
. . . 0

0 · · · 0 Nξξ




(3.72)

Since the blocks Nii require only the solution to the single physics itself, this

fixed point iteration procedure can be continued to generate a sequence of

solutions that converge to the true coupled physics fields ZP . This Picard

iteration procedure has a Jacobian matrix that is Block-Jacobi structured

and hence could be feasible to couple existing mono-physics codes. This OS

coupling paradigm uses schematically represented by Fig. 1.1 in Section. (1).

The Picard iteration over multiple physics explained above is the least

efficient and computationally expensive mode for performing multi-physics

simulations although it is easy to implement for coupling existing legacy

codes. Alternately, any level of tighter coupling can be enforced by accou-

ting for the knowledge gained about the physics. These variations in Pi-

card linearization involve simply evaluating the non-linear contribution ÑP ′

from physics P ′ → P at the current iterate solution Z`+1 in Eq. (3.71) and

correspondingly including the implicit contribution of the non-linear oper-

ators in the Jacobian matrix Eq. (3.72). These modified Picard variants

are usually made such that the Jacobian matrix can be represented as a

Block-Lower-Triangular or Block-Upper-Triangular matrix which would in-

volve Block-Backward/Forward substitution respectively, in order to obtain
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the solution for the Picard iteration Eq. (3.71). A representation of the

Block-Lower-Triangular Picard linearized matrix is given below.

JFPI(Z) =




N1,1 0 · · · 0

N2,1 N22 · · · 0
...

...
. . . 0

Nξ,1 · · · Nξ,ξ−1 Nξξ




(3.73)

3.3.1.2 Newton Iteration

Instead of employing Picard iterations, one can apply Newton’s method to

solve the non-linear system of equations in Eq. (3.68) and obtain the solution

iteratively as follows:

J(Z`)δZ = −F(Z`) (3.74)

Z`+1 = Z` + δZ (3.75)

where J(Z`) = ∂F(Z`)
∂Z` is the Jacobian matrix of the system at the current

Newton iterate Z`, δZ is the increment update, solution of the linear solve,

and the next Newton iterate is given by Z`+1.

It is clear that the Eq. (3.74) requires forming the Jacobian matrix ex-

plicitly in order to solve the system for δZ. In the case where the coupling

between the different physics is complex and requires more memory storage,

this option may not be feasible. Also, the convergence of Newton’s method

strongly depends on the consistency of the Jacobian matrix with respect to

the residual description.

One may compute a numerical approximation to the Jacobian, based

on a finite difference procedure by perturbing F(Z). Provided that enough

memory is available, J can be built element by element or column by column.
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This is usually referred to as the numerical Jacobian. If recomputed at

every Newton iteration, it is very expensive in terms of computational time,

especially if the size of the non-linear system N is quite large since F(Z)

needs to be perturbed at least N times. The cost of this numerical Jacobian

is hence O(N) non-linear residual function evaluations.

Alternately, when storing the entire Jacobian is not feasible due to mem-

ory constraints or when the computational cost of forming the numerical

Jacobian itself is prohibitive, a matrix-free approach is preferred. Based on

the ideas by Brown and Saad [22], the Jacobian-free approach can be used

to efficiently tackle the non-linear system where the linear solve can be per-

formed with only the action of the Jacobian matrix on a given vector. Using

only this defined operation, the linearized system in Eq. (3.74) can be solved

using an efficient linear solver.

Generally speaking, the action of the Jacobian on a given vector v can

be computed using the following finite-difference approximation:

Jv ≈ F(Z+ εv)− F(Z)

ε
(3.76)

where ε is a parameter used to control the magnitude of perturbation.

Note that the accuracy of the approximation depends strongly on the

choice of ε. A typical simple choice is usually the square root of machine

precision ε2 = Υ ≈ 1E − 16. Other optimal equations for choosing the

perturbation parameter ε have been derived in the reference papers [22, 23].

For completeness, this optimal form of ε is given by

ε =

√
(1 + ||Z||)Υ

||v|| (3.77)

Further analysis done on the optimization of this finite difference parameter

by Xu [57], in the context of coupled multi-physics problems, can also be



CHAPTER 3. METHODS FOR MULTI-PHYSICS SIMULATIONS 61

useful to determine the error in the approximation and increase the efficiency

of the algorithm explained above.

Other types of finite difference procedures such as, two-sided difference

formulas instead of the one-sided difference formula used in Eq. (3.76), can

increase the accuracy of the approximation. But such modifications involve

extra computational work and increase the number of function evaluations

needed for better estimations. Hence, we have only considered the one-sided

difference approximation in this current work and the applicability of these

alternate Jacobian-free approximations can be analysed in the future.

The exact Newton method involves solving the linear system in Eq. (3.74)

exactly, i.e., to a tight tolerance at every Newton iteration. This is a waste of

computational effort when the solution to the non-linear problem is far away

from the bowl of asymptotic convergence. Hence, an adaptive technique to

change the linear tolerance in the Newton iteration based on the non-linear

residual amplitude can decrease the CPU cost during the initial stages of the

iteration. Such a formulation is super-linearly convergent and approaches

quadratic convergence in the asymptotic regime. The linear tolerance for

this inexact Newton iteration can be generally chosen as

||LinearResidual|| =
∣∣∣
∣∣∣J(Z`)δZ` + F(Z`)

∣∣∣
∣∣∣
2
< γ

∣∣∣
∣∣∣F(Z`)

∣∣∣
∣∣∣
2

(3.78)

where γ is a forcing term, generally chosen to be smaller than unity. Gener-

ally the choice of γ results in a tradeoff in the number of non-linear iterations

versus linear iterations since too large a value results in more Newton itera-

tions or even divergence and too small a value results in more time spent in

the linear solver. Several strategies for optimizing the computational work

with a variable ‘forcing term’ γ are given in the work by Eisenstat and Walker

[58]. Due to the potential savings in this inexact Newton strategy coupled
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with the Jacobian-free formulation, this non-linear iteration scheme to solve

the coupled non-linear multi-physics problem will be used as the primary

solver algorithm in the current work. Note that as γ → 0, one recovers the

exact Newton algorithm.

In addition to the basic inexact Newton iteration, line search strategies

to obtain the global solution satisfying the non-linear system can be used.

Such modifications can avoid local stagnation and helps to stabilize Newton’s

method by scaling the update appropriately. This modification is of the form

Z`+1 = Z` + d`δZ`+1 (3.79)

where d` is the scaling factor that restricts the update. The standard Newton

algorithm is recovered when d` = 1. Further reading regarding these global

line search methods is available in [22, 59, 58]. The methods for linear

systems arising in Eq. (3.71) and Eq. (3.74) are discussed next.

3.3.2 Krylov Methods for Solving Linear Systems

The linear system obtained from the Picard or Newton linearization applied

to the non-linear equation Eq. (3.68) can be efficiently solved using a Krylov

method in which an approximation to the solution of the linear system is

obtained by iteratively building a Krylov subspace of dimension m such that

K(v,J) = span{v,Jv,J2v,J3v, . . . ,Jm−1v} (3.80)

where v is the initial Krylov vector.

Most coupled multi-physics problems produce linear systems that are

block unsymmetric, even if the individual blocks may be symmetric due to

the type of spatial discretization, e.g., Continuous Galerkin for elliptic prob-

lems. Hence robust Krylov methods are needed to tackle these unsymmetric
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systems. Previous studies on the usage of GMRes (Generalized Minimum

RESidual), BiCGStab (Bi-Conjugate Gradient Stabilized) and Transpose-

free Quasi Minimal Residual (TFQMR) methods to tackle such systems [60]

in the context of non-linear multi-physics problems suggest the feasibility

of these choices.

In the current work, since a general framework is required to solve large-

scale coupled linear systems, the robustness of the linear solver is an impor-

tant factor in determining the total computational time of the algorithm. It

is also necessary that the linear solver used be insensitive to the numerical

roundoff and finite difference errors that are created as part of the approxi-

mations used in the Jacobian-free formulation. It is worthwhile to note that

the use of Arnoldi-type of Krylov iterative methods yields the best conver-

gence since complete orthogonalizations of all the subspace vectors aids in

correcting the numerical errors introduced by the finite difference approxi-

mation. Although it is not possible to select one efficient linear solver for

all types of unsymmetric problems, such an Arnoldi based GMRes solver is

expected to be reliable and provide monotonically decreasing residuals.

The success of the GMRes iterative method, introduced by Saad and

Schultz [61], and its popularity due to its efficiency in solving nonsymmet-

ric system of equations make it attractive for the usage in tightly coupled

multi-physics systems. The GMRes algorithm generates a sequence of or-

thogonal vectors, and because the matrix being inverted is not symmetric,

short recurrence relations cannot be used as in the case of the Conjugate Gra-

dient algorithm. Instead, all previously computed vectors in the orthogonal

sequence have to be retained. In current study, the modified Gram-Schmidt

algorithm for orthogonalization is used instead of the classical Gram-Schmidt

algorithm in order to create a stable solver that is insensitive to roundoff er-
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rors. In the GMRes algorithm, one matrix-vector product is required per

iteration and the matrix-free approximation introduced earlier in Eq. (3.76)

can be used to obtain the action of the Jacobian matrix on any vector. De-

tailed information on the exact numerics and implementation of GMRes in

the MFNK framework can be found in [23].

The cost of the GMRes algorithm strongly depends on the size of its

Krylov subspace that is created through the matrix-vector products. The

memory cost increases linearly with every iterations and the number of Inner-

Products (IP) required for orthogonalization increases quadratically. Hence,

when solving large systems of equations, it is necessary to limit the size of

Krylov subspace used. To limit the Krylov subspace size, a restarted variant

of GMRes algorithm, GMRes(r), where r is the size of Krylov space, can be

employed.

Flexible versions of the restarted GMRes algorithm, FGMRes(r), are

useful in cases where the matrix-vector products are computed inexactly,

and a need for robust Krylov solvers that can provide monotonic conver-

gence to the solution is necessary. FGMRes(r) algorithm differs from the

standard preconditioned GMRes(r) implementation by allowing variations

in preconditioning at each iteration. This is especially important since the

preconditioned solve at each Krylov iteration is performed inexactly (varying

number of iterations or tolerance for each preconditioner solve). Because of

these advantages, in the current research, FGMRes(r) is the preferred linear

solver for unsymmetric systems of equations.

Optimizations beyond restricting the size of the subspace r due to mem-

ory reasons involve reducing the total number of linear iterations through

the use of appropriate preconditioners. A discussion of the preconditioner

implementations and the options available for different kinds of physics is
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provided next.

3.3.3 Preconditioners for the Linear Iteration

The preconditioner P is usually a good approximation of the Jacobian and

should be easier to form and solve as compared to the Jacobian matrix itself.

The inherently two-step process for this stage requires the computation of

the action of P−1 on any vector v, rather than actually forming the precon-

ditioning matrix itself. This algorithm can be made strictly Matrix-Free and

studies for real-world problems previously [27] have shown possible increased

efficiency when using this approach.

The right-preconditioned Matrix-Free Nonlinear-Krylov (MFNK) algo-

rithm which involves using Eq. (3.76) for the Jacobian-vector products and

an appropriate numerical or physics-based preconditioner results in a mod-

ified form of the non-linear iteration. The right-preconditioned non-linear

equation is given by

(JP−1)(PδZ) = −F(Z). (3.81)

The application of the right preconditioner requires only the action of JP−1

on any Krylov vector v and has to be performed at each Krylov iteration.

This is realized in a two-step process:

1. First, apply the preconditioner and solve for w

JP−1w = −F. (3.82)

2. Next, the update is obtained by solving the linear system

PδZ = w. (3.83)
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The right-preconditioned version of Eq. (3.76) is used to solve Eq. (3.82)

and is expressed as follows

JP−1v ≈ F(Z+ εP−1v)− F(Z)

ε
(3.84)

where v is any GMRes vector. Upon convergence of the linear solve in

Eq. (3.82), one more preconditioner application is necessary using Eq. (3.83)

to obtain the true Newton update for the non-linear iteration.

Up until now, the algorithm has been described in a general fashion,

in the sense that the non-linear residual can be obtained after space-time

discretization, the approximate action of the Jacobian on a vector can be

computed using Eq. (3.84) and finally an appropriate preconditioner P can

be chosen to reduce the conditioning number of the true Jacobian matrix.

Generally, preconditioners can be subdivided into two broad categories:

Algebraic and physics-based preconditioners. The former deals with creat-

ing approximate sparse inverse factorizations, using numerical strategies to

reduce the spectral radius of the linear system being solved. Some exam-

ples of such preconditioners include Incomplete Cholesky(`) factorization,

Incomplete-LU(`) factorization along with reverse Cuthill-Mckee (RCM) re-

orderings, Sparse Approximate Inverses (SPAI) [62], Block-Jacobi splitting,

Additive-Schwartz methods and Algebraic multigrid [63]. Algebraic pre-

conditioners are often times also referred to as ‘numerical’ preconditioners.

Algebraic methods are often easier to develop and use, and are particularly

well suited for irregular problems that arise from discretizations involving un-

structured meshes of complicated geometries. Furthermore these Algebraic

methods can be fine tuned to make use of multi-processor architectures in-

tricately in order gain improved scalability in the solution procedure.

Alternately, with intuitive understanding of the governing physics PDEs,
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the geometry, boundary conditions and details of the discretization for the

problem under consideration, specialized preconditioners, usually based on

physics-based OS linearizations, can be devised and used as very efficient

preconditioners to damp the dominant modes, thereby leading to a well con-

ditioned system. Multilevel methods usually fall in this category since they

solve ‘nearby’ problems based on lower order discretizations. Few examples

in this category of physics-based preconditioners include multigrid precondi-

tioners [27], the method of Diffusion-Synthetic-Acceleration (DSA) [64] often

used as a preconditioner for Transport equation and Implicit Continuous Eu-

lerian (ICE) [31] for near-incompressible fluid flow problems. These problems

are usually optimal for specific types of problems and might not be effective

as generic preconditioners for all scenarios.

Note that in these physics-based preconditioners, the use of Algebraic

preconditioners themselves is most often seen and hence such Algebraic pre-

conditioners can be considered as building blocks for more advanced precon-

ditioners. In the current work, both these approaches will be used in a mixed

fashion, depending on the problem being solved in order to reduce the total

number of linear iterations in Krylov solves. Also, care is needed while using

preconditioners in a multi-processor architecture since traditional sequential

preconditioners may sometimes fail in these scenarios. Hence, scalable pre-

conditioners that can be used in both sequential and parallel linear Krylov

solvers are preferred. A thorough survey of many state-of-art precondition-

ing methods used in computational physics problems was presented by Benzi

[65].

Below, a brief description at some specific physics-based preconditioning

techniques used in this research is provided and the reader is referred to

previous work on these techniques for further details.
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3.3.4 Physics-based Preconditioners

Legacy codes written to tackle the mono-physics models typically contain

approximations for specific problems that usually result in increased effi-

ciency even with a little loss of generality. A physics-based preconditioner is

usually derived by the linearization of the non-linear physics components, in

both the Elliptic and Hyperbolic equations based on semi-implicit treatment

of the stiff terms. Such intricate knowledge of the physics systems for prob-

lems of interest can considerably improve the efficiency of the simulation.

In the context of utilizing the MFNK framework introduced earlier, these

algorithms that currently exist in such codes can accelerate the linear solver

convergence, thereby preserving man-years of testing and verification.

3.3.4.1 Linearized Jacobian for Elliptic Systems

Consider the SS terms in the non-linear Elliptic system shown in Eq. (3.11),

linearized about the last non-linear iteration (∗) as

f(un+1) = q − (−~∇·D(~r, u∗)~∇un+1 + c(~r, u∗)un+1) ∀~r ∈ Ω. (3.85)

Let us define a new variable as δu = un+1 − u∗ which represents the true

update for the non-linear iteration. Then if the physics-based preconditioner

P approximates the Jacobian matrix for the non-linear Elliptic system, the

preconditioner solve is

P(δu) = −f (3.86)

Substituting this definition into Eq. (3.85), we obtain

f(un+1) = q− (−~∇·D(~r, u∗)~∇(δu+u∗)+ c(~r, u∗)(δu+u∗)) ∀~r ∈ Ω. (3.87)
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Expanding and simplifying Eq. (3.87), results in a modified residual equa-

tion of the form,

f(un+1) = f(u∗)− (−~∇·D(~r, u∗)~∇(δu) + c(~r, u∗)(δu)) = 0 ∀~r ∈ Ω. (3.88)

Hence in a Nonlinear-Krylov iteration framework, the coefficients D(r, u) and

c(r, u) are evaluated about the linearized point to yield a linear elliptic equa-

tion system and the forcing function (source) for this linear equation for δu

is f(u∗). Applying the Continuous-Galerkin FE discretization to Eq. (3.88)

results in the standard stiffness and mass matrices along with appropriate

boundary conditions applied to the solution. Hence, the preconditioner iter-

ation is simply, in this case,

(K∗ +M∗ +B∗)(δu) = f(u∗), (3.89)

and the preconditioner matrix P = (K∗ + M∗ + B∗). Once this matrix

is formed, a Krylov method such as Conjugate Gradient (CG) or GMRes

with appropriate Algebraic preconditioners can be used to effective find the

update for the solution δu.

The linearized Jacobian matrix is an effective preconditioner when the

linearization point (*) is closer to the true non-linear solution. The use

of Incomplete-Cholesky and ILU factorization for symmetric and unsym-

metric systems respectively can considerably reduce the total cost of the

preconditioner solve itself. The current work utilizes such a linearized Ja-

cobian matrix in conjunction with Algebraic preconditioners for non-linear

scalar/vector elliptic/parabolic equation systems in order to reduce the total

cost of FGMRes(r) Krylov solves.
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3.3.4.2 Nearly Incompressible, Low-Mach Fluid Flow Systems

Fluid flows in reactor analysis problems fall under the low Mach (Ma) flow

regime. In the conservative variable formulation, as the flow velocity of the

fluid decreases, it is very difficult or almost impossible to solve low-speed

flows with a conventional compressible algorithm because of slow conver-

gence. The difficulty in solving the compressible equations for low Mach

numbers is associated with the large disparity between the acoustic wave

speed and the waves propagating at the fluid speed, which is called eigen-

value stiffness. To overcome this difficulty, several ideas have been proposed.

In the current study, we will specifically use the Implicit Continuous Eulerian

(ICE) scheme [31, 32] for solving these low-speed problems. Some theoreti-

cal asymptotic analysis on the semi-discrete Euler equations using the ICE

scheme using the implicit Backward-Euler method is shown in this section.

The extension to higher order ERK/IRK methods is trivial.

Let us start with the non-linear inviscid Euler-like equations for unsteady

fluid flow in the conservative form. For generality, a source term is also

included. The equation system is given as:

∂U(x)

∂t
+

∂

∂x
F (U) = S(U), (3.90)

where

U =




ρ : Density

ρv : Momentum

E : Total energy


 ; F (U) =




ρv

ρv2 + P

vE + vP


 ,

and the source term S(U) is non-zero when solving manufactured prob-

lems (for verification studies), when the effects due to friction and gravity
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are included or when the fluid equations are coupled to energy transfer from

a heated surface (conjugate heat-transfer). The pressure P is usually given

by the closure relation, the Equation of State (EOS), in a linearized form as

P = P0 +
∂P

∂ρ

∣∣∣∣
0

ρ+
∂P

∂E

∣∣∣∣
0

E. (3.91)

The spatial discretization is performed using the Discontinuous Galerkin

method with appropriate numerical flux functions (Upwind flux or Rusanov

flux). Higher order spatial discretizations can be obtained by increasing the

polynomial order of the Legendre basis functions.

For simplicity, let us redefine the momentum variable as M = ρv. Then

the semi-discrete form of the equations, which are essentially the non-linear

residual for the continuity, momentum and energy equations, can be written

as:

rC(n+ 1) :

ρn+1 − ρn

∆t
+ ∂x (M)n+1 = SC (ρ,M,E)|n , (3.92)

rM (n + 1) :

Mn+1 −Mn

∆t
+ ∂x

(
M2

ρ

)n

+ ∂xP
n+1 = SM (ρ,M,E)|n , (3.93)

rE(n+ 1) :

En+1 − En

∆t
+ ∂x

(
Mn+1E

n + Pn

ρn

)
= SE (ρ,M,E)|n , (3.94)

where SC , SM and SE are the continuity, momentum and energy source

terms.

(Eq. (3.92))-(Eq. (3.94)) are the non-linear residual functions about the

point (n+ 1). Now, choose a linearization point (*) that is typically chosen
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as the last non-linear iteration, about which a change in the state variable

can be defined. This can then be given as

δρ = ρn+1 − ρ∗ (3.95)

δM = Mn+1 −M∗ (3.96)

δE = En+1 − E∗ (3.97)

δP = Pn+1 − P ∗. (3.98)

Substituting these new variables in (3.92)-(3.94), the following conservation

equations for the delta form of the state variables are obtained.

δρ

∆t
+ ∂x (δM) = −r∗C (3.99)

δM

∆t
+ ∂xδP = −r∗M (3.100)

δE

∆t
+ ∂x

(
δM

(
E + P

ρ

)∗)
= −r∗E , (3.101)

where the linearized discrete residuals evaluated at the linearization point

(∗) are

r∗C =
ρ∗ − ρn

∆t
+ ∂x (M)∗ − SC(ρ

∗,M∗, E∗), (3.102)

r∗M =
M∗ −Mn

∆t
+ ∂x

(
M2

ρ

)∗
+ ∂xP

∗ − SM(ρ∗,M∗, E∗), (3.103)

r∗E =
E∗ − En

∆t
++∂x

(
M∗E

∗ + P ∗

ρ∗

)
− SE(ρ

∗,M∗, E∗), (3.104)

Note that the advection terms in the momentum Eq. (3.100) and energy

Eq. (3.101) conservation equations and along with the source terms have

been linearized about the point (*).

Rearranging the momentum equation Eq. (3.100), we obtain

δM = −∆t∂xδP −∆tr∗M . (3.105)
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This expression can then be substituted in the continuity Eq. (3.99) and the

energy Eq. (3.101) equations to obtain a system of equations in δρ, δE.

δρ = −∆t∂x (δM)−∆tr∗C (3.106)

δE = −∆t∂x

(
δM

(
E + P

ρ

)∗)
−∆tr∗E. (3.107)

Now using the linearized Equation of State (EOS) introduced in Eq. (3.91),

we can then substitute

δρ =
1

∂P
∂ρ

∣∣∣
0

(
δP − ∂P

∂E

∣∣∣∣
0

δE

)
. (3.108)

Substituting the above equation in Eq. (3.106), we get

δP =
∂P

∂E

∣∣∣∣
0

δE − ∂P

∂ρ

∣∣∣∣
0

(∆t∂x (δM) + ∆trC(∗)) . (3.109)

Rearranging the above equation and substituting Eq. (3.107) and Eq. (3.105)

for δM and δE respectively, we get the semi-discrete form of the pressure

Poisson equation, given as

δP = ∆t ∂P
∂E

∣∣
0

(
∆t∂x

(
∂xδP + r∗M

(
E+P
ρ

)∗)
− r∗E

)

+∆t ∂P
∂ρ

∣∣∣
0
(∆t∂x (∂xδP + r∗M )− r∗C) , (3.110)

This system shown in Eq. (3.110) can be solved for δP and back-substituted

to obtain δM from Eq. (3.105), δE from Eq. (3.107), δρ from Eq. (3.106)

respectively. It is important to note that the new system expressed as an

elliptic pressure equation is exactly same as the original semi-discrete ICE

linearized Euler equations. It is quite clear that by doing the algebraic ma-

nipulation shown in Eq. (3.108) for EOS and substitution of Eq. (3.105) into

the continuity and energy equations, an equivalent Gaussian elimination on

a system of size 4N (δρ, δE, δM, δP ) has been performed analytically to con-

vert it to a block upper triangular form that is solved by back substitution.
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Hence solving the original ICE system Eq. (3.99) – Eq. (3.101) and the el-

liptic pressure equation Eq. (3.110) do yield the exact same result as long as

the spatial discretization of the PDE’s are consistent in both cases. Since the

pressure waves are resolved with an ICE solve, it results in eliminating all

the dominant eigenmodes occurring due to the pressure waves, i.e., acoustic

scales in the medium. Hence, the resulting system has a smaller spectral ra-

dius, especially for low-Mach flows where the spread between the eigenvalues

in the original non-linear fluid flow equations is the quite large.

The gain in computational time when using ICE as a preconditioner and

as a solver by itself has been shown previously in [66]. Now let us consider the

advantages and disadvantages of the ICE preconditioner of size N introduced

earlier (denoted hereafter as N -ICE).
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Pros

1. The elliptic pressure matrix in the fully discrete form is clearly only

N ×N while the original equation system was a 3N × 3N hyperbolic

system. The gain in terms of reduction in the size of the system,

without any major approximations or loss of accuracy therein makes

this a valuable method in low-Mach regime flow calculations.

2. Additional cost savings in terms of forming and solving the modified

linear system in Eq. (3.110) using Algebraic preconditioners can signifi-

cantly decrease total Krylov iterations for solving the Jacobian matrix.

Cons

1. It is difficult to maintain the consistency of the fully discrete ICE sys-

tem w.r.t. the original dG discretization of the non-linear hyperbolic

system, due to the requirements to evaluate the derivatives of momen-

tum residuals in the right hand side in Eq. (3.110). Care is needed if

a consistent preconditioner is to be created from the N -ICE system.

The N -ICE solver can typically be used as a solver by itself but the semi-

implicit treatment leads to conditional stability only. However, when used as

a preconditioner, the updates provided by such a linearization approximate

the updates necessary for the outer Newton iteration. Hence in low-Mach

regimes, these schemes are valuable to resolve the stiffness in the linear

system quickly and, hence, act as efficient preconditioners to reduce the

total linear iterations, thereby requiring fewer actions of the Jacobian on a

Krylov vector.
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3.4 Closing Remarks

In this section, we have covered the space-time discretization methods for

different PDE systems and described the process along with the constraints

to resolve the different spatial and temporal scales in multi-physics com-

putations. Based on these discretizations, the algorithm for a Matrix-free

non-linear iteration method based on finite-difference approximations was

introduced. The available options for using robust linear solvers along with

different kinds of preconditioning techniques to increase overall efficiency of

the algorithm were presented.

The ability to precondition Newton-type iteration methods with Picard

linearized matrix falls under the category of multilevel preconditioning. This

idea is at the core of the proposed MFNK framework wherein consistent

actions of a Jacobian matrix on a vector are obtained through finite-difference

approximations and inexpensive physics-based linearizations open up the

possibility to make use of existing legacy code algorithms on top of powerful

and scalable Algebraic preconditioners.

The current research implements all of these algorithms with help of some

external software, to accurately couple multi-physics models in a computa-

tionally efficient unified code system.



Chapter 4

A Non-linear Multi-physics

Coupled Code System

‘The function of good software is to make the complex appear to

be simple.’

– Grady Booch

The methods for spatio-temporal discretization of different physics and

the methods for tackling the non-linear system of coupled equations arising

from the discretization were introduced in Section. (3). Here, we describe

the implementation of the MFNK framework, from a software perspective.

Software engineering of a coupled multi-physics code involves several con-

siderations in the design and implementation of the interaction between dif-

ferent parts of a code. Even though the numerics laid out in Section. (3)

have a well defined structure regarding coupling multi-physics models tightly,

without careful planning in the software design, even loosely coupled physics

using the OS paradigm can be quite complicated to implement. Hence,

utilizing the different numerics and physics models strongly depends on cre-

77
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ating a software framework that is flexible, extendable and follows a plug-in

architecture that can evolve as new or better methodologies for coupling

multi-physics components are devised.

Some of the software requirements for a coupled multi-physics code frame-

work include:

1. To re-use existing libraries to minimize development time, and to base

the framework on already well verified discretization and non-linear/linear

solver libraries. This thought stems from the basic Object-Oriented

(OO) philosophy in avoiding code replication and modularizing imple-

mentation to accelerate development and testing phases.

2. To provide flexible data containers and physics objects to facilitate and

simplify the evaluation of the non-linear residuals for different physics

components.

3. To be able to use coarse grain physics models for rapid prototyping,

testing and verification and the functionality to interchangeably use

higher fidelity physics models to describe the physical phenomena in a

straightforward fashion through common API contracts, as and when

required by problem constraints.

4. To be able to use within the same architecture, different kinds of multi-

physics coupling strategies with minimal changes from an end-user

perspective. For instance, using OS with simultaneous or staggered

updates, or using OS with Picard iterations to converge the coupling

between physics, or employing MFNK tight coupling approaches side-

by-side without changing how the non-linear residual describing the

discretized PDEs is evaluated.
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5. To have the flexibility to add different types of preconditioners, both

Algebraic and physics-based, for each of the different physics compo-

nent models and the option to choose how they are applied to reduce

the total cost of linear iterations.

6. To use of recent advances in computer engineering for state-of-the-

art multi-core, multi-processor parallel shared memory architectures

that can significantly reduce run times for simulation of a physical

phenomena.

7. To make the coupled physics code system independent from any spe-

cific spatio-temporal discretization. This involves the usage of differ-

ent spatial discretization with any temporal discretization allowing the

possibility to verify the implementation of the same equation system

through more than one use-case.

The philosophy behind the software framework for multi-physics applica-

tions is to “solve tightly coupled phenomena using a loosely coupled software

methodology”. The loosely coupled architecture is primarily made possible

by requiring a software contract or a defined set of methods to be imple-

mented. This is often called the API (Application Programming Interface)

and needs to be defined clearly to allow future extensions.

In order to verify the numerical algorithms proposed in the current work,

the need for a new code system was inevitable. Efforts to address this has

led to the development of the karma framework (K(c)ode for Analysis of

Reactor and other Multi-physics Applications).
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4.1 karma

karma is a fully implicit, non-linearly coupled multi-physics eigenvalue and

transient analysis test-bed code written completely in C++ programming

language. Its primary intended application is to analyze and model coupled

problems for nuclear reactor applications although it is not only limited to

this family of problems. karma makes extensive use of the advanced OO

concepts such as abstraction, encapsulation and inheritance, to create loosely

coupled objects that allow seamless integration of new physics and numerics

models.

The plug-in architecture employed in karma makes it straightforward to

modify/add any number of coupled physics components. It also serves as a

framework to conduct experiments on code architectures and software design

for the next generation of consistent coupled multiphysics codes. The frame-

work can be used to seamlessly integrate such physics models with consistent

numerical algorithms that were introduced for non-linear PDE systems. In

creating such a flexible framework, one of the prime concerns is the ability

to achieve high levels of efficiency while still maintaining the ease of devel-

opment, testing and maintenance. Careful planning of the computational

domain has led to a decision to use well tested linear algebra data-structures

and methods in order to reduce the overhead in re-implementing these stan-

dard algorithms, thereby eliminating the possibility of introducing errors

in these basic building blocks for the numerical algorithms proposed in the

current work. This also follows closely the OO principles and code re-use

whenever possible, thereby preserving man-years of effort pertaining to code

verification.

The requirements enumerated earlier are at the core of the design of the
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karma framework. These abilities in a multi-physics physics code framework

are considered representative of current and future trends in solving coupled

problems. Similar motivations have also led to the recent development of

other coupled multi-physics codes like moose [67].

karma is built on top of the state-of-the-art scientific library PETSc, the

Portable, Extensible Toolkit for Scientific computation [68] from Argonne

National Laboratory (ANL), for fast, scalable and robust data-structures

and solvers. It provides tools for the parallel (and serial) numerical solu-

tion of PDEs that require solving large-scale, sparse non-linear systems of

equations. It includes non-linear and linear equation solvers that employ

a variety of Newton-type methods with line-search techniques and Krylov

subspace methods. It also offers several parallel vector formats and sparse

matrix formats, including compressed row, block compressed row, and block

diagonal storage. The primary advantage of using PETSc is that well tested

black-box methods and codes that can tackle non-linear systems arising from

discretization of Parabolic/Hyperbolic system of equations are obtained im-

plicitly by just linking with with the library. Also, usage of several different

kinds of home-grown and external Algebraic preconditioners are obtained

by interfacing karma with PETSc. Since PETSc is designed to facilitate

extensibility, users can incorporate customized solvers and data structures

when using the package. PETSc also provides an interface to several external

software packages, including Matlab, PVODE, and SPAI and is fully usable

from C and C++. Due to the advanced design, users can create complete

application programs for the parallel solution of non-linear PDEs without

writing much explicit message-passing code themselves. Parallel vectors and

sparse matrices can be easily and efficiently assembled through the mech-

anisms provided by PETSc. Furthermore, PETSc enables a great deal of
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runtime control for the user without any additional coding cost. The run-

time options include control over the choice of solvers, preconditioners and

problem parameters as well as the generation of performance logs. Since

karma uses PETSc, all programs using the framework benefit from these

ubiquitous options to control the program at a fine-grained level. For in-

stance, options can be specified whether to run a program using a completely

matrix-free approach with ‘-snes_mf’, where the action of the Jacobian is

found through Eq. (3.76) and no preconditioner is used to solve the coupled

system. This approach can lead to large number of Krylov iterations and

hence adversely affect the CPU time. Alternately, if an approximation to

the Jacobian is available, then a tightly coupled solution procedure can be

used with the option ‘-snes_mf_operator’, where the action of Jacobian is

again through Eq. (3.76) but the preconditioner matrix is created using the

approximate Jacobian matrix representation which is usually some form of

linearization about the last Newton iteration (physics-based preconditioner).

Additional options using ‘-pc_type’ can be specified for the mode of solving

the preconditioner itself which can either be an Algebraic variation (ILU,

ICC, AMG) or using a much lower fidelity representation of the Jacobian

matrix. Note that any level of recursion in the level of preconditioning, de-

pending on the problem, can be implemented using such a MFNK technique

based framework.

Efficient spatial discretizations using cG and dG FE methods along with

FD and FV methods can be implemented for each of the physics PDEs.

karma currently uses the general FEM library, libMesh [69]. It is written

in C++ and provides support for first and second order Lagrange, arbitrary

order C0 hierarchic, C1 continuous and discontinuous finite element bases.

libMesh also facilitates writing dimension-independent code assembly of
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the non-linear residual and the Jacobian matrix for each of the physics com-

ponent, which greatly simplifies the verification process for complex non-

linear problems. libMesh has interfaces to the parallel vector, matrices,

linear algebra data-structures provided by PETSc, and hence reduces the

overhead to write distributed algorithms that are capable of utilizing the

features inherently provided by PETSc.

karma also supports several different input and output formats that are

convenient to generate the correct geometry, assign material region attributes

and specify boundary markers. For convenience, in the current work, Gmsh

[70] is used as the primary mesh generator. Gmsh uses the popular Delau-

nay mesh generators namely Triangle in 2-d and TetGen in 3-d. The

parallel decomposition of the mesh can be performed using ParMETIS [71]

to minimize the net communication time for a given geometry.

The chosen output format for writing out the solution fields is the VTK

format [72] which is supported by several visualization packages.

Optionally, karma can also be linked with a suite of eigensolvers exposed

through the SLEPc library [73] that is based on PETSc. These state-of-art

eigensolvers can handle symmetric and unsymmetric generalized eigenvalue

problems that arise from the discretization of the elliptic and hyperbolic sys-

tems. For instance, the eigenvalue problem to find the fundamental mode in

nuclear reactor design calculations is typically solved using the traditional

Power Iteration method but we can also employ one of the eigensolvers pro-

vided by SLEPc e.g., use the more efficient Krylov subspace methods. The

application of these solvers will be discussed in Section. (6).

Several other utility codes can also be optionally used to deal with XML

and CSV input/output formats. For instance, TinyXML [74], a small C++

library that can handle reading, manipulation and writing of XML data
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with very little memory overhead can be used for specifying input options

through a file which is forwarded to PETSc. And CSVParser can be employed

as a parser to read and write Comma Separated Values (CSV) to aid in

reading data from spreadsheets like Excel or data exported from MATLAB

(csvwrite, csvread).

A schematic diagram showing these different parts of the karma frame-

work and their interaction with the above mentioned packages is shown in

Fig. 4.1.
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Figure 4.1: Schematic Diagram of karma Framework
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4.2 Modules in karma Framework

The karma framework has four modules that are responsible for the imple-

mentation of the numerical schemes discussed in Section. (3). Brief details

regarding each of these modules is given below.

1. INTERFACE: This module is the heart of karma and is responsible for

managing the different physics components and applying the numerical

discretizations seamlessly to the coupled non-linear problem. Apart

from maintaining a uniform interface to all the physics, it serves as

the primary rendezvous point for all user interactions to obtain the

coupled non-linear residual or the approximate Jacobian matrix. It

also provides ‘C’ wrappers that serve as function pointers in order to

interface with the PETSc and SLEPc solvers for the non-linear/linear

and eigenvalue solvers respectively.

2. PHYSICS: This module contains all the physics descriptions, includ-

ing the non-linear residual, the approximate Jacobian matrix and pre-

conditioners, if any, that are spatially discretized forms of the cor-

responding physics PDE. All the different Physics objects derive from

KARMAPhysicsBase that specifies the required methods that need to

be implemented by all physics. Since this contract is known a-priori,

a generic code to solve the physics can be written in the INTERFACE,

making use of this polymorphic behavior for generating non-linear

residuals and preconditioners.

3. NUMERICS: This module comprises of the necessary spatial and tem-

poral discretization objects that are used by the PHYSICS module to

provide the discretized form of the PDE. The use of libMesh in the
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current work eliminates additional overhead for spatial discretization.

All necessary definitions of temporal integration methods in the form

of a Butcher Tableaux are available along with generic integrators for

ERK, DIRK and FIRK methods with adaptive time-stepping capabil-

ity. This module also contains all the necessary higher level wrappers

necessary to use the non-linear, linear, eigenvalue solvers and precon-

ditioners provided by PETSc and SLEPc libraries. These higher level

objects make use of the wrappers provided by INTERFACE internally

and hence the API provided by these objects remain the same, imma-

terial of whether, say, FGMRes or CG, is used as a solver.

4. IO: As the name of the module suggests, it contains all the necessary

interfaces to the parsers and data writers to read/write the mesh format

(msh), CSV, XML, and VTK for input data processing and output data

manipulation in a generic fashion.

4.3 Solving a Non-linear Coupled Elliptic Problem

In this section, a step by step example of creating and solving a coupled

elliptic problem involving two physics components Phy1 and Phy2 is provided

below.

4.3.1 Adding a New Physics

A new physics model can be added in a straightforward manner by just

deriving from the KARMAPhysicsBase class and implementing primarily

three operators that are essential to solve any physics component. These

operators are given below.
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1. SystemOperator: This operator implements the steady-state non-

linear residual definition, which is essentially the spatially discretized

PDE representing the physics evaluated at a given time t. This opera-

tor may also optionally provide an approximate Jacobian matrix, if it is

easy to form. This matrix can be invoked and used during a solve with

the ‘-snes_mf_operator’ option. The implementation of this operator

completes the description of the SS form of the problem.

2. MassOperator: This operator represents the mass matrix or a lumped

version of it, resulting from the spatial discretization of the time deriva-

tive term for the Implicit Differential Equation Eq. (3.36). Note that

this operator can either be time dependent itself (property dependent

mass matrix or mesh changes with time) or be static, in which case it

is only necessary to compute it once.

3. PreconditionerOperator: Any physics object can contain an ar-

ray of preconditioner operators. These can be viewed as multi-level

preconditioners where one could use P0 to precondition the approxi-

mate Jacobian matrix J and P1 to precondition the solve for P0, and

so on. In practice, this sort of recursion might not be very efficient

unless care is taken, for each physics, to resolve the stiff components

first and systematically reduce the modes that are responsible for the

high condition number of the true Jacobian matrix.

Once a physics system implements these three operators, the framework has

all the necessary information to solve the system. All the material properties

are provided through a problem context as function pointers and hence fa-

cilitate the use of arbitrary user-specified properties based on table lookups

or correlations.
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4.3.2 Writing a Non-linear Residual Function

The non-linear residual function that is part of the SystemOperator is at

the heart of any physics description since it represents the discretized PDE

for the physics model. Based on a sample implementation using libMesh

library, a snippet C++ code is given for a single element residual assembly.

Let e be the finite element under consideration that is a subset of the

discrete mesh Γh. The local residual contribution can be computed based on

the family of basis functions used to discretize the solution field, the points

and location of the quadrature for element integration, and the degrees of

freedom for the local solution unknowns. For a diffusion-reaction physics

system, the different components of the residual are obtained using Code

Snippet 4.1.

for (unsigned int iqp=0; iqp<qrule.n_points(); iqp++)

{

qp = quadrature_point[iqp] ;

qp_solution = 0. ;

for (unsigned int i=0; i<phi.size(); i++)

qp_solution += phi[i][iqp] * solution(dof[i]) ;

// evaluate the properties at quadrature point with

qp_solution

diffusion_coefficient = properties.Diffusion(qp, time,

qp_solution) ;

reaction_coefficient = properties.Reaction(qp, time,

qp_solution) ;

source_term = properties.Source(qp, time, qp_solution) ;

for (unsigned int i=0; i<phi.size(); i++)
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{

Se(i) += JxW[iqp] * source_term * phi[i][iqp] ;

for (unsigned int j=0; j<phi.size(); j++)

Ae(i,j) += JxW[iqp] * (

diffusion_coefficient * dphi[i][iqp] * dphi[j][iqp]

+

reaction_coefficient * phi[i][iqp] * phi[j][iqp]

);

}

}

Listing 4.1: Element Residual Components

where JxW is the Jacobian for the element transformation multiplied by the

quadrature weight and the diffusion, reaction and source terms are computed

at every quadrature point, based on the non-linear solution at those points.

The variational form of the diffusion-reaction problem yields the stiffness and

mass matrices, which are stored in Ae, while the source term is assembled

and stored in the load vector Se.

With these computed contributions, the local SS residual is simply ob-

tained by performing a local assembly followed by multiplication with the

local solution dofs, as shown in Code Snippet 4.2.

for (unsigned int i=0; i<phi.size(); i++)

{

Re(i) = Se(i) ;

for (unsigned int j=0; j<phi.size(); j++)

Re(i) -= Ae(i,j)*solution(dof[i]) ;

}
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Listing 4.2: Residual Computation

It is obvious that all of the above steps for a single element are inde-

pendent of the next element and hence provide a great deal of inherent

parallelism. Also, since the basis functions and quadrature weights are cal-

culated based on the problem’s dimension, the residual contribution code is

dimension-independent.

If the above physics was coupled to a solution from another physics, it is

then necessary to compute projection of the coupled physics solution on to

the physical quadrature points used in the element assembly. This is greatly

simplified if the coupled physics components use the same mesh since the

projection operator is its own interpolant but, in the case of multi-mesh

scenarios Section. (3.1.3), the L2 projection of the solution with increased

quadrature points will be necessary in order to reduce the spatial coupling

errors.

It is important to note that none of the above code snippets mandate

any specific discretization method to be used for the physics. A FD or FV

method could have been implemented as well instead of the FE method

shown above, as long as the non-linear PDE is discretized accurately.

4.3.3 Obtaining Coupled Global Residuals

Once the individual physics components are computed, the driver code in-

vokes the residual function in the KARMAInterface object which then calls

the non-linear residual routines that are part of SystemOperator for each

physics, as illustrated in Code Snippet 4.3.
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// distribute the provided solution vector to each physics

synchronize_physics_solution(X) ;

// loop over all the physics and compute the residuals

// and assemble it in the interface residual

for (; pos != end; ++pos)

{

// Get a reference to the current physics system using the

iterator

KARMAPhysicsBase* physics = pos->second ;

KARMAVector& phy_residual = physics->get_residual() ;

KARMAVector& phy_solution = physics->get_local_solution() ;

// call the residual function for the physics

physics->system_operator->residual (phy_solution,

phy_residual);

}

// assemble the computed residual to the output vector

synchronize_interface_residual(R) ;

Listing 4.3: Coupled Multi-physics Non-linear Residual Computation

The two synchronization routines namely synchronize_physics_solution

and synchronize_interface_residual merely copy data back and

forth between the physics object and the interface that maintains a global

vector (for all physics). Hence, these residuals could be computed in a ‘black-

box’ code and the karma framework could be utilized to compute high-order

coupled temporal solution, provided that the coupled physics components are
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treated consistently (as modeled in the PDE).

4.3.4 Summary

In order to compute the non-linear solution for the coupled problem, only

the non-linear residual vector is necessary. However, due to the inefficiency

in this solution procedure, a linearized form of Jacobian matrix can be com-

puted, with a similar implementation as 4.3.2 based on the nature of the

physics.

Temporal discretization can be performed with any one of the ERK,

DIRK or FIRK methods (using constant time-stepping or adaptive time-

stepping controllers) available as part of karma package. With the SS non-

linear residual f , Jacobian matrix J and the MassOperator, Eq. (3.43) can

be used to compute the time evolution of the solution.

A pseudo-code for the calling stack from the driver to solve the coupled

multi-physics problem is shown below. This is general and can be extended

easily to several physics components:

1. Create discrete meshes for the physics: Ω1 and Ω2

2. Create physics objects: Phy1 and Phy2

3. Add coupled physics reference to one another

4. Intialize KARMAInterface and all physics objects Phyi ∀i = 1, 2

5. Set initial temporal solution

6. Invoke the TemporalIntegrator to compute final step solution

• initialize and allocate intermediate stage vectors
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• loop while time ≤ final_time

• solve the coupled non-linear problem at each stage

– use finite difference approximation for action of Jacobian on

a vector using Eq. (3.76)

– if option -snes_mf_operator is used, the approximate global

Jacobian is built based on the Jacobian matrix of the in-

dividual physics by either ignoring the coupling terms in a

Block-Jacobi fashion Eq. (3.72) or variations of this operator

with additional coupled terms in order to resolve more stiff

components. This problem-dependent preconditioner formu-

lation can be quite effective to reduce the number of FGMRes

iterations.

– if additional preconditioners are available for each physics,

apply them to the linear solves in the MFNK solution proce-

dure

– perform non-linear Newton or Picard iteration until conver-

gence

• if adaptive, compute new time step

• if requested, write solution fields to VTK file

• end

7. Write final solution fields to VTK file

Since command-line options are provided by karma to choose the type

of coupling strategy (loose (OS) or tight (MFNK)), comparisons on the per-

formance of each coupling strategy can be analyzed without changing any
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of the user code implemented. This enables computation of sensitivity of a

numerical method wrt the coupling strategy for multi-physics problems.

4.4 Closing Remarks

karma is designed with extensibility in mind and provides a flexible API to

couple an arbitrary physics modules together. These modules are written ei-

ther as part of the library itself or provided through an external code. Since

different kinds of coupling methods can be tested under one code system,

karma serves as a very valuable test-bed code to gain intuition on the opti-

mal strategy for a particular multi-physics simulation. Adaptive techniques

in both space and time have already been tested for few non-linear physics

and these preliminary results show the feasibility of extending these ideas to

multi-physics coupled problems.



Chapter 5

Results

‘What most experimenters take for granted before they begin

their experiments is infinitely more interesting than any results

to which their experiments lead.’

– Norbert Wiener

In previous sections, the numerical methods for coupled multi-physics

problems and the code framework implemented based on these methods to

solve the non-linear system of equations arising from the discretization of

physics models have been given. First, the verification of the methods and

the code is necessary, in order to understand the efficiency of these multi-

physics coupling methods and to stress the need for tightly coupled solution

methods. Then, the efficacy of these tightly coupled schemes will be analyzed

for some problems that have multiple time scales.

The results section is organized as follows: First, each of the physics mod-

els are tested for spatial and temporal consistency (convergence order); Next,

verification studies are performed for a conjugate heat-transfer model using

semi-analytical techniques that will be discussed in subsequent sections. For

96
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problems with widely varying time scales, an efficacy (efficiency in terms of

computational time versus accuracy of the solution fields) study is performed

to analyze the computational gain due to tightly coupled methods. The cou-

pled treatment of neutronics/heat-conduction physics is simulated next with

problems that verify the implementation and quantify the uncertainty prop-

agation due to errors in cross-section data. In the same setting, a stiff tran-

sient benchmark problem for the coupled neutronics/heat-conduction physics

is used to present the advantages in terms of accuracy and stability of using

MFNK tight coupling methods in contrast to traditional OS schemes.

5.1 Solution Verification

Typically, the accuracy and convergence of numerical models are established

by using simplified problems for which analytical solutions are available.

For time-dependent coupled multiphysics problems, analytical solutions are

more difficult to obtain and we need to resort to (1) the Method of Manufac-

tured Solutions (MMS) [75] (2) semi-analytical methods [76] and (3) formal

convergence order studies to check behavior of discretization errors. In the

current work, MMS problems are used extensively to analyze and prove code

correctness. The basic philosophy behind MMS is as follows: an exact so-

lution Uref, with enough smoothness in space and time, is chosen a-priori

and substituted into the continuous form of the PDE to obtain a suitable

forcing function (i.e., right-hand-side of the PDE) that is then employed in

the numerical simulation. Therefore, the numerically obtained values can

be compared to the exact ones, providing a measure of the error. Since the

discretization of the source terms are performed consistently in both space

and time, the discrete solution can be driven towards the exact solution as
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the mesh and time step sizes are reduced. This procedure can be applied

also for non-linear and coupled physics problems and is an useful tool for

verification purposes. The second leg of the code verification is performed

by using well established benchmarks involving the physics component that

need be tested.

The global error in a numerical solution Unum is usually measured in the

L2 norm,

‖Error‖2 = ‖Uref − Unum‖2 = 2

√
1

|Ω|

∫

Ω
(Uref(r)− Unum(r))

2 dr. (5.1)

A method is of order ps in space and order pt in time if the error varies as

O(∆rps) and O(∆tpt), respectively. The order of convergence in space is

measured by computing the global error in a transient simulation for which

the spatial mesh is successively refined. A small temporal grid is necessary

to ensure that the temporal error is small enough so that the error observed

is due to the spatial grid only. A similar procedure holds for the temporal

error calculation, where the spatial mesh is fine enough so that the spatial

errors do not pollute global error and successive simulations are performed

with uniformly refined time step sizes. The measurement of the error and

the comparison of the space/time accuracy orders obtained with expected

convergence rates prove that the code implementation is consistent with the

mathematics and that the numerical solution converges to the true solution

of the PDE.

The MMS forcing functions used in the simulations are given in the Ap-

pendix for different coupled physics scenarios. For further reading regarding

the MMS, refer to [75, 77].
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5.2 Verification of Individual Physics Models

In order to verify the implementation of the physics and the numerics models,

a step-by-step process is adopted. For verifying a coupled multi-physics code,

we first verify the single physics models, some of which are can be non-linear

by themselves. To perform this step, analytical solution methods and/or the

MMS techniques explained earlier are utilized.

5.2.1 Nonlinear Scalar Parabolic Problem

A general scalar non-linear Parabolic PDE is considered and spatial/tem-

poral discretization of the equations are performed using cG with Lagrange

basis functions and ERK, IRK methods respectively. The verification studies

for problems involving such systems is shown here.

5.2.1.1 Verification

Using the MMS technique, a dimension-independent non-linear heat con-

duction problem is modeled. The thermal conductivity is chosen to be the

non-linear functional k(T ) = T 2. The exact solution is taken to be

T (~r, t) = tanh(t)

dim∏

i=1

sin(πri), (5.2)

where ~r = {x, y, z} and dim = 1, 2, 3. Because the exact solution is known,

the spatial and temporal error discretization can be readily quantified using

Eq. (5.1).

This test is presented with linear and quadratic Lagrange basis functions

for spatial discretization, in a two-dimensional domain. As theoretically

expected, second and third order spatial convergence rates are observed for

linear and quadratic Lagrange basis functions respectively, see Fig. 5.1(a).
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Using a fine spatial mesh, the temporal order of accuracy for BE1(1), IM2(1)

and the SDIRK3(2) schemes are obtained and plotted in Fig. 5.1(b). We

can clearly note that the non-linear solution method based on the MFNK

framework is high-order accurate in space and time and presents the expected

theoretical orders of accuracy based on the space/time discretization.
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Figure 5.1: Non-linear Heat Conduction Problem: Spatial and Temporal

Accuracy
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5.2.2 Nonlinear Fluid Flow Problem

Next, the discretization of the problem arising from hyperbolic fluid flow

equations are verified. We will consider a manufactured solution to verify

accuracy and discretization errors.After these verification studies, the effi-

ciency of the ICE preconditioner for the conservative equations is shown.

5.2.2.1 Verification

Using the MMS, profiles for the state variables are assumed and correspond-

ing forcing functions for the continuity, momentum and energy equations are

derived. The exact solutions assumed for density, velocity and total energy

[28] are shown below

ρ = ρmin + (ρmax − ρmin) sech

(
x−$t

δ

)
(5.3)

v = vmin + (vmax − vmin) sech

(
x−$t

δ

)
(5.4)

E = Emin + (Emax − Emin) tanh

(
x−$t

δ

)
. (5.5)

The closure relation for the pressure equation was chosen to be the ideal gas

equation represented by

P = ρe(γ − 1), (5.6)

where γ =
Cp

Cv
. Using these exact solutions and the equation of state, the

source terms for each conservation equation were obtained and the spatial

and temporal convergence orders were computed.
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(c) Spatial accuracy in ρE

Figure 5.2: Fluid Flow Problem: Spatial Accuracy

The 1-d Navier-Stokes equations are solved in a fully implicit manner

using the MFNK method. The spatial order of accuracy was measured for

different polynomial orders of Legendre basis functions with dG FEM dis-

cretization. The obtained accuracy orders are as expected theoretically and

prove that the spatial treatment of the 1-d fluid equations are consistent.

With a fine spatial mesh and second order dG finite elements with Legendre

basis functions, the temporal order of convergence for density solution for a

final time t = 2 sec. was obtained and plotted on Fig. 5.2. The convergence

plot for different methods is shown in Fig. 5.3.
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(c) Temporal accuracy in ρE

Figure 5.3: Fluid Flow Problem: Temporal Accuracy

5.3 Verification of Coupled Physics Models

Now that individual physics models have been verified, the next step involves

verifying the numerical solution for coupled problems based on a combination

of these single-physics models. The results obtained from these studies is

shown in the following subsections.
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5.3.1 Coupled Conjugate Heat Transfer Example

Coupled conjugate heat-transfer problems are common in all thermal-hydraulic

calculations. These coupled phenomena are primarily boundary condition

based and hence lead to locally strong coupling effects. First, the MMS is

applied to verify the implementation of such a coupled system of equations

and then the efficacy of using different kinds of coupling schemes for these

problems is presented.

5.3.1.1 Verification

To verify conjugate heat transfer between a conducting solid and a fluid, we

employed a manufactured solution. A Matlab script was written to obtain

the forcing functions based on the following assumptions. The script is given

in Appendix A.1.

The flow is assumed to be uni-directional along the z−direction with a

constant inlet mass flux. The Blasius correlation in the turbulent regime is

used to compute the friction factor fw:

fw =
0.3164

Re0.25
. (5.7)

where Re is the Reynolds number of the fluid.

Thermal conduction of energy in the bulk fluid is assumed to be absent

and energy is added to the fluid only at the wall surface (fluid-solid interface).

The solid heat conduction model is basically a x − z slab in Cartesian co-

ordinate system which convects the heat generated to the bulk fluid. The

exact solutions for the fuel and fluid temperatures, Tfuel and Tc, respectively,
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are given below.

Tfuel (x, z, t) =rF

(
1 + tanh(Ctf t)

)(
1
2 + sin

(
π x
2LX

))

(
1 + tanh

(
2w
3 − wz

LZ

))
+ Tf0 (5.8)

Tc(z, t) =rT

(
1 + tanh (Ctc t)

)(
a+ b tanh

(
−cw + wz

LZ

))
(5.9)

ρ(z, t) =ρc + f
(
1− T (z,t)

Tc0

)
+ g

√
1− T (z,t)

Tc0
. (5.10)

The internal energy and total energies are given by

ρe =ρCvTc (5.11)

ρE =ρe+ 1
2
G2

ρ , (5.12)

where rT , Tf0, Ctf , rF , Tc0, Ctc, w, a, b, c, f, g are parameters to control the

magnitude and time scales of the solution. Cv is the specific heat at constant

volume, G is the mass flow rate.

The Equation of State employed to close the system of equations is a

linearized relation, dependent on density and temperature.

P = P0 + α(ρ− ρ0) + β (Tc − T0) , (5.13)

where α, β are the linearization constants. Note that α is actually related

to the speed of sound in the flowing medium and provides a simple way to

manually change the Mach number in the calculations, apart from varying

the mass flux G itself.
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(c) Spatial accuracy in Fuel Temperature

Figure 5.4: Conjugate Heat Transfer Problem: Spatial Accuracy

Based on this manufactured solution, the forcing functions have been

generated and a convergence order study has been carried out for various

levels of spatial and temporal discretizations. The numerical solutions ap-

proach the true solutions as the spatial and temporal meshes are refined, as

expected. The convergence results, shown in Fig. 5.4 and Fig. 5.5, prove that

the implementation of the physics is verified and demonstrate that higher-

order accuracy can be obtained using the MFNK technique.



CHAPTER 5. RESULTS 107

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−25

−20

−15

−10

−5

0

5

LOG(∆ t)

LO
G

(E
rr

or
)

 

 

BE
SDIRK22
SDIRK23
SLOPE 1
SLOPE 2
SLOPE 3

(a) Temporal accuracy in ρ

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−25

−20

−15

−10

−5

0

LOG(∆ t)

LO
G

(E
rr

or
)

 

 

BE
SDIRK22
SDIRK23
SLOPE 1
SLOPE 2
SLOPE 3

(b) Temporal accuracy in ρU
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(c) Temporal accuracy in ρE

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−15

−10

−5

0

5

10

LOG(∆ t)

LO
G

(E
rr

or
)

 

 

BE
SDIRK22
SDIRK23
SLOPE 1
SLOPE 2
SLOPE 3

(d) Temporal accuracy in Fuel Temperature

Figure 5.5: Conjugate Heat Transfer Problem: Temporal Accuracy

5.3.1.2 Efficacy

The conjugate heat transfer problem introduced earlier with MMS is used

again to test the efficacy of the coupling methods. By varying the temporal

scales of the exact solutions i.e., change the constants as Ctf = 1000Ctc. This

forces the evolution of the fuel temperature to occur at a much faster rate

than the transient in the fluid equations. In order to resolve this stiffness,

we use the traditional OS coupling strategy and the MFNK method with

the L−stable SDIRK2(2), SDIRK3(3) methods.
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The accuracy results obtained for a given spatial mesh is plotted against

the total computational time for the different coupling techniques in Fig. 5.6.

From the efficacy plot for the total energy field Fig. 5.6(b), it is evident

that for any given user-specified tolerance, the total cost for the solution

procedure using OS strategy with first order BE method is higher by several

orders of magnitude. But since the temporal evolution of fuel temperature

occurs at a much faster rate, resolving the physical time scales required

reducing the time step sizes for all the methods. Once the asymptotic region

was reached, the higher order MFNK methods quickly reduce the error in the

solution. For the temperature variable, for the same computational cost, the

loosely coupled scheme is less accurate than MFNK based tightly coupled

solution by two orders of magnitude. This result indicates that for stiff

problems, once the dynamical physical scales are resolved, the higher order

temporal accuracy in the tightly coupled schemes do provide considerable

computational gain. It is also interesting to note that using a second order

temporal method (CN) with OS coupling saves computational due to the

fact that there is only 1 implicit stage while the SDIRK2(2) method has two

stages per time step. These results indicate that it is possible for OS schemes

with high-order temporal methods to be feasible in terms of efficiency, as

compared to tightly coupled methods, when the time step sizes are well

below dynamical time scales of the individual physics.
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Figure 5.6: Conjugate Heat Transfer Problem: Efficacy Study
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5.3.2 Coupled Neutronics-Thermal Conduction Example

Neutronics and Heat conduction physics solution fields are strongly coupled

to each other through temperature dependent cross-section values and heat

generation from fission in the fuel. Since the coupling between these two

physics models is strong, it is necessary to test the effectiveness of the cou-

pling methodology to accurately resolve the varying time and length scales.

In this section, the coupled neutronics and heat conduction physics models

are verified by means of MMS. In the first case, the same spatial discretization

are applied to both physics ; in the second case, different (non-embedded)

spatial meshes are used to quantify the effect of non-conforming meshes.

5.3.2.1 Verification: Identical Spatial Meshes

Making use of the MMS technique once again, a test problem is used to

verify convergence of the method to exact solutions. Since the coupling

between neutronics and conduction is non-linear and due to the fact that the

conduction physics is non-linear by itself, obtaining manufactured solutions

can become quite intricate. A Matlab script has been written to obtain the

forcing functions based on the following assumptions.

Two delayed neutron precursors groups are considered along with two

energy groups and one scalar temperature field. Hence, the total number of

solution fields is five. We give below the exact solution for the fields for the
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2D test case:

φ1(x, y, t) =Aφ

(
1 + tanh(rφt)

)
sin(πx) sin(πy)xy (5.14)

φ2(x, y, t) =φ1(x, y, t) × Σs,1→2

(Σrem,2+D2B2
g)

(5.15)

Ci(x, y, t) =Ci(x, y, 0)e
−λit +

∫ t

0
ds eλi(s−t)

g=2∑

g=1

βi,gνΣf,gφg(x, y, s) (5.16)

T (x, y, t) =AT

(
1 + tanh(rT t)

)
sin(πx) sin(πy), (5.17)

where B2
g = ( π

LX
)2 + ( π

LY
)2 is the geometric buckling term, LX and LY are

the domain sizes in the x and y dimensions. Aφ, rφ, AT and rT are constant

parameters. Using the exact solutions for the fluxes, the exact solutions for

the precursors, Ci, can easily be obtained and are given by

Ci(x, y, 0) =
1

λi

g=2∑

g=1

βi,gνΣf,gφg(x, y, 0), i = 1, 2. (5.18)

Doppler feedback is accounted in the neutronics model through the removal

cross-section of group 1:

Σrem,1(T ) = Σrem,1(T0) +
∂Σrem

∂
√
T

∣∣∣∣
0

(
√
T −

√
T0). (5.19)

The following equation is employed to described the temperature-dependent

conductivity:

k(T ) = k0 +
∂k

∂T

∣∣∣∣
0

(T − T0). (5.20)

The Matlab script used to obtained the forcing functions is given in Ap-

pendix A.2. Note that here only the fast energy group’s removal cross-section

is affected by temperature variations. Additional temperature dependencies

can be included in the removal and fission cross-sections for both groups

using the provided script. With the knowledge of the exact solution profiles

and the corresponding forcing functions, a space/time convergence study is
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carried out. The convergence plots for this example are shown in Fig. 5.7

and Fig. 5.8.
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Figure 5.7: Coupled Neutronics/Heat Conduction Problem: Spatial Accu-

racy

It is clear from the results that the solution fields for all physics compo-

nents are high-order accurate in space and time and agree well with theoreti-

cal convergence rates. By varying the coupling coefficient ∂Σrem

∂
√
T

in Eq. (5.19),
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and other free parameters such as rφ, rT , 1/v1, 1/v2, stiffer transients were

created and convergence to the true solution was observed still. The higher

order temporal schemes are efficient and the stiffly-accurate SDIRK schemes

prove to be superior than traditional low-order BE scheme.
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(c) Temporal accuracy - Fuel Temperature

Figure 5.8: Coupled Neutronics/Heat Conduction Problem: Temporal Ac-

curacy

5.3.2.2 Verification: Non-embedded Spatial Meshes

Multi-physics applications often require that different physics components

employ different spatial meshes, which resolve the spatial scales occurring in
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the specific physics. Even though a complete study of this question is not

covered in this project and requires extensive work all by itself, an example

is provided here for the coupled neutronics/heat conduction physics utilizing

different spatial meshes; see Fig. 5.9. Note that the meshes are not embed-

ded (when meshes are embedded, projection and interpolation operators are

simpler to define).
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(a) Neutronics Mesh

(b) Conduction Mesh

Figure 5.9: Coupled Neutronics/Heat Conduction Problem: Non-conforming

Meshes

As detailed in Section 3.1.3, the spatial coupling error that may occur due
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to inadequate projection/interpolation in between source/target meshes can

be avoided by employing a ‘high-enough’ numerical quadrature in the finite

element setting. It is important to verify that mitigation of the interpolation

errors is possible by using high order quadratures. In this example, the

same test problem with MMS from Section 5.3.2.1 is considered but different

spatial meshes are employed.

The exact solution profiles for the two physics components show that

their spatial scales vary differently. Without the use of high-order quadra-

tures, the interpolation error start to dominate and corrupt the numerical

solution from reaching asymptotic spatial convergence orders. In order to

eliminate this, high-order quadrature rules are employed to overkill the spa-

tial errors due to solution interpolation and projection on a target mesh,

as indicated in Section 3.1.3. Fig. 5.10 shows that high-order spatial con-

vergence is recovered, as expected, for the MMS by using more quadrature

points to resolve the variation in the coupled solution. This is only a pre-

liminary study with multi-mesh for multi-physics software verification and

further analysis is needed to test the efficiency of the technique employed in

the project.



CHAPTER 5. RESULTS 117

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−15

−10

−5

0

LOG(∆ Ω)

LO
G

(E
rr

or
)

LINEAR
QUADRATIC
SLOPE 2
SLOPE 3

(a) Spatial accuracy - Fast Flux

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−16

−14

−12

−10

−8

−6

−4

−2

0

LOG(∆ Ω)

LO
G

(E
rr

or
)

LINEAR
QUADRATIC
SLOPE 2
SLOPE 3

(b) Spatial accuracy - Fuel Temperature

Figure 5.10: Coupled Neutronics/Heat Conduction Problem with Non-

conforming Meshes: Spatial Accuracy

5.3.2.3 Efficacy

A rod ejection benchmark problem from the ANL problem book [78] (Identi-

fication: 14-A1) is considered here to verify the coupling method described in

this project. This is a super-prompt critical transient with adiabatic heat-

ing and Doppler feedback for a thermal reactor model. In contrast with
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the previous MMS test cases, the time scales change quite drastically over

the transient and it is expected that higher order time stepping schemes

would outperform low-order schemes. In this simulation, the total power

level changes by over 10 orders of magnitude. The adiabatic heating assump-

tion is also numerically challenging: since no dissipative terms are present,

the errors introduced in computing the temperature field can grow undamped

with inconsistent numerical treatment, thereby requiring accurate coupling

and time stepping methods.

Based on the described geometry, the domain was discretized using second-

order triangular Lagrange finite element, as shown in Fig. 5.11. The initial

steady state eigenvalue obtained is keff = 0.99636 41531 80855 for the given

spatial mesh and it closely matches the reference value. The transient cal-

culation was performed using various combinations of coupling and tempo-

ral discretization schemes: OS-BE1(1), OS-IM2(1), MFNK-BE1(1), MFNK-

IM2(1), MFNK-SDIRK3(2). The reference solution was calculated with a

fine spatial mesh and a 3–rd order L−stable SDIRK scheme SDIRK3(3) with

∆t = 0.001 secs. The results obtained from these the reference simulation

for the fast and thermal flux distributions are shown in Fig. 5.12 and the

transient evolution in Fig. 5.13. It is interesting to note that the profile

peak power solution does not match the benchmark solution but considering

that low order discretizations with coarse spatial meshes were used in the

benchmark, it is possible that the true converged solution is the one given

here. Ryosuke et al. [79] noticed similar temporal evolution of the solution

fields and the code to code verification of karma with the PRONGHORN

software gives confidence in the results obtained here.
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Figure 5.11: Super-prompt Critical Benchmark Problem: Geometry and

Computational Mesh

All the tightly coupled simulations (MFNK-based solves) use ∆t = 0.004

secs. The OS simulations had to employ a much smaller time step of ∆t =

10−4 secs in order to converge; indeed, the explicit linearization of the OS

schemes led the solution to diverge with large time steps. Fig. 5.14 shows a

closer view of the power peak due to the rod ejection transient.
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Figure 5.12: Super-prompt Critical Benchmark Problem: Fast(left) and

Thermal(right) Flux Profiles at t = 0 (top) and t = 3 secs (bottom)

It is clear that the first-order BE1(1) scheme, even with tight coupling,

i.e., MFNK-BE1(1), wrongly computes the magnitude and time of occur-

rence in the power peak. This trend with BE1(1) can also be seen with

the OS coupled strategy, even with the much smaller time step used for OS

schemes. The higher order schemes, IM2(1) and SDIRK3(2), approach the

reference solution consistently as time step sizes are reduced and predict the

occurrence of the peak power accurately.
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Figure 5.13: Super-prompt Critical Benchmark Problem: Power Transient

Figure 5.14: Super-prompt Critical Benchmark Problem: Power Transient

with Different Numerical Schemes
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These results emphasize the usefulness of employing higher-order tem-

poral integration schemes to predict the behavior of stiff transients that can

occur in nuclear reactors. The usage of a tight coupling strategy allows to use

larger time steps than OS schemes, due to the fully resolved non-linearities

at each time step, which can be used in combination with adaptive time-

stepping techniques to reduce the total computational times.

5.4 Uncertainty Quantification for Multi-physics Prob-

lems

Uncertainty quantification is necessary even for single-physics simulations

and it is imperative to perform this analyses for multi-physics problems in

order to gain better understanding on weak versus strong coupling between

the physics. Aleatory and Epistemic uncertainty contributions can occur

from a variety of sources. They can stem from physical model errors, data

uncertainty errors, numerical errors due to inaccurate geometry descriptions,

resolution of spatial and temporal scales, numerical errors from coupling

methodologies to name a few, apart from Epistemic errors that are inherent

to the system being modeled. In the current work, uncertainty propaga-

tion in the solution specifically due to material properties which are usually

obtained through experiments and/or higher fidelity models with necessary

approximations and homogenizations, is analyzed. Since the properties used

in numerical simulations depend heavily on closure relations and empirical

correlations, the propagation of error and uncertainty in the solution fields

need to be ascertained. It is also important to note that the uncertainities in-

troduced in the solution obtained from simulations are irreducible, even with

a fine resolution of spatial or temporal scales when there is an uncertainty
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in the data.

Uncertainty quantification in the solution due to these variables following

certain distributions can then be performed using several mature methods.

One popular and less intrusive option is the Generalized Polynomial Chaos

(GPC) method [80]. GPC is in essence a decomposition method where an

uncertain output variable of interest Z is expressed in terms of a basis Φ of

a stochastic space consisting of random variables ζ = {ζ1 . . . , ζn},

Z(t, ζ) =
∑

n

Zn(t)Φn(ζ) (5.21)

where ζ can be described by either a Gaussian, Gamma or Uniform dis-

tribution. For most problems, where the true distribution is not known, a

Gaussian distribution can be chosen to represent the random variable. In

this case, Hermite polynomials are used as basis functions Φi and are given

by

Hn(x) = Φn(x) = (−1)nex
2 dn

dxn
(e−x2

) (5.22)

where n is the order of the Hermite polynomial and x is the random variable

of interest. GPC methods have exponential convergence as the order of

the polynomials p is increased. Further information can be obtained from

references [81, 82].

The application of a GPC method of order p, GPC(p), to the coupled

neutronics-conduction model problem is studied here. The introduction of

the dependency on the randomness of the properties adds another dimension

to the system of equations. Hence, the coupled physics solution fields are

also functions of the stochastic variation in these random input variables. In

other words, Eq. (5.21) can be rewritten in terms of random variables ζ as
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Z(t, ζ) = C0 +
∑

j

Cj(t)H1(ζj) +
∑

j

Cj(t)
∏

k

H2(ζk) + . . . (5.23)

where Cj are the coefficients of the expansion and can be computed mak-

ing use of the orthogonality property of Hermite polynomials. In Eq. (5.23),

the coefficients Cj are essentially the moments of the jth order Hermite poly-

nomial. Note that the zero’th moment C0 represents the mean value of the

physics solution Z when all the random variables ζ are at their mean values.

In order to obtain the coefficients, Eq. (5.23) can be multiplied by a Her-

mite polynomial of certain order and integrated from −∞ to ∞, and using

orthogonality relation, we have

Ci =

∫ ∞

−∞
dζe−

∑
j ζ2j

2 Z(t, ζ)Hn(ζ) (5.24)

Note that in Eq. (5.24), the solution Z(t, ζ) is obtained from code results

using a random sample for the input variable based on its distribution. The

actual integral in Eq. (5.24) is computed using numerical quadrature rules,

leading to non-intrusive uncertainty quantification methodology. Gauss-

Hermite quadrature rules are used for the numerical integration and the

order of the quadrature chosen should be high enough to compute the in-

tegral exactly. For instance, to compute the GPC(2) coefficients, a Gauss-

Hermite quadrature rule that can exactly integrate a fourth order polynomial

(three point quadrature rule, qp=3) is required. Hence the total number of

simulations necessary, after optimizations to eliminate recurrent cross-term

effects, is in the order of n ∗ p ∗ qp where n is the number of input random

variables. Once the required simulations are computed, the coefficients Ci

can be computed and the output variables of interest can be found using the

basis Eq. (5.23).
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Alternately, Monte-Carlo based sampling procedure are efficient at pro-

viding accurate statistical information regarding the uncertainty in the mod-

els. But since Monte-Carlo based sampling methods require large number of

samples (or model runs), it is prohibitive to directly perform the simulation

for every sample. We can instead use the basis obtained through GPC(p)

polynomial and then use this as a surrogate model to obtain the required sta-

tistical data for each output variable of interest, along with their respective

Probability Distribution Functions (PDF). Using such surrogate modeling

methodology designed specifically for propagating uncertainty from model

inputs to model outputs, a quantitative analysis can be performed and bet-

ter confidence in simulation predictions can be gained.

A super prompt-critical transient problem is considered here, along the

lines of the previous ANL benchmark. This 2-d, two energy-group, two

delayed-group neutron diffusion problem with Doppler feedback has a vari-

ation in the thermal absorption cross-section defined by the relation:

Σrem,2(T ) = Σrem,2(T0)+
∂Σrem

∂
√
T

∣∣∣∣
0

(
√
T−

√
T0)+

∂Σrem

∂T

∣∣∣∣
0

(T −T0). (5.25)

The geometry of the problem essentially consists of a rodded fuel element

surrounded by unrodded fuel which is encompassed in a lattice of reflector

assemblies. This is shown in Fig. 5.15. The material properties are obtained

from MATPRO correlations for UO2 fuel with 95% theoretical density [83].

The transient is initiated by changing the thermal fission cross-section for the

rodded fuel element through a ramp duration of 0.1 seconds. The solution

profiles for the fast and thermal fluxes at SS conditions is shown in Fig. 5.16.
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Figure 5.15: Uncertainty Quantification Test Problem: Geometry and Com-

putational Mesh

Four random input variables are chosen with the following Gaussian dis-

tributions:

Σrem,2(T0)|rod+fuel = N(0.2231, 5%) (5.26)

Σrem,2(T0)|fuel = N(0.09194, 5%) (5.27)

∂Σrem

∂
√
T

= N(0.002043, 10%) (5.28)

∂Σrem

∂T
= N(5× 10−6, 10%) (5.29)

and the uncertainty in three specific solution fields namely, keff, the total

maximum power in the transient, and the peak fuel temperature, are sought

after.
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A second order GPC expansion (p = 2) is considered along with the possi-

ble cross-terms to account for propagation of errors due to complex interplay

of different physics. In order to efficiently compute the analytical integrals

arising from the GPC basis expansions to compute the coefficients, a high-

order Gauss-Hermite quadrature rule is used to eliminate any integration

errors.
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(a) Fast flux

(b) Thermal flux

Figure 5.16: Uncertainty Quantification Test Problem: Initial Solution Pro-

files

Once a reference spatial mesh is determined, the mean solution fields with

all input random variables at their probable mean values are found. Then,
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each random variable is perturbed by a factor of 10−6 sequentially and the

corresponding change in the solution fields is found. This measure of the

global sensitivity of the solution fields w.r.t these random variables is given

in Table 5.1. Since the current test problem is at hot zero power conditions

(initial fuel temperature = 300 C), the eigenvalue keff is not dependent on

the coupling with temperature in the fuel. But all the transient parameters

namely, the peak power and maximum fuel temperature, are strongly sensi-

tive to the doppler coefficient ∂Σrem

∂
√
T

. The values themselves in Table 5.1 are

specific for the problem considered here and can change depending on the

mean, the deviation and the chosen input distribution.

Table 5.1: Relative sensitivity values for the output variables depending on

the input random variables

Output variable Σrem,2(T0)|rod+fuel Σrem,2(T0)|fuel ∂Σrem

∂
√
T

∂Σrem

∂T

keff -0.3173834 -8.4336155 0 0

Peak Total Power -12.156938 28.4867 -551.53479 -11.8566

Peak Temperature -6.74126 15.06638 -1.046647E6 -2.61168E4

For the transient simulated here, the stability limit for traditional OS

coupling was found to be around ∆t = 0.02 by experiment i.e., the OS

strategy needed time step sizes smaller than ∆t = 0.02 to obtain a stable

numerical solution. We use both the tightly coupled and OS based loosely

coupled methods for the same transient with this stability limit step size.

Based on the simulation results, the output variable expansion coefficients

were computed and a surrogate model based on the expansion in Hermite

polynomial basis was created. This surrogate model was then used with

Monte-Carlo sampling techniques with 5 × 106 samples to obtain the mean
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and deviation in the output variables given in Table 5.2 and the correspond-

ing Probability/Cumulative Distribution Functions shown in Fig. 5.17 for

both OS and tight coupling based solutions.
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(a) Probability Distribution Function

(b) Cumulative Distribution Function

Figure 5.17: Uncertainty Quantification Test Problem: Distribution Func-

tions for Output Variables
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It is evident from the peak total power distribution plots that the loosely

coupled schemes have a different distribution than the true solution distri-

bution (tightly coupled). As the time step size is decreased, this disparity

does vanish since the OS linearization for coupled physics terms becomes

more accurate. It is possible to use Richardson extrapolation technique to

compute the time step independent coefficients Cj to eliminate the corrup-

tion of temporal errors in estimating the uncertainty due to input random

variables, which provides the new possibility to obtain better prediction of

the output uncertainty with OS coupling schemes.

Table 5.2: Mean and standard deviations for output variables

Coupling keff Peak Total Power Peak Temperature

OS N(0.9999867970, 0.019539) N(177685.35,23178.69) N(3968.08,295.6)

MFNK N(0.9999867970, 0.019539) N(167900.83,20936.29) N(3939.17,290.3)

Since traditional multi-physics codes use loose coupled schemes, the pre-

dicted mean and the standard deviation for the range of input distribution

are conservative (mean power and temperature are higher). In reactor de-

sign and safety calculations, the margins calculated using these can then

restrict the design and reduce the total thermal power output. Even though

the problem posed here is not a full reactor core configuration, the results

obtained suggest that improvements based on tightly coupled methods can

lead to improved margin characterization. Further studies are needed using

higher order GPC expansions and different time step sizes in order to reduce

the total uncertainty in the output variables and to gain better intuition on

uncertainty quantification of multi-physics problems.



Chapter 6

Application of KARMA to

Alternate Problems

‘If you wish to advance into the infinite, explore the finite in all

directions.’

– Johann Wolfgang von Goethe

In this section, the application of the karma framework to a different

variety of non-linear multi-physics problems, other than those that occur

in nuclear reactors transients, is explored. The flexibility of the framework

and the versatility of the applications of the implemented code are demon-

strated using these problems. First, the application of the Newton’s method

for eigenproblems is shown followed by a stiff system of coupled equations

occurring in radiation-diffusion problems. The theory and results obtained

from these problems are shown here.

133
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6.1 Criticality Eigenproblem and Modal Analysis

Large algebraic eigenvalue problems often arise in nuclear engineering appli-

cations. In reactor physics, criticality problems typically require the calcu-

lation of the fundamental eigenvalue and associated eigenmode to determine

cycle lengths, reactivity margins and power distributions. For analyzing the

unstable patterns encountered in Boiling Water Reactors (BWR) [84, 85],

often modal analysis is performed that requires solutions to large eigenvalue

problems. Reactor instabilities are local power variations occurring due to

periodic flow oscillations and can sometimes grow undamped. In stability

studies, not only the fundamental mode but also higher-order eigenmodes

are needed in order to predict core behavior accurately.

Fast and accurate numerical methods to obtain the fundamental mode

and to perform modal analysis for reactor instabilities are an ongoing topic of

research; see, e.g., [86, 87, 88, 89, 90]. In the current section, we underscore

the link between all eigenproblems with constrained non-linear optimiza-

tion problems and take advantage of this reformulation to use the Newton’s

method for solving the eigenproblems. This lends the possibility to use the

existing MFNK framework introduced earlier in Section. (3).

Now let us consider the eigenproblems encountered in reactor physics

based on the Multi-group Neutron Diffusion (MGND) equation given below:

−~∇·Dg(~r)~∇Φg(~r) + Σg
r(~r)Φ

g(~r)−
∑

g′ 6=g

Σg′→g
s (~r)Φg′(~r)

=
1

λ
χg

G∑

g′=1

νΣg′

f (~r)Φ
g′(~r) ∀g = 1, . . . , G, for ~r ∈ D.(6.1)

In addition to Eq. (6.1), which is defined in the reactor domain Ω, bound-

ary conditions are supplied on the domain’s boundary ∂Ω. The boundary
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conditions are typically of homogeneous Dirichlet-type (zero flux) or of ho-

mogeneous Neumann-type (symmetry lines).

After spatial discretization using cG FEM, the above multigroup equa-

tions can be recast in a discrete operator form

Lφm =
1

λm
Fφm, (6.2)

where L is the multigroup loss operator containing leakage, absorption and

scattering terms, F is the multigroup production operator containing the

fission terms, λm is the mth eigenvalue and φm is the mth (multigroup)

eigenmode associated with the λm eigenvalue. The pair (λm, φm) will be

denoted hereafter as the mth eigenpair. The block structure of the L discrete

operator is

L =




L1 0 . . . 0

−L2,1 L2 0 . . . 0
...

...
. . . 0 . . . 0

−Lt,1 −Lt,2 . . . Lt −Lt,t+1 . . . −Lt,G

...
. . . . . .

...

−LG1 . . . −LG,G−1 LG




(6.3)

where the row index t denotes the first thermal energy group, i.e., the first

group for which up-scattering is present. The diagonal blocks Li represent

the discrete form of −~∇·Di~∇ + Σi
r whereas the off-diagonal blocks Li,j

represent down-/up-scattering operator Σj→i
s . Similarly, blocks Fi,j are the

discrete representation of χiνΣj
f . Each block in L and F is a real and sparse

matrix of size n×n with n denoting the number of spatial unknowns. It is also

important to note that matrix L is not symmetric due to the non-symmetric

scattering processes in between energy groups. The problem dimension N =
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n × G is large (for moderately coarse 3D 2-group diffusion calculations, N

is of the order of, at least, 50,000 unknowns.) The m-th eigenfunction is

a multigroup vector: φm = [φ1
m, . . . , φG

m]T , where each component φg
m is a

vector of length n.

The following ordering of eigenvalues is chosen: |λ1| > |λ2| ≥ |λ3| ≥
... ≥ |λN−1| ≥ |λN |, where we have indicated the uniqueness of the largest

eigenvalue in neutronics applications [91]. Out of the N eigenmodes, the first

(fundamental) mode predicts the critical core configuration (in neutronics, it

is customarily to let λ1 = keff, where keff is the effective multiplication factor)

and higher modes dictate the behavior of the system during a transient. Since

higher modes decay away in comparatively shorter time periods as the mode

index number increases, only a subset of the higher-order modes are needed

in practical applications.

Eq. (6.2) can be symbolically transformed by left multiplication with L−1

to obtain a standard unsymmetric eigenvalue problem of the form

Mφn = λnφn, (6.4)

with M = L−1F .

The generalized eigenvalue problem of Eq. (6.2) is only reformulated as

Eq. (6.4) for notational simplicity and M is never directly computed and

stored due to the large memory requirements (i.e., L−1 is never computed ex-

plicitly.) To simplify notations, the standard eigenvalue problem, Eq. (6.4),

will be used hereafter, although it is important to note that each matrix-

vector (matvec) product of the form z = Mx requires (i) one matvec oper-

ation y = Fx followed by (ii) a linear solve Lz = y for z. Traditionally, the

solve of the loss operator L is performed by recursively sweeping through

the energy groups in a Block-Gauss-Seidel (BGS) fashion until convergence.
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Hence, we will consider one such BGS sweep as the primary work unit and

performance parameter for the different algorithms tested in computing sev-

eral eigenmodes.

In most existing reactor analysis codes, the Power Iteration (PI) [92]

method has been used to obtain the largest eigenvalue. By using deflation

techniques or spectral shifting techniques [92] with the PI method, higher

eigenmodes can be obtained, albeit with decreasing accuracy. This is due

to the fact that performing deflation very accurately is computationally ex-

pensive and any inaccuracy introduced in this process, i.e., in the previous

modes, can result in the corruption of the deflated system for higher-modes,

thereby making it difficult to recover the true eigenmodes.

Recently, Krylov-subspace iteration methods have been proposed as al-

ternatives to the PI method to compute several dominant eigenmodes, e.g.,

the subspace projection method with locking of converged eigenvectors [93],

the explicit Arnoldi iteration [73, 90], the implicit restarted Arnoldi method

(IRAM) [94, 95, 96, 97, 98], the Jacobi-Davidson method [99, 88, 100]. Sub-

space methods for eigenproblems have been described and reviewed by sev-

eral authors in the mathematics and numerical analysis communities; see,

for instance, [101, 102].

The approach employed in the current work aims to employ the existing

framework based on MFNK technique in order to find multiple eigenmodes

accurately. This methodology is based on hybridizing the traditional tech-

niques for solving eigenvalue problems with a variant of inexact Newton’s

method. In order to underscore the link between eigenproblems with opti-

mization problems tackled using Newton’s method, consider the following

Rayleigh quotient functional (a non-linear functional) for a given Hermitian
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matrix A, defined as:

R(φ) =
φTAφ

φTφ
for φ 6= 0. (6.5)

The minimization of the Rayleigh quotient requires satisfying the optimality

condition

∇R(φ) = 0 =
2

φTφ
(Aφ−R(φ)φ) . (6.6)

This optimality condition is solved using Newton’s method

[∇2R(φl)]δφ =−∇R(φl) (6.7)

φl+1 =φl + δφ, (6.8)

where ∇2R is the Hessian matrix of the Rayleigh quotient functional, or

equivalently the Jacobian matrix of the optimality condition, Eq. (6.6).

These simple lines of algebra may facilitate establishing the relationship

between eigenproblems and Newton’s method, which will be discussed in

section 6.1.2, where we propose a hybrid scheme that combines Newton’s

method and subspace iteration eigensolvers in order to compute, with high

accuracy, a large number of eigenmodes for nuclear reactor analysis problems.

Furthermore, the non-linear solves of Newton’s method will be performed

in a matrix-free fashion to avoid computing the possible expensive matrix

∇2Q. Finally, recall that matrix M is never formed, and only the action

of the linear system on a vector is realized. Hence for improved efficiency,

preconditioned versions of the matrix-free Newton’s method are applied.

6.1.1 Review on Existing Schemes to Compute Multiple Eigen-

modes

Various subspace iteration eigensolvers applying a Rayleigh-Ritz projection

have become popular over the recent years to determine several dominant
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eigenmodes in nuclear reactor applications; several references of such work

were given in the introduction. In their simplest forms, they generate Krylov

subspaces by repeatedly multiplying matrix M with a basis vector, and in

that sense can be thought of generalizations of the power iteration method.

To reduce the size of the Krylov space needed to compute several eigenvalues

near a portion of the eigenspectrum, some appropriate shifting strategies can

be employed. Similar shifting strategies can also be used in the simple PI

method to obtain eigenvalues with a faster convergence. A brief review of

the PI and Krylov-subspace family of methods are given below.

6.1.1.1 Standard Power Iteration

In most reactor design and analysis codes currently in use, some form of

modified/accelerated Power Iteration (PI) technique is employed to find the

fundamental eigenvalue (λ1) and the associated eigenmode. Such a procedure

is known to be slowly convergent when the dominance ratio (λ2

λ1
) is close

to 1, resulting in a large number of operator applications, requiring many

inversions of the multigroup loss operator L.

Common schemes to accelerate the power iteration technique are the

Chebyshev acceleration [103] and the Wiedlandt shift [92].

6.1.1.2 The Shifted Inverse-Power Iteration

The Shifted Inverse-Power Iteration (SIPI) [101] is a popular and improved

variant of the PI method where a guess (shift) of the eigenvalue is known

reasonably well.

In the SIPI method,the eigenspectrum is shifted by a constant value σ

while preserving the corresponding eigenvectors. Hence, when a reasonable
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guess for the eigenvalue is known a-priori, the SIPI iteration converges to the

eigenpair efficiently. Alternately, the Rayleigh quotient can be used as an

improved shift at each iteration, leading to a locally quadratic asymptotic

convergence rate for unsymmetric problems [104]. It has also been shown

by Geltner that a good initial guess of the eigenvector is necessary for local

convergence of an eigenmode, particularly when the loss matrix is not pos-

itive definite. The Rayleigh shift resembles the Rayleigh quotient shown in

Eq. (6.5) and is given by

σi =
φT
i Mφi

φT
i φi

, (6.9)

and at each SIPI iteration the following linear system needs to be solved

(M − σiI)φi+1 = φi. (6.10)

It should be noted that, as the iteration converges to the solution eigenpair,

the shifted matrix operator (M − σiI) becomes ill-conditioned and singular.

This is one of the primary disadvantages in using the SIPI method.

The linear system (M−σiI) is usually solved iteratively (inner iterations)

to a given linear tolerance. It is possible to set this linear tolerance adaptively

based on the norm of the residual of the eigenvalue problem, leading to

an inexact-SIPI method, akin to the inexact-Newton method in philosophy,

which is computationally less expensive than the exact SIPI variant. The

motivation behind this is that the linear solves need not to be extremely

accurate, while the eigenvalue residual is still large.

The SIPI procedure is suitable to find one eigenpair. When more than one

eigenpair is sought, e.g., when performing modal analysis, additional work

needs to be performed to remove the contribution of converged eigenmodes.

In the work by Demaziere [90], the traditional PI method is used to calculate

several eigenmodes with Wielandt deflation but this procedure involves the
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necessity for calculating the forward and adjoint eigenvector for each mode.

The accuracy of the subsequent modes may be affected if the computed

modes have a large residual error that can propagate in the computation of

subsequent higher modes and corrupts the deflated linear system (in [90], a

tolerance close to machine precision was used).

Alternately, a suitable locking technique through orthogonalization can

be performed in order to remove the contribution of an already computed

mode from the linear system [105]. In the our implementation of Rayleight

quotient iteration , this procedure is utilized for computing several dominant

eigenmodes.

6.1.1.3 Krylov Subspace Iteration Methods

The basic philosophy of the PI method is to build a subspace by the repeated

action of operator M on a starting vector v, yielding a `-dimensional subspace

whose span is V = {v,Mv,M2v, ...M `−1v}. As the size ` of the subspace

becomes large, the power series spanned by the subspace does not form an

appropriate basis to extract the eigenvalue and eigenvector approximations

[102]. The columns of this subspace matrix V are not orthogonal. In Krylov

subspace iteration, an orthogonal basis is sought and the resulting Krylov

matrix V̂ provides approximations to the eigenvectors corresponding to `

dominant eigenvalues of M . Some advanced Krylov subspace methods for

non-symmetric system of equations include the explicit Arnoldi [73] and

Implicitly Restarted Arnoldi [95], the Jacobi-Davidson [99] and Krylov-Schur

[73] methods.

The original Arnoldi algorithm [101] is a powerful extension of the sub-

space iteration in that it builds an orthonormal basis of the Krylov sub-
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space and factorizes the matrix M into an upper Hessenberg matrix. The

central idea behind the Arnoldi factorization is to construct eigenpairs of

the original matrix from eigenpairs of the factorized, much smaller, Hessen-

berg matrix. Sorensen [106] improved the Arnoldi method by introducing

several shifted QR iterations on the Hessenberg matrix; this reduces the

overall number of required matvec operations. Several other variations and

optimizations have been added to this Arnoldi method and have been suc-

cessfully implemented in the library ARPACK [95]. The Implicitly Restarted

Arnoldi Method (IRAM) [106] is considered to be one of the state-of-the-

art schemes to compute several dominant eigenpairs for large, sparse linear

systems. Several researchers [97, 107, 98, 90] have considered the use of an

Arnoldi eigensolver for k-eigenvalue problems and found it to be a promising

alternative to obtain the fundamental mode.

6.1.2 Newton Iteration Based Hybrid Algorithm

Instead of approaching the eigenvalue problem with traditional iterative tech-

niques, we recast the eigenproblem as a non-linear problem to be solved by

means of Newton’s method. Peters and Wilkinson [108] proved that the in-

verse iterations are equivalent to a Newton’s iterative scheme. Saad [101] also

considered the suitability of using non-linear Newton type iteration schemes

for large symmetric eigenvalue problems and proposed several variations for

the definition of the non-linear residual function.

Let us consider the eigenvalue problem in Eq. (6.4) and formulate it as

a (N + 1)-dimensional unconstrained optimization problem (recall that (i)

M = L−1F is a matrix of size N by N and that (ii) it is never explicitly

formed).
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Based on a formulation proposed by Wu et al. [102] for the standard

eigenvalue problem, the non-linear residual function can be written as follows

F(y) =


 (M − λI)φ

−1
2φ

Tφ+ 1
2


 = 0 (6.11)

where F(y) is the non-linear Newton residual vector, of size N + 1. The

first N components of F represent the linear system for the eigenproblem

in Eq. (6.4) and the last component of F is simply a 2-norm normalization

of the eigenvector. The N + 1 dimensional solution vector y contains the

eigenmode and the eigenvalue and is given by

y =


 φ

λ


 (6.12)

The eigenmode and the eigenvalue solution are then obtained using Newton’s

method

δyl = −
[
J(yl)

]−1
F(yl) (6.13)

and yl+1 = yl + δyl (6.14)

where the Jacobian matrix is given by

J(y) =


 M − λI −φ

−φT 0


 (6.15)

Peters [108] proved that this augmented matrix is non-singular even when

(λ, φ) is the true eigenpair being sought. Saad [101] confirmed the proof for

the symmetric case and extended it to the non-symmetric matrix case which

is considered here.

The choice of the optimization problem given in Eq. (6.11) avoids nearly

singular, ill-conditioned Jacobian matrices and hence is convergent locally
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to an eigenpair without the numerical difficulties (e.g., large condition num-

bers) often observed in techniques such as the SIPI method near an eigenpair

solution [109]. The quadratic convergence of the Newton scheme can be uti-

lized to create a robust eigensolver as long as a suitable initial guess for the

eigenmode is available. It is also known that the above Newton-type proce-

dure for eigenvalue problems is equivalent to the Rayleigh Quotient iteration,

whose convergence behavior is well understood [102, 109]. Nonetheless, a few

points have to be addressed in order to use Newton’s method to compute

the eigenmodes:

1. the need for an appropriate initial guess close to the desired eigenpair;

2. the cost of computing the Jacobian matrix J and memory requirements

for storing it are prohibitive for large problems;

3. the need of efficient preconditioning technique to reduce Krylov sub-

space required for inner linear solves.

The next paragraphs address these. First, Newton’s initial guesses to

compute the dominant eigenmodes will be obtained from either a few SIPI

iterations or a Krylov subspace iteration technique, with coarse tolerances.

The Newton iteration acts as the eigensolver once it has been “bootstrapped”

using a standard eigensolver used to provide an initial guess to focus New-

ton’s search eigenspace around one or several desired modes. Second, we

will rely on matrix-free approaches to avoid the computation of the Jaco-

bian matrix. Finally, preconditioning techniques will be employed. Details

regarding the proposed algorithm are discussed below.
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6.1.2.1 Starting the Newton Iteration

It is well known that Newton’s method converges quadratically to the so-

lution as long as the initial condition is inside the “ball of convergence”. If

we are to obtain a certain number of dominant modes, then proper initial

guesses must be provided. For our purpose, we are not interested in just

any eigenmode and a procedure to enrich the Newton’s search directions for

the dominant eigenmodes is necessary in order to focus the Newton’s search

space.

One option is to perform first a few SIPI iterations (with coarse tolerance)

to obtain an approximation to the fundamental eigenmode, thus providing a

starting vector for Newton’s method. We refer to this scheme as the “SIPI-

Newton” hybrid scheme. Note that if the shift parameter is set to 0, the

standard PI is then used to focus the search space.

A second option is to employ a subspace iteration method (we have chosen

the IRAM scheme) to bootstrap the eigenpair search with Newton’s method.

This option is more appealing than the “SIPI-Newton” scheme because the

Arnoldi iteration readily provides approximations to several dominant eigen-

pairs at once. They can be obtained with a coarse tolerance without having

recourse to explicit deflations or the need for an initial eigenvalue estimate

as in the SIPI method. Additionally, the subsequent Newton iterations to

solve for the different modes are completely independent and this stage could

be performed in parallel. Hereafter, we denote this scheme, where coarse-

tolerance estimates from the IRAM technique are employed as initial iterates

for the Newton solves, as the “Arnoldi-Newton” hybrid scheme.

Finally, we note that a fine tolerance is not necessary at the start of

Newton solve in Eq. (6.13) when the search direction is far away from true
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solution. Then, the Jacobian solve can be performed ’inexactly’ in the sense

that the linear iteration tolerance can be made to depend on the non-linear

function residual Eq. (6.13). This Inexact-Newton iteration method results

in the following convergence criteria for the linear solve.

∣∣∣
∣∣∣J(yl)δyl + F (yl)

∣∣∣
∣∣∣ ≤ cl

∣∣∣
∣∣∣F (yl)

∣∣∣
∣∣∣ , (6.16)

where cl is a parameter chosen to tighten the linear solve convergence as

the non-linear residual is reduced. For more information on Inexact-Newton

schemes and the forcing factor cl, we refer the reader to [59].

6.1.2.2 Matrix-free Technique

In Jacobian-free variants of Newton’s method, the explicit computation of

the Jacobian matrix J is not required, which is particularly useful in our case

since the Jacobian matrix contains matrix M = L−1F , which we do not want

to compute explicitly nor store. Since the Jacobian-free method is at the core

of the tightly coupled solution algorithm introduced for solving multi-physics

problems, much of the infrastructure for implementing the hybrid eigenvalue

solver is in place.

Let the (N +1)-dimensional Krylov vector v be written as (ϕ, µ)T where

ϕ is the portion of the Krylov vector corresponding to the eigenfunction

and µ is a scalar corresponding to the eigenvalue. Then, the action of the

Jacobian matrix on a Krylov vector v can be obtained as

Jv ' F (y + εv)− F (y)

ε
=


 Mϕ− λϕ− µ(φ+ εϕ)

−φTϕ− 1
2εϕ

Tϕ


 (6.17)

where it should be remembered that z = Mϕ is actually the following linear

solve: Lz = Fϕ. Eq. (6.17) is based on a finite difference approximation,



CHAPTER 6. APPLICATION OF KARMA TO ALTERNATE PROBLEMS147

which can be avoided here: since the definition of Jacobian is exactly avail-

able, albeit not explicitly, a matrix-free solve using GMRes, with no memory

allocated for the Jacobian matrix itself, can be carried out and the (exact)

matrix-vector operator is given by

Jv =


 Mϕ− λϕ− µφ)

−φTϕ


 (6.18)

In Eq. (6.18), the effect of the perturbation ε has vanished. Both Eq. (3.76)

and Eq. (6.18) are Jacobian-free approaches (the Jacobian matrix is not

formed) and both forms require the same linear solve Lz = Fϕ. In our imple-

mentation, we have chosen the exact matrix-vector operation, i.e., Eq. (6.18),

over the finite difference approximation of Eq. (3.76).

6.1.2.3 Preconditioners for the JFNK Technique

In order to limit the size of the Krylov subspace in the linear solve at each

Newton iteration, effective preconditioning techniques are necessary. The

form of outer (Newton) – inner (Krylov) iteration for eigenvalue problems

resembles the inverse iteration subspace family of methods and also is closely

related the Jacobi-Davidson scheme [108, 109] when the secondary equation

being used as a preconditioner is Point-Jacobi. The power of the MFNK

scheme is that any number of preconditioners can be employed as long as (i)

the cost of computing the preconditioner itself is cheaper than the cost of

computing the true operator (M) and (ii) the preconditioner collapses the

eigenspectrum so that the spread in eigenvalues is reduced. Note that every

preconditioner solve can also be performed in a matrix-free fashion rather

than actually forming the preconditioning matrix P , if memory requirements

necessitate that.
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Some details on the preconditioning methods for the simple eigenproblem

in Equation (6.4) are now discussed.

6.1.2.4 Block Gauss-Seidel Preconditioner

The Block Gauss-Seidel (BGS) form of the preconditioner, where a block is

defined as one energy group, is a natural choice of preconditioner to invert

L. In traditional reactor analysis codes using PI method, the BGS method is

typically used to invert the loss operator solve. In the current JFNK context,

we use a single BSG sweep over all groups as a preconditioner. Since each

diagonal block Li is symmetric (when discretized using a standard finite

element or finite difference method), efficient Krylov linear solvers such as

Conjugate Gradient can be used to solve each one-group equation. Here, the

individual blocks are themselves preconditioned with a level-0 Incomplete

Cholesky decomposition, IC(0). Therefore, the preconditioner P is given by

P =


 L̃−1F − λI −φ

−φT 0


 (6.19)

where L̃ is the lower triangular block of L, hence discarding any upscattering

terms. A preconditioner solve requires the following solves:

Lizi = (Fϕ)i −
∑

j<i

Li,jzj for i = 1, . . . , G (6.20)

Other preconditioners such as multigrid, multilevel methods could be

utilized instead of the BGS scheme. Another idea would be to use traditional

PI technique as a preconditioner for the Newton solve, as suggested by Knoll

[110].
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6.1.3 Implementation

The methods presented here have been implemented in the karma code

framework which interfaces to external libraries such as PETSc [68], SLEPc

[73] and ARPACK [95] to make use of existing eigenvalue solvers for compari-

son purposes and to bootstrap the Newton iteration by providing appropriate

initial guess.

The PETSc-based Scalable Library for Eigenvalue Problem Computa-

tions (SLEPc) library has several standard eigenvalue solvers such as PI,

SIPI, Explicitly restarted Arnoldi method and Krylov-Schur methods. Apart

from the built-in solvers, SLEPc also provides interfaces to the ARPACK

eigensolver package. The IRAM algorithm employed as bootstrapping in

our hybrid method was taken from ARPACK.

For the requested number dominant eigenmodes, (nev), the computa-

tional cost of IRAM behaves as N`2 where N is the problem rank of matrix

M and ` is the size of the subspace. Hence for fine tolerances and large prob-

lem sizes (N), a bigger span of Krylov space may be needed, increasing the

total memory cost. Instead, the proposed hybrid Arnoldi-Newton scheme

can be implemented in a completely matrix-free fashion using JFNK, with

IRAM to deliver the initial eigenmodes to coarse tolerances (thus requiring

only a smaller subspace) and Newton’s method to drive the residual of the

eigenproblem to a tight precision. This scheme can compute several domi-

nant eigenpairs (in parallel) with low memory overhead and high accuracy

with existing frameworks of PI implementation.

The hybrid SIPI-Newton scheme can also be used to converge to the

dominant eigenpairs but usually it is expected to be inferior in terms of per-

formance in comparison to advanced Krylov iteration techniques like Arnoldi
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to find multiple eigenvalues. This is due to the fact that the choice of the

shift parameter affects the convergence of this scheme significantly and eigen-

pairs can only be found one at a time, i.e., sequentially. Nevertheless, the low

memory requirements and the relative ease in implementation of this scheme

as compared to the Arnoldi-Krylov method may make it attractive, especially

since traditional reactor analysis codes already have most of the necessary

framework in place. In order to make the results shown here independent

of a user-provided shift, 20 iterations of power iteration are performed to

obtain an eigenvalue estimate to 1e-2 tolerance. This then is used as the

initial shift for all SIPI runs thereby making this hybrid scheme automated

to some extent.

6.1.4 Results

Numerical results using the different eigensolvers introduced in the previous

sections are presented here for three typical eigenvalue problems found in

nuclear reactor analysis. The first case is a 2-D IAEA benchmark problem

that is used to analyze the convergence of the implemented scheme for the

first few eigenmodes. The next problem considered is a homogenous 2-group,

2-d problem to compare the traditional PI, state-of-art IRAM and the current

hybrid algorithms in terms of efficiency in computing the fundamental mode,

as a function of the dominance ratio.

6.1.4.1 Case 1: IAEA 2-D Benchmark Problem

For the purpose of determining the accuracy and efficiency of the proposed

numerical scheme, the well known IAEA 2-D benchmark problem (ANL,

1977) with modifications to the cross-section to account for z-leakage is used
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as a test problem. This problem is a two group model of a PWR quarter

core with reflective boundary conditions on left and top sides and vacuum

boundary on the remaining sides (zero incoming current). Details on the

used cross-sections for different materials and the lattice representation is

given in Appendix (B.1).

The 2-D domain is discretized using triangular mesh elements. The spa-

tial discretization of the generalized eigenvalue problem is performed using

piecewise quadratic, Lagrange elements on triangles. The reference results

presented below for the eigenvalue computation were from a discretization

with 81940 elements and 123937 unknowns/group.

The thermal flux profiles for the first five modes of the benchmark prob-

lem obtained using the hybrid Arnoldi-Newton iteration are shown in Fig. 6.1

- Fig. 6.5.

Figure 6.1: IAEA 2D Benchmark Problem: First Eigenmode for Thermal

Flux.
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Figure 6.2: IAEA 2D Benchmark Problem: Second Eigenmode for Thermal

Flux.

Figure 6.3: IAEA 2D Benchmark Problem: Third Eigenmode for Thermal

Flux.
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Figure 6.4: IAEA 2D Benchmark Problem: Fourth Eigenmode for Thermal

Flux.

Figure 6.5: IAEA 2D Benchmark Problem: Fifth Eigenmode for Thermal

Flux.
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In Table (6.1), the eigenvalues for the first 10 modes are shown for the

benchmark problem along with the L2 norm of the residual error Mφi-λiφi.

The eigenvalues from the IRAM-Newton hybrid scheme were compared to

the solution from a fine tolerance (1E-14) IRAM run that is implemented in

ARPACK, interfaced through SLEPc. The eigenvalues computed from both

schemes match exactly and hence this test case proves the convergence of

the hybrid scheme to all the desired modes. In the above run, an IRAM

iteration provides a reasonable guess of the eigenmodes to a coarse tolerance

of only 1E-3 with maximum subspace size of 15 to bootstrap the inexact

Newton iteration.

Table 6.1: Eigenvalues for several modes computed using IRAM-Newton

iteration scheme

Mode IRAM-Newton Residual Error

1 1.02958492118978 3.925623517e-14

2 1.00262113845152 1.665425359e-14

3 0.99162639339383 4.511323367e-14

4 0.93909498902443 3.756085782e-14

5 0.91382020547476 4.287420904e-13

6 0.90139826550461 1.052507002e-13

7 0.89045692528088 3.088887872e-14

8 0.82718775002535 1.762787579e-13

9 0.82499156741152 3.749614193e-14

10 0.81562246518003 4.042513635e-14

The results shown in Table (6.1) indicate that the new numerical scheme

computes the eigenpairs with machine precision accuracy for all the requested

modes (nev=10) of the model problem. Hence the new convergence of the
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Newton based hybrid scheme to the true numerical eigenmode is guaranteed

as long as the initial guess provided is in the ‘ball of convergence’.

Next, the same problem is solved using different eigen-methods and the

cost of computation in terms of number of BGS operator applications is

listed in Table (6.2). Also the size of the subspace indicates the memory

cost requirements needed for solving the problem. The results indicate that

the SIPI based schemes are unfeasible in terms of the total cost due to the

chosen method for determining the initial shift. If a better algorithm is

available for this, the higher eigenmodes can be computed with lesser cost.

On the other hand, IRAM and IRAM-Newton hybrid scheme show very

efficient performance and the hybrid scheme only requires half the memory

requirement as compared to pure IRAM run. The results show the strength

in terms of convergence with lower memory cost of the hybrid scheme based

on Arnoldi iteration.

Table 6.2: Eigenvalues for 10 eigenmodes using different iteration schemes

Method Number of operators Subspace size

SIPI 8115 1

SIPI-Newton 6507 1

IRAM 2180 20

IRAM-Newton 2116 10

The preliminary results show that there is an optimal subspace-size for

IRAM which minimizes the total number of BGS operators. But a-priori, this

size is not known and can only be determined by experiments on the problem

of interest. Also, as the subspace-size increases, the memory requirements

increase linearly and can become prohibitive unless distributed systems are
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utilized. The IRAM-Newton scheme alternately uses IRAM only to start

the iteration and hence could gain immensely from the usage of a much

lesser subspace size to achieve coarse tolerances. And if auxillary systems

representing the Jacobian matrix can be used as preconditioners, the total

cost of the linear Krylov solve can also be reduced considerably.

6.1.4.2 Case 2: Homogenous Infinite Medium, 2-Group Problem

with Up-scattering

Consider a 2-D, two energy group problem with non-zero, fast-to-thermal and

thermal-to-fast scattering cross-section. Hence, the Loss matrix L is a full

block matrix, unlike the IAEA 2D case which was in block-lower triangular

form. The cross-section data used for the problem are given in Appendix

(B.2). The implementation was verified by checking the spatial convergence

of the eigenvalue to the exact eigenvalue, as the mesh is refined.

In the infinite medium limit, the dominance ratio for the discretized,

generalized MGND eigenvalue problem can be made to approach unity. This

translates to a large number of iterations that is needed in order to converge

to the fundamental eigenpair. If several dominant eigenpairs are desired in

this context, traditional power iteration techniques are practically infeasible.

Better Preconditioners such as multigrid, multilevel methods for such el-

liptic systems will significantly improve the performance of the linear solves

and hence reduce the number of operator applications for the Inexact-Newton

based schemes. Such possibilities are left for future investigation and cur-

rently only the BGS preconditioner is used currently to resolve the neutronic

system with upscattering.

In this setting, the problem is solved using power iteration, IRAM, SIPI-
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Newton hybrid iteration and Arnoldi-Newton hybrid iteration for various

dominance ratios. The results shown below arise from the discretization of

the homogenous problem using piecewise quadratic Lagrange basis functions

on a structured grid with 400 QUAD8 elements and 1281 dofs/group. The

cost results obtained from various test runs with a tolerance of 1E-10 are

shown in Table (6.3). All the columns list the total number of BGS operator

applications since the total cost is a function of this parameter.

It is quite evident that if the subspace size is increased for the Arnoldi

iteration, the number of operator count will decrease until the optimal size

is used. This was shown by [90]. Since it is hard to calculate this optimal

subspace size a-priori and that larger memory requirements prohibit storing

many vectors, the situation where limited subspace size is prescribed has

been considered here.

Table 6.3: Number of operator applications needed for different schemes as

a function of Dominance Ratio (DR)

Length DR Power CSIPI SIPI-Newton IRAM IRAM-Newton

12.255 0.3500 83 75 68 47 62

23.127 0.5000 147 121 96 73 89

85.95 0.9001 980 285 216 180 153

126.38 0.9500 1916 443 394 276 188

291.1 0.9900 7317 1133 563 353 284

926.5 0.9990 74270 5396 786 1488 692

2931 0.9999 604400 8478 1069 1899 782

The shift parameter for SIPI is found by performing several power it-

erations to coarse tolerance. The hybrid SIPI-Newton and Arnoldi-Newton
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schemes use a coarse tolerance of 1E-3 to obtain the initial guess and the

eigenpair is converged to the user specified tolerance by the inexact Newton

algorithm. For all calculations involving Arnoldi based schemes, the size of

the subspace has been set at a fixed value of 10 for the current problem.

As expected, the results prove that as the dominance ratio approaches

unity, the number of power iterations increase exponentially. The Arnoldi

iteration converges to the dominant pair in much lesser iterations but the

true power of this scheme, finding multiple eigenpairs simultaneously, is not

utilized here. On the other hand, the hybrid SIPI-Newton scheme performs

the quite well unlike the IAEA 2-D benchmark problem and this depends on

the methodology to choose the initial shift parameter. Hence, when a guess

for the dominant eigenvalue is available, the SIPI-Newton scheme can be

the optimal method of choice and but otherwise, the hybrid Arnoldi-Newton

scheme provides a gain of atleast factor of 2 as compared to just using IRAM

scheme.

Clearly, results in Table (6.3) show the better convergence of the hybrid

schemes for higher dominance ratio problems. This test result proves the

feasibility of such schemes to resolve the fundamental eigenmodes for even

strongly coupled (in terms of energy groups) problems. Further studies are

necessary to improve the bootstrapping procedure and implementation of

more efficient preconditioners for these block-symmetric system of equations.

6.1.5 Closing Remarks

The hybrid technique proposed using inexact Newton iteration is proven

to be quite effective for the problems considered and delivers performance

and convergence on-par to the state-of-art IRAM scheme. Future work is
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necessary to gauge the applicability of various kinds of preconditioners, other

than the ones shown in this section, to improve computational efficiency. The

flexibility of the MFNK framework to include these ideas apart from solving

tightly-coupled multi-physics simulations, affirms that karma framework

code can tackle linear, non-linear, eigenvalue and transient problems with

different preconditioning approaches and coupling methods under "one roof".
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6.2 Non-equilibrium Radiation Diffusion Physics Prob-

lem

The Boltzmann transport equation describes the behavior of radiation trav-

eling through a material. It is generally considered as the most accurate

model for the statistical average density of particles in a system, with very

few assumptions. Non-equilibrium radiation transport physics deals specifi-

cally with the transport of photon energy and its coupling with a background

material. It occurs at the heart of stars and several high energy physics sys-

tems [111], where there are steep energy and temperature gradients.

Several approximations that can be applied to the Boltzmann equation

since solving the transport equation is computationally quite expensive. In

the current work, we use the gray diffusion approximation with flux limiters

[112]. The system of equations describing the radiation and material energy

fields used here are given as

∂E

∂t
− ~∇·(Dr

~∇E) = σa(T
4 − E), (6.21)

∂T

∂t
− ~∇·(Dt

~∇T ) = σa(E − T 4), (6.22)

where E,T are the radiation energy and material temperatures respectively,

Dr,Dt are the radiation and temperature diffusion coefficients and σa is the

photon absorption coefficient.

The definitions for these material properties [113] are

σa =
z3

T 3
, (6.23)

Dr(T ) =
1

3σa + (1/E)|∂E∂x |
, (6.24)

Dt(T ) = kT 5/2, (6.25)

with z being the material atomic number and k is a constant.
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Recently, the use of tightly coupled methods for non-equilibrium radia-

tion diffusion with Jacobian-Free Newton Krylov methods has been analyzed

[27, 20, 2] and its superiority over Operator-Split loosely coupled methods

are provided. Based on these ideas, the karma framework is used in the

current work to solve problems with different discretizations and coupling

methods in a single code system.

Since radiation diffusion problems in general have strong gradients, tra-

ditional cG FEM spatial discretization of the elliptic operator in Eq. (6.22)

is unstable without additional stability preserving terms added to the weak

form. These family of methods, generally referred to as Stabilized Finite

Element Methods (SFEM) [114] have enjoyed much success in advection

dominated problems. The above set of equations can also be discretized

with a dG(0) formulation or with the traditional Finite Volume Method

(FVM) to conserve the radiation energy solution field throughout the tran-

sient. Preliminary studies with both these spatial treatments have shown

that SFEM necessitates the selection of an optimal parameter in order to

avoid unphysical solutions and is not guaranteed to be absolutely stable

while FVM requires the usage of fine mesh resolution in order to gain better

solution accuracy. Hence, all results shown in the current section will use

FVM for spatial discretization with high number of elements to capture the

energy and temperature profiles accurately.

Once the spatial scales are resolved by an appropriate spatial treatment,

the temporal integration can be performed using L−stable schemes such as

SDIRK2(2) and SDIRK3(3). It is also possible to use adaptive time-stepping

strategies to choose a time step based on the dominating dynamical time

scale of the problem. In order to correctly resolve the solution fields from

both the radiation and material temperature accurately, a minimum of the
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time scales for the solution evolution is computed and used based on the

following controller.

Dynamical time scale controller:

τndyn =
S∣∣∣ 1φ
∂φ
∂t

∣∣∣
n

≈ ∆tn
S∣∣∣φn+1−φn

φn+1

∣∣∣
(6.26)

where φ is the solution field for current physics and S is a safety factor.

6.2.1 One-dimensional Problem

In order to analyze the different space-time discretization and coupling meth-

ods, we consider a one-dimensional model problem that consists of a unit

radiation flux impinging on an initially cold slab of unit depth. This results

in with Robin boundary conditions for the radiation equations at x = 0 and

x = 1. These conditions are

1

4
E − 1

6σa

∂E

∂x
= 1, x = 0, (6.27)

1

4
E +

1

6σa

∂E

∂x
= 0, x = 1. (6.28)

The material temperature has homogenous Neumann conditions imposed at

the boundaries. The initial solution fields are

E(x, 0) = 10−5,∀x = [0, 1], (6.29)

T (x, 0) = E(x, 0)1/4 ≈ 0.0562. (6.30)

The material atomic number z for the homogenous medium is taken to be

1.0. Taking k = 0.1, we replicate the results provided by Mousseau et al.

[113].
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6.2.2 Results

The problem shown above was discretized with FVM using 800 elements and

SDIRK3(3) method in both space and time, respectively, and solved using

both weakly and strongly coupled methods. The solution profiles at a final

time of T=2.5 seconds obtained using an adaptive time step controller are

shown in Fig. 6.6.
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Figure 6.6: Non-equilibrium Radiation Diffusion Test Problem: Radiation

and Material Temperature Profiles.

Note that the results given by Mousseau in [113] for the same test problem

do not match the solutions shown here. The wave propagation speed of the

energy source due to the left boundary condition is resolved differently in

Fig. 6.6 but it converges consistently to a reference solution as the safety

factor S is reduced.
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Next, we will look at the different tight coupling strategies (Picard versus

Newton), based on the linearized physics-based Jacobian that is lagged at the

previous step along with ILU(0) as an algebraic preconditioner. The results

for the computational cost of the tightly coupled methods with constant time

stepping using different step sizes are shown below.

Table 6.4: CPU time for one-dimensional problem using Picard vs Newton

iteration

∆ t Picard-Krylov Newton-Krylov

4× 10−3 – 78.3

2× 10−3 236.624 127.143

1× 10−3 354.773 144.921

From Table 6.4, we can infer that the cost of the Newton-Krylov solution

procedure increases sub-linearly as the number of steps is increased. Also

due to the usage of the linearized Jacobian as only a preconditioner, higher

time step sizes can be used to solve the system of equations. This is not the

case for Picard iterations using the linearized Jacobian as the operator with

ILU(0) as its preconditioner, since the solution starts to diverge for large

time step sizes.

6.2.3 Closing Remarks

The flexibility of using the karma multi-physics code system is evident

from the experiments conducted for the problems involving radiation dif-

fusion physics using different spatial and temporal discretization schemes,

along with a variety of consistent coupling methods. Also, using high-order

methods with time adaptivity enables the ability to accurately capture the
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solution evolution based on its dynamical time scales. Further investigation

is necessary to ascertain the reasons for the disparity in the results obtained

here compared to Mousseau.



Chapter 7

Conclusions

‘Computers are useless. They can only give you answers.’

– Pablo Picasso

Numerical simulation of multi-physics problems are difficult due to the

need to resolve the stiff variations in spatial and temporal scales. This project

used tight coupling methods for multi-physics problems in order to retain

high-order spatio-temporal accuracy in the computed solution fields for stiff

transients occurring in nuclear reactors and other fields (radiative transfer).

The lessons learnt from using tight coupling methods for these problems are

summarized below along with envisioned extensions to the karma frame-

work that would provide further intuition for the develop efficient methods

for coupled multi-physics problems.

7.1 Lessons Learned

1. Existing coupling methods using Operator-Splitting (OS) strategies

were analyzed and the deficiencies in these methods including condi-

166
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tional stability and degradation of the higher order temporal accuracy

were shown. In contrast, tightly coupled methods with either Picard

or Newton iterations do restore the accuracy in the numerical solution,

thereby reducing the total computation time where stability limits do

not dominate the dynamical physical scales.

2. The tightly coupled methods can be unified under a single Matrix-

free Nonlinear-Krylov (MFNK) framework that is based on a finite-

differenced expression to obtain the action of the Jacobian matrix rep-

resenting the coupled system matrix on a vector. Existing OS strate-

gies offer intuitive knowledge regarding the important length and time

scales to be tackled which can be used to create specialized schemes

that serve as good preconditioners to reduce the total computational

time in the MFNK technique. Note that usually such preconditioners

are used as solvers themselves if the coupling strength between the

physics terms is weak.

3. The efficacy of the tightly coupled schemes are superior as compared

to the loosely coupled OS schemes. Slight modifications on existing

coupling strategies by introducing Picard-like iterations or performing

fewer Newton iteration can improve the stability regions of the simple

OS strategies.

4. The variations in time scales during the course of a multi-physics tran-

sient problem are often not dominated by a single physics component

alone. The complex interplay of these temporal scales requires adaptive

techniques in order to resolve the solution fields accurately in amenable

wall-clock times. Tightly coupled schemes with adaptive time step-
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ping procedures are excellent candidates to attain better efficacy using

higher order, L−stable, temporal methods.

5. Method of Manufactured Solutions (MMS) and analytical methods are

effective tools for the verification of non-linear multi-physics problems.

Even though high fidelity physical models were not used in this work,

the application of these techniques to even complicated cases is possible

using symbolic mathematical toolboxes.

7.2 Future Work

The non-linear solution methods for multi-physics problems given in this

work offers tremendous scope for future extensions. Few of the research

areas that need to be focussed in the near future are listed below.

1. Create a multi-channel analysis code within the existing karma frame-

work in order to apply the code system to problems in design and safety

analysis of nuclear reactors.

2. Use the ability to create an array of varying fidelity physics models with

the karma framework in order to verify the application of efficient,

fidelity-independent coupling strategies.

3. Use spatial adaptive capabilities from hp-FEM ideas and adjoint based

error estimators. Similar principles apply to time adaptivity using

adjoint based temporal adaptivity.

4. If rigorous a-priori estimates for determining the strength of the cou-

pling terms can be obtained based of Jv and J̃v, where J̃ is the OS

Jacobian matrix, an adaptive solution procedure selection can be made
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to choose from using either OS coupled strategy as the solver itself or

as a preconditioner for the tightly coupled solution technique. This

has tremendous potential to reduce the total runtimes in regions of the

transient when the dynamical time scales are themselves well below

the stability limits for OS coupling. Such algorithms can create com-

putationally efficient, high accuracy schemes while making use of the

unified MFNK framework proposed here.

5. The karma framework has extensive parallel capabilities since it is

based on PETSc for all the relevant data-structures. Preliminary re-

sults for single-physics non-linear diffusion problems and coupled neutronics/thermal-

conduction problems have shown linear speedup for up to 32 proces-

sors. Further studies need to be performed to measure the scalability

of tightly coupled methods and for finding efficient parallel solve/pre-

conditioning techniques for problems of interest in reactor analysis.

6. Finally, the karma framework is implemented with a flexible API.

With only definitions of the semi-discrete non-linear residual that is

consistent with the actual PDE for the physics model, the MFNK can

be used to solve the non-linear, time-dependent problem. Improved

efficiency can also be obtained if an external code can provide a suitable

preconditioner to reduce the total Krylov iterations. This lends the

possibility to use existing single-physics codes in order to attain tightly

coupled solutions, when necessary, thereby preserving numerous man-

years of development efforts on these codes.
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Appendix A

MATLAB SCRIPTS FOR

MANUFACTURED

SOLUTIONS

A.1 MMS Script for Coupled Conduction/Fluid Prob-

lem

clear a l l; clc;

% |=========| | yMAX

% | | Tf | |

% y | 2-D | Tc (1-D: y)

% | | (x,y) | |

% |=========| | 0

% 0 --x-- xMAX

syms x y t rF rT Ctf Ctc Tf Tc rho rhoU rhoE mu hc Dh

syms xMAX yMAXw del GAMMA Cp Cv RCONST Qconst G

185
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syms dpdrho dpde kfluid Fw a b c p0 rho0 Tf0 Nu0 mu0

% Heat conduction PDE

% Ctf and Ctc are time constants -> Basically, you could

% make Ctf >> Ctc and this will introduce fast time scales

% due to heat conduction and slower scales due to heat

% removed by fluid.

% Fuel temperature exact solution

Tf = Tf0 + (1+tanh(Ctf*t)) * rF * ((0.5+ sin(pi/2*y/yMAX) )’

* (1+tanh(w*2/3-w*x/xMAX))) ;

% Coolant temperature exact solution

Tc = (1+tanh(Ctc*t)) * rT * (a-b*tanh(c*w-w*y/yMAX)) ;

% viscosity variation with temperature

mu0 = 1.2075e-006 * subs(subs(Tc, t, 0), y, 0) ;

% Density profile

rhoc = 219 ; f = 275.32 ; g = 511.58 ; Tc0 = 2503.7 ;

rho = rhoc + f*(1-Tc/Tc0) + g*(1-Tc/Tc0).^0.5 ;

inte = Cv * Tc ;

% Velocity constant in space-time

v = G./rho ;

% momentum = mass flux

m = rho .* v ;

% Total energy

e = rho.*inte + 0.5*m.*m./rho ;
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% linearized EOS

p = p0 + dpdrho * (rho-rho0) +

dpde * (Tc-subs(subs(Tc, t, 0), x, 0)) ;

M = v ./ sqrt(dpdrho) ;

% viscosity variation with temperature

mu = 1.2075e-006 * Tc ;

% http://www.cheresources.com/convection.shtml

Nu = Nu0 * (mu./mu0).^0.14 ;

hc = Nu * kfluid / Dh ; % Heat Transfer Coefficient

Re = G * Dh / mu ; % Reynolds number

Fw = 0.3164 / Re^0.25 ; % Blasius friction factor

% Thermal conductivity for fuel.

k = 6400.0./Tf^2 * exp(-16.35/Tf) ;

% % % % % % % FORCING FUNCTIONS % % % % % % % % % % %

STf = di f f(Tf,t) - di f f(k*di f f(Tf,x), x)

- di f f(k*di f f(Tf,y), y)

+ hc * (subs(Tf,x,xMAX)-Tc) ;

Scont = di f f(rho, t) + di f f(m, y);

Smom = di f f(m, t) + di f f(m*v, y) + di f f(p, y)

+ Fw * v * abs(v) ;

Sener = di f f(e, t) + di f f((e+p)*v, y)
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- hc * (subs(Tf,x,xMAX)-Tc) ;

disp(’STf’); ccode(STf)

disp(’Scont’); ccode(Scont)

disp(’Smom’); ccode(Smom)

disp(’Sener’); ccode(Sener)

Listing A.1: MMS Script for Coupled Conduction/Fluid Problem
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A.2 MMS Script for Coupled Neutronics/Conduc-

tion Problem

syms x y z LZ t s T egroups dgroups k avgnu Bg2

syms LX LY CT CF rT rF PI normalization_const

syms DEFAULT_FUEL_TEMP doppler_coeff k0 k1 rho cp

syms beta_tot PHI1 PHI2 xsrem1 xsrem2 xsfiss1 xsfiss2

syms xsrem01 xsrem02 xsnufiss1 xsnufiss2

syms xsdiff1 xsdiff2 energy_per_fission1 energy_per_fission2

syms invvel1 invvel2 xsscatt12 xsscatt21

sx = sin(x/LX*PI) ;

sy = sin(y/LY*PI) ;

T = CT*(1+tanh(rT*t))*sx*sy ;

k = k0 + k1*(T - DEFAULT_FUEL_TEMP) ;

egroups = 2 ; % energy groups

dgroups = 2 ; % delayed precursor groups

xsnufiss1 = avgnu * xsfiss1 ;

xsnufiss2 = avgnu * xsfiss2 ;

xsrem1 = xsrem01 + doppler_coeff*(

sqrt(T) - sqrt(DEFAULT_FUEL_TEMP) ) ;

xsrem2 = xsrem02 ;

beta(1) = sym(’beta[1]’) ;

beta(2) = sym(’beta[2]’) ;

lambda(1) = sym(’lambda[1]’) ;

lambda(2) = sym(’lambda[2]’) ;

beta_tot = beta(1) + beta(2) ;
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% 2-D geometric buckling

Bg2 = PI*PI*(1/LX^2+1/LY^2) ;

PHI1 = CF*(1+exp(rF*t))*sx*sy*(x/LX*y/LY) ;

PHI2 = PHI1 * xsscatt12 / (xsrem2 + xsdiff2 * Bg2) ;

for dg = 1 : dgroups

% Initial precursor concentration

PREC_0(dg) = beta(dg)*(subs(xsnufiss1*PHI1+

xsnufiss2*PHI2, t, 0))/lambda(dg) ;

% Analytically solve the precursor ODE

PREC(dg) = ( PREC_0(dg) + beta(dg)*int(

subs(

(xsnufiss1*PHI1+

xsnufiss2*PHI2)*exp(lambda(dg)*s), t, s),

s, 0, t) ) * exp(-lambda(dg)*t) ;

end

% FORCING FUNCTIONS

% Fuel Temperature

srcT = rho*cp*di f f(T, t) - di f f(k*di f f(T,x),x) -

di f f(k*di f f(T,y),y) - normalization_const*

(energy_per_fission1*xsfiss1*PHI1+

energy_per_fission2*xsfiss2*PHI2) ;

% Fast Flux

srcFLX1 = invvel1*di f f(PHI1,t) - di f f(xsdiff1*di f f(PHI1,x),x)

- di f f(xsdiff1*di f f(PHI1,y),y) + xsrem1*PHI1

- (1-beta_tot)*(xsnufiss1*PHI1+xsnufiss2*PHI2)

- xsscatt21*PHI2 ;

i f dgroups > 0

for dg = 1 : dgroups

srcFLX1 = srcFLX1 - lambda(dg)*PREC(dg) ;
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srcPREC(dg) = di f f(PREC(dg),t) -

beta(dg)*(xsnufiss1*PHI1+xsnufiss2*PHI2)

+ lambda(dg)*PREC(dg) ;

end

end

% Thermal Flux

srcFLX2 = invvel2*di f f(PHI2,t) - di f f(xsdiff2*di f f(PHI2,x),x)

-di f f(xsdiff2*di f f(PHI2,y),y) + xsrem2*PHI2

- xsscatt12*PHI1 ;

Power = normalization_const*(energy_per_fission1*xsfiss1*PHI1

+ energy_per_fission2*xsfiss2*PHI2) ;

% Total power in the domain as a function of time

totPower = int (int (Power, y, 0, LY), x, 0, LX) ;

codeT = ccode(T)

codeFLX1 = ccode(PHI1)

codeFLX2 = ccode(PHI2)

for dg = 1 : dgroups

fprintf(’\ncodePREC{%d} = \n\n’, dg) ;

disp(ccode(PREC(dg)))

end

codeST = ccode(srcT)

codeSFLX1 = ccode(srcFLX1)

codeSFLX2 = ccode(srcFLX2)

for dg = 1 : dgroups

codeSPREC{dg} = ccode(srcPREC(dg)) ;

fprintf(’\ncodeSPREC{%d} = \n\n’, dg) ;

disp(codeSPREC{dg})

end
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codePower = ccode(totPower)

Listing A.2: MMS Script for Coupled Neutronics/Conduction Problem



Appendix B

CROSS-SECTION DATA FOR

EIGENVALUE PROBLEMS

B.1 2-D Two-group IAEA Benchmark Problem

This problem is based on the benchmark introduced in ANL [115] and con-

tains 4 materials. The cross-sections are obtained from the 3D data by

accounting for leakage in z-direction with a Bg2z = 8× 10−5.

The lattice configuration is of the form given below with each assembly

having dimensions = [10, 10] cms.

3 1 1 1 1 1 1 3 3 1 1 1 1 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 4 4 4 4

1 1 1 1 1 1 1 1 1 1 1 2 2 4 4 4 4
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3 1 1 1 1 1 1 3 3 2 2 2 2 4 4 0 0

3 1 1 1 1 1 1 3 3 2 2 2 2 4 4 0 0

1 1 1 1 1 1 1 2 2 2 2 4 4 4 4 0 0

1 1 1 1 1 1 1 2 2 2 2 4 4 4 4 0 0

1 1 1 2 2 2 2 2 2 4 4 4 4 0 0 0 0

1 1 1 2 2 2 2 2 2 4 4 4 4 0 0 0 0

2 2 2 2 2 4 4 4 4 4 4 0 0 0 0 0 0

2 2 2 2 2 4 4 4 4 4 4 0 0 0 0 0 0

4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0
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B.2 Cross-section Data for 2-D Two-group Homoge-

nous Medium Problem

D1 = 1.0,D2 = 0.4

Σr,1 = 0.04,Σr,2 = 0.08

νΣf,1 = 0.01, νΣf,2 = 0.13

Σs,1−→2 = 0.02,Σs,2−→1 = 0.001
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ENABLING HIGH-FIDELITY NEUTRON TRANSPORT SIMULATIONS 

ON PETASCALE ARCHITECTURES 
 
 
 

SUMMARY 
The UNIC code is being developed as part of the DOE’s Nuclear Energy Advanced Modeling 
and Simulation (NEAMS) program. UNIC is an unstructured, deterministic neutron transport 
code that allows a highly detailed description of a nuclear reactor. The primary goal of our 
simulation efforts is to reduce the uncertainties and biases in reactor design calculations by 
progressively replacing existing multilevel averaging (homogenization) techniques with more 
direct solution methods based on first principles. Since the neutron transport equation is seven 
dimensional (three in space, two in angle, one in energy, and one in time), these simulations are 
among the most memory and computationally intensive in all of computational science. In order 
to model the complex physics of a reactor core, billions of spatial elements, hundreds of angles, 
and thousands of energy groups are necessary, leading to problem sizes with petascale degrees of 
freedom. Therefore, these calculations exhaust memory resources on current and even next-
generation architectures. In this paper, we present UNIC simulation results for two important 
representative problems in reactor design and analysis—PHENIX and ZPR-6. In each case, 
UNIC shows good weak scalability on up to 163,840 cores of Blue Gene/P (Argonne) and 
122,800 cores of XT5 (Oak Ridge). While our current per processor performance is less than 
ideal, we demonstrate a clear ability to effectively utilize the leadership computing platforms. 
Over the coming months, we aim to improve the per processor performance while maintaining 
the high parallel efficiency by employing better algorithms such as spatial p- and h-multigrid 
preconditioners, optimized matrix-tensor operations, and weighted partitioning for better load 
balancing. Combining these additional algorithmic improvements with the availability of larger 
parallel machines should allow us to realize our long-term goal of explicit geometry coupled 
multiphysics reactor simulations. In the long run, these high-fidelity simulations will be able to 
replace expensive mockup experiments and reduce the uncertainty in crucial reactor design and 
operational parameters.   

Keywords 
Neutron transport, discrete ordinates, nuclear reactors, parallel scalability, memory bandwidth. 

1. INTRODUCTION 
Nuclear engineering has a rich history of simulation-based design following sound economical 
and safety-driven principles. However, many of the modern reactor modeling codes were 
developed in the 1970s and 1980s and targeted serial platforms using homogenization techniques 
because of the high computational costs of explicit geometry approximations. In this paper, we 
describe the development of a new reactor analysis code that bridges the gap between the 
approximation-based legacy tools and a first-principles approach. The code we discuss in this 



paper is specifically targeted at applications for which the legacy tools are least reliable, and its 
development is possible only on the large scale parallel machines. 

The performance of nuclear power reactors is governed by the fission rate of the nuclear fuel. A 
predictive analysis capability generally is required to optimize the safety characteristics of the 
reactor and minimize the costs associated with operating the reactor. This analysis capability is 
derived from the solution of a Boltzmann integro-differential transport equation for the neutron 
density. This equation is widely used in atmospheric modeling, astrophysical research, nuclear 
weapons research, medical physics, and industrial applications such as mineral assaying and oil-
well logging. Among these fields, the most significant parallelization efforts to date have been 
applied to structured geometry solvers for the thermal radiative transport equation (gamma and x-
rays) used in weapons related research, and researchers have utilized several “top” 
supercomputers to perform simulations. Unfortunately, many of the modeling challenges that 
arise in the thermal radiative and the neutron transport equations are sufficiently different that 
direct technology transferability between the codes is impractical. 

The primary unknown in the Boltzmann transport equation is the neutron density or, in nuclear 
engineering vernacular, the neutron “flux” (density multiplied by velocity). The equation has 
seven independent variables: three in space, two in angle, one in energy, and one in time. 
Because an accurate, first-principles discretization of these variables is untenable, legacy solvers 
are typically based on approximations that reduce this dimensionality. The neutron transport 
equation can also be shown to asymptotically limit to the canonical hyperbolic, elliptic, and 
parabolic partial differential equation forms under simple changes in material properties that may 
occur in a nuclear reactor. In thick, highly-scattering regions, the transport equation limits to a 
(parabolic) time-dependent diffusion equation, which, in steady state, is elliptic. In “free-
streaming” regions (a standard characteristic of research reactors), the limiting behavior is 
hyperbolic. Thus, the large dimensionality and many-faceted solution behaviors for this equation 
present the greatest challenges to the code developer.  

Our targeted research is the immediate improvement to areas where legacy solvers are 
insufficient: nuclear reactor dynamics. These problems require the solution of the time-dependent 
Boltzmann transport equation and the simultaneous solution of the thermal-hydraulic and 
structural-mechanics equations [1]. Two years ago we started a multiyear development project to 
create a dynamics solver capability using the open-science high performance computing 
resources at Argonne National Laboratory (IBM Blue Gene/P) and Oak Ridge National 
Laboratory (Cray XT5) [2-4]. The initial condition for this formulation requires the solution of a 
time-independent k-eigenvalue equation [1] that is the focus of this manuscript. We note that 
with a linear implicit time formulation, all subsequent solutions at the end of each time step 
exhibit very similar requirements to that needed to solve the initial k-eigenvalue problem. In this 
paper, we focus on the recent success of the SN2ND solver from UNIC [5], which solves the 
steady state second-order even-parity formulation of the neutron transport equation. 

2. NEUTRON TRANSPORT SIMULATION COMPLEXITY 
The primary issue in nuclear reactor analysis is the shear scale of the problem to be solved. We 
have thus far limited our dynamics solver development to fast reactor designs, since these 
reactors have been proposed as an alternative to reduce the volume of spent fuel disposition (i.e. 
fission the high actinides rather than store them indefinitely) and the nuclear industry has 



insufficient engineering experience. With time, we will also apply our reactor analysis tools to 
more prevalent light water reactors (LWRs), very high temperature gas cooled reactors (VHTRs), 
and the Canadian deuterium uranium (CANDU) reactors [6] to help address the smaller pool of 
unanswered questions that these larger, thermal reactor designs pose. 

We begin with the spatial domain of a typical sodium-cooled fast reactor, some examples of 
which are shown in Figure 1. For neutron transport, we may limit our focus to just the “core” of 
the reactor shown in the center picture of Figure 1, the scale of which, relative to the plant, can be 
inferred from the rightmost picture in Figure 1. The core typically comprises about 200-500 
ducted fuel assemblies similar to those depicted in the leftmost picture of Figure 1.  

The assemblies are composed of many (60-300) fuel pins depending on the fuel cycle 
performance targets. Radially, the core is built of fuel assemblies that form a rough cylinder, 
leading to a total modeling diameter of two to six meters and a height of three to five meters. 
This core size and the spatial heterogeneity of the fuel assemblies require approximately half a 
billion to a billion finite elements to accurately represent the geometry and the associated spatial 
gradients in the neutron density. 

Next we consider the energy and angular requirements because they are tightly coupled. Neutrons 
lose fractions of their energy by scattering with materials, and the amount of energy loss per 
scattering depends on the scattering material and collision angles. Figure 2 shows the highly 
varying “cross section” data (roughly, the probabilities of interaction versus neutron energy) for 
the Uranium-238 and Iron-56 isotopes that constitute two of the largest components of a sodium 
cooled fast reactor. Note that these are on a log-log scale. Most other isotopes present in a 
nuclear reactor have cross section representations of similar complexity. 

The large amount of material heterogeneity in the geometry, combined with the severity of the 
energy dependence in the cross section data, leads to flux distributions of comparable complexity 
to the space-energy distribution of the cross section data. Hence, it is impractical to use a smooth 

Figure 1. Fuel Assembly, Reactor, and Plant Schematics for a Sample Fast Reactor 
 



polynomial functional representation in energy, and all historical and modern energy 
discretizations employ a “multigroup” (zeroth-order finite element in energy) flux representation 
[1] by utilizing “effective” multigroup constants. Additionally, because neutron scattering 
couples the energy and angle terms, with the rapid changes in the energy dependence of the cross 
sections seen in Figure 2 come rapid variations in the magnitude of the flux in the angular 
variable. We estimate that a first-principles approach will require 100,000 energy groups and 
1,000 angles (collocation or zeroth-order finite elements on the sphere), which leads to 
approximately 1017 degrees of freedom in space, energy, and angle for each time step. Thus, even 
on today’s supercomputers, some form of approximation is necessary to obtain solutions. 

3. NEUTRON TRANSPORT FOR REACTOR ANALYSIS 
Fortunately, most engineering analyses permit simplifying approximations of the explicitly 
discretized equation. The first and most important simplification reduces the demands of the 
energy representation. This requires several multilevel modeling and simplification steps, the 
details of which are beyond the scope of this paper, whose purpose is to produce a set of coarse 
group cross section data that preserves key neutron reaction rates in each energy group [1]. These 
approximations rely upon substantial experience on particular reactor systems and experimental 
validations of the predictive abilities of the legacy tools.  

As we develop our code, the significance of these approximations will diminish relative to the 
legacy approaches, since we will enable a better matching of the “reference” configuration used 
to generate the coarse group cross section data to the system at hand. The end result is that we 
reduce the need for 100,000 groups to much less than 2,000 groups, with a general ability to use 
fewer than 100 groups for most analyses (2 groups are typically used in most industry reactor 
analysis codes). In this work, we use a 33-group approximation that pushes our current solver to 
the limits of the available memory on Blue Gene/P. 



 
  Capture Cross Section for U-238   Total Cross Section for Fe-56  

Figure 2. Sample Cross Section Data for U-238 and Fe-56 
 

We next consider the time discretization. The average speed and multiplication time of neutrons in a 
reactor core are such that time steps on the order of milliseconds are needed for rapid transient scenarios 
such as a control rod ejection, making the neutronics component the “stiff” part of the overall multi-
physics system. The duration of the simulated transient varies from hours to days, which makes the time 
spent in the neutron transport solver the limiting simulation factor. Most modern legacy tools for fast 
reactor analysis avoid this problem by using a point kinetics (space-angle-energy independent) model or 
a few energy-group diffusion theory methodology on a structured geometry grid [1]. With the 
improvements in the energy approximation and the use of transport rather than diffusion theory, we 
expect to significantly improve the accuracy and fidelity of the safety analysis modeling for these 
simulations. 

Unstructured mesh deterministic methods use the multigroup approximation in energy combined with 
either a hybrid finite element or a continuous, finite element decomposition in space. Historical angle 
discretization schemes include spherical harmonic (polynomial) expansions, finite element, or angle 
collocation (zeroth order finite element, also known as discrete ordinates) [1]. To date, most 
parallelization efforts in neutron transport have focused on improvement of structured geometry discrete 
ordinates solvers [7-9] with moderate to good success on small to medium-range parallel machines, 
although it is difficult to find performance data for these tools on more than 2,000 processors. 
Unfortunately, these tools are not useful for simulating coupled multiphysics phenomena inside the 
complex reactor geometries. While some experts might argue that we can impose pin-cell level or the 
often termed “lego landing” homogenization approaches to capture the spatial heterogeneity [18], these 
approaches can quickly become unmanageable in terms of computational effort and really just substitute 
one problematic legacy approach with another (albeit better) one. Even if we were to take such an 
approach, it would seem wiser to just use the legacy tools based on assembly homogenization [10], since 
those tools can easily execute on serial platforms and provide comparable if not superior solutions. In 
addition to our own work, there has been substantial research on unstructured methodologies [11-13], 
but these codes are not obtainable, not set up for the specific needs of reactor analysis, or not 
demonstrated to work for large, heterogeneous geometry applications and scale well on contemporary 
parallel platforms (soon expected to have millions of cores). 



We note that parallelization of the Monte Carlo method for has been particularly effective because of its 
“embarrassingly parallel” characteristics. However, the dynamics problems that we are targeting include 
massive memory requirements that prevent each processor from accessing the full space-energy 
representation of the problem in the Monte Carlo method. The standard proposed remedy is to use 
domain decomposition in the Monte Carlo algorithm, but this severely impacts its scalability. Moreover, 
Monte Carlo solutions can also contain stochastic uncertainties on the order of the expected 
perturbations from the thermal-structural feedback effects, which makes the Monte Carlo methods even 
more impractical. Thus, a massively parallel deterministic solver for dynamics problems truly fills a gap 
in the available predictive capabilities of modern neutron transport tools. 

4. UNIC: MODERNIZATION AND DEVELOPMENT OF REACTOR ANALYSIS TOOLS 
In this section we present an overview of our solution algorithm to the time-independent (the initial 
condition) neutron transport equation. We also discuss algorithmic choices we have made to reduce 
execution times by cutting down on extraneous floating point work while maintaining good parallel 
scalability. 

4.1 Neutron Transport Equation 
The multigroup form of the neutron transport equation consists of G equations with 1<g<G: 

,
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Here, ˆ( , )g rψ Ω
   is the group neutron angular flux and 
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   is the total cross section (sum of all reaction 

probabilities). Thus, the first term is a streaming/leakage term, and the second is a collision removal 
term. The system of equations is coupled via the source ˆ( , )S r Ω

  which we expand in terms of group-to-
group scattering and fission as 

, ' '
' 1

' , ' '
' 1

ˆ ˆ ˆ ˆ ˆ( , ) ( , ') ( , ') '

1 ˆ ˆ( ) ( ) ( , ') '

G

g s g g g
g

G

g g f g g
g

S r r r d

r r r d
k

ψ

χ ν ψ

→
=

=

Ω = Σ Ω⋅Ω Ω Ω

+ Σ Ω Ω

∑∫

∑ ∫

  

  

. (2) 

Here, k is the dominant steady state system eigenvalue, also known as its effective multiplication factor, 
keff. The scattering source in Eq. (2) redistributes neutron energies and angles in an anisotropic way, 
while the fission source redistributes neutrons into the isotropic fission energy spectrum χ.  

Based on the parallelization successes of other authors with the Poisson equation, we focused part of our 
initial development on second-order methodologies that implement continuous, spatial finite element 
approximations such that we can take advantage of parallel conjugate gradient methods. To obtain the 
second-order discrete ordinates formulation used in SN2ND, we expand the angular flux in Eq. (1) into 
even-parity [ ˆ( , )g rψ + Ω

 ] and odd-parity [ ˆ( , )g rψ − Ω
 ] components: 

ˆ ˆ ˆ( , ) ( , ) ( , )g g gr r rψ ψ ψ+ −Ω = Ω + Ω
  

. (3) 

We then rewrite Eq. (1) using Eq. (3) to obtain coupled, first-order even-parity and odd-parity equations: 
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    . (4) 



We next solve for the odd-parity flux in terms of the even-parity flux and substitute it into the even-
parity equation to obtain the second-order even-parity transport equation. 
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We weight Eq. (5) with a set of spatial trial functions ( )f r , integrate over volume, and apply the 
divergence theorem to the first term such that we obtain the natural vacuum boundary condition term on 
the surfaces of the domain boundary. 
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Finally, we implement a continuous finite element formulation for the even-parity flux (allowing for a 
discontinuous odd-parity flux as a secondary unknown). The coefficient matrix produced from the terms 
on the left side of Eq. (6) can be shown to be symmetric positive definite and thus suitable for the 
conjugate gradient (CG) methodology, provided that the terms on the right side of Eq. (6) are “lagged” in 
an iterative approach to be discussed below. 

4.2 SN2ND Solver Implementation 
The spatial approximation is treated by using a standard continuous finite element method, and we 
employ classic domain decomposition in which weights are applied to the vertices to balance the local 
work with the communication costs required to connect the domain. For the angular variable, we chose 
the discrete ordinates approximation, which requires us to define a set of directions on the unit sphere. 
With regard to parallelization, we employ the generic decomposition of (S)pace, (A)ngle, and (G)roup 
shown in Figure 3. 

 
Figure 3. Space, Angle, Group Decomposition for a Parallel Machine. 



In this approach, each MPI process sees four communicators: space, angle, group, and the global 
communicator. The advantage of this approach is that the group and angle communication does not 
overlap with respect to space, and thus the communication in these two directions can be done 
simultaneously on the parallel machine. 

When a discrete ordinates approximation is applied to Eq. (6), we find that, for each group, the set of 
angular equations are coupled only via the “within-group” source term on the right side of Eq. (6). This 
“within-group” equation is typically solved by using Richardson iteration, termed as “scattering 
iteration” in the literature, where the within-group scattering source is lagged in iteration [1,2]. The 
iterations are accelerated by solving a synthetic diffusion equation for the angle-integrated (scalar) flux, 
which is essentially a multigrid preconditioner in angle [5]. Thus, a “scattering iteration” of SN2ND 
involves solving 100 diffusion-like equations (assuming 100 directions in the angular cubature) 
simultaneously to obtain the angular discrete ordinates flux for each group. These equations are currently 
solved by using a parallel SSOR-preconditioned CG methodology available in PETSc [17]. Although we 
are developing a customized multigrid preconditioner for this solver, we note that SSOR is the only 
preconditioner that has worked reliably for our problems and has least memory overhead. As stated 
earlier, SN2ND code is solving problem sizes that are at the limit of memory available on the largest 
contemporary machines. Therefore, SSOR is a careful choice after systematic evaluation of several 
preconditioners. In our custom multigrid implementation, SSOR will likely be used at the coarse level. 
To update the source (or perform a synthetic acceleration step) on the right side of Eq. (6), we collect the 
information on the angular communicator of each process. This requires a global reduce operation for 
the locally visible spatial mesh partition for each group (simultaneous communication on group and 
space communicators if fully partitioned in energy). 

In our current implementation, we do not consider parallelization by group because we can already 
saturate the available parallel machines with our space-angle parallelization scheme. However, this 
approach means our memory requirements are linear with respect to the number of energy groups, which 
can be problematic on low-memory machines like Blue Gene/P [3]. In our current solver, we can 
distribute any number of angles on a given process and generally have found that two to three angles per 
process works best. With regard to solving the synthetic acceleration equation, we have currently 
assigned the first process on each angular communicator to again utilize the parallel SSOR-
preconditioned CG algorithm in PETSc, which introduces a load imbalance by angle parallelization. 
With time we expect to redistribute this work on a subset of the processors on the angle communicator. 

The steady state transport equation shown in Eqs. (1) and (2) requires an eigenvalue search procedure to 
obtain k and the associated flux vector. The gold standard for all modern neutron transport codes is to 
use inverse power iteration [1] because it minimizes the effort required to find the dominant eigenvalue. 
Assembling all of the group and direction equations derived from Eq. (6), we write 
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where A is the coefficient matrix, B is the scattering source operator, and F is the fission source operator. 
The power (or outer) iteration methodology finds the dominant k eigenvalue using the following 
recurrence relationships: 
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In SN2ND, we currently use the Gauss-Seidel method to iteratively invert T during each outer iteration 
in Eq. (8), because for fast reactors only a single iteration is required for convergence (neutrons lose 
energy only during scattering events over the energy range of interest in fast reactors, the energy 
coupling is lower triangular). For time-dependent problems and thermal reactor calculations, a Gauss-
Seidel scheme is less efficient, and we intend to use a more general Krylov method with our current 
Gauss-Seidel scheme as a preconditioner. We note that a Krylov solver will also assist in making the 
above methodology scalable in energy for time-dependent problems. 

Fundamentally, this approach does not require T to be exactly inverted during each outer iteration. 
Instead, we require only that the error in the flux vector in Eq. (7) be slightly lower than the error in the 
fission source vector. We implemented an optimized scheme to account for this behavior and combined 
it with conventional Tchebychev acceleration [1,2]. Together, these approaches have allowed us to 
significantly reduce the overall time to solution. Figure 4 shows the impact of making these optimization 
changes on the C5G7 benchmark [18] where the outer iteration eigenvalue, fission source, and flux 
vector are plotted in addition to the within-group flux error for each energy group. In Figure 4, the un-
accelerated approach takes roughly twice the number of outer iterations as the Tchebychev accelerated 
one. More important, the effort spent on solving the within-group flux equations for each outer iteration 
is substantially reduced in the optimized version (the targeted flux error obtained for each group flux at 
each iteration is relaxed). In practice, the effort spent on each outer iteration is nearly constant, although 
the dynamic error adjustments can introduce variability in the total solution time from problem to 
problem. 
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Figure 4.Optimization and Tchebychev Acceleration Impact on the C5G7 Benchmark. 

5. PROBLEMS CHOSEN FOR STUDY 
Two reactor problems have been chosen to demonstrate the performance of the SN2ND solver. Both 
problems consider the steady state eigenvalue solution, the initial condition for the time-dependent 
problems that we will be studying in the near future. Also, both problems cannot be well solved by using 
existing homogenization methodologies hence our desire to use UNIC. 



5.1 PHENIX End-of-Life Experiments 
The first problem is taken from the end-of-life experiments of the PHENIX reactor [19]. A solution 
using UNIC is desired because the legacy solvers (based on conventional homogeneous assembly 
approaches) have difficulty in representing the control rod configurations accurately. In this benchmark, 
only the control rod assemblies are represented heterogeneously. This mixed spatial representation is 
relevant in that our initial time-dependent calculations will also focus on representing only part of the 
geometry heterogeneously. Figure 5 depicts a slice of the PHENIX core center along with a typical 
unstructured mesh (prisms) and the flux solution at two important energy groups in the lower part of the 
control rod assembly created using VISIT [20]. We note that the solutions obtained with SN2ND are, to 
the best of our knowledge, the most reliable means of obtaining the correct solution compared with all 
other modern deterministic solution methods. 

The benchmark authors requested numerous calculations regarding the control rod positioning. 
However, there is insufficient information in the benchmark’s geometry description to create an accurate 
heterogeneous representation of the control rods and other reactor components, and we have limited 
access to more detailed information (proprietary). Consequently, we have constructed a “best-guess” 
model for which we must obtain our own reference eigenvalue solutions by continuous energy Monte 
Carlo calculations. Unfortunately we do not expect to complete these calculations until September 2009. 
Despite the difficulties encountered in using the PHENIX reactor as a verification problem, the 
performance data obtained in April 2009 is relevant in the context of this manuscript. Timing constraints 
have prevented us from getting the performance data from the latest version of our code (which has 
several algorithmic enhancements detailed in Figure 6). 

For our previous calculations we used a 33-group cross section set with a P3 expansion of the scattering 
kernel, which is generally accurate for homogenous problems. Using CUBIT [21], we created meshes 
considering different degrees of radial mesh refinement (three levels) and axial mesh refinement (three 
levels), leading to a total of nine meshes. Our simulations demonstrated that the medium-level approach 
for both the radial and axial directions was sufficiently accurate. This mesh contains 284,682 quadratic 
Lagrangian prismatic elements and 1,741,833 spatial vertices. 

In Table 1, we present the weak scaling results we achieved using SN2ND on Blue Gene/P. Using 
MeTiS [22], we partitioned the mesh into 2,048 pieces leading to ~850 vertices per process, which is 
near the minimum that we can use with the parallel SSOR-preconditioned CG algorithm in PETSc 
(below this, communication overhead increases substantially on both machines). As we increase the 
number of angles (note that the even-parity formulation requires only the half-sphere set of angles or 2π), 
we make a corresponding increase in the number of processors. As can be seen, the eigenvalue rapidly 
converges as the number of directions is increased, which is expected given that a majority of the 
domain is homogenized. An initial glance indicates a drop in weak scaling to 75% on the entire machine; 
however, the number of “fission” (outer) iterations needed to solve Eq. (8) is correspondingly seen to 
increase as well. 
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Figure 5. Planar Configuration of PHENIX Geometry Model and Flux Solution 

 
Table 1. Weak Scaling Study by Angle for the PHENIX Problem on Blue Gene/P 

Cores 4π 
Angles keff 

Fission 
Iters. / 
Time 

Total 
Time 
(sec) 

Source 
Update 
(sec) 

Weak 
Scaling 

32,768 32 0.96006 
23 / 
152 3493 2934 100% 

49,152 48 0.96004 
23 / 
152 3510 2933 100% 

65,536 64 0.96007 
23 / 
153 3526 2934 99% 

73,728 72 0.96015 
23 / 
156 3593 2934 97% 

131,072 128 0.96019 
27 / 
156 4209 3437 83%* 

163,840 160 0.96019 
27 / 
173 4676 3436 75%* 

 

Although the number of fission source iterations can vary depending on the space-angle-energy 
discretization and the dynamic error scheme shown in Figure 4, these “top-level” aspects of the code are 
not part of the parallelization scheme and should not be impacted significantly by changing the angular 
or spatial approximation. Upon further investigation we identified a problem in the within-group 
scattering source iteration algorithm, corrected it, and thus removed the superfluous outer iterations. To 
gauge the impact of our recent algorithmic improvements to SN2ND, we revisited the 65,536 processor 
calculation on Blue Gene/P from Table 1. We now obtain the same solution in a total time of 1366 
seconds with 631 seconds in the source update routine (or 39% of the time reported in Table 1) using 24 
outer iterations. Figure 6 shows the more detailed impact of the improvements made to SN2ND on 
another example problem (discussed next). These reductions in computational effort are not derived 
from machine-specific optimization or from implementing multigrid (which we will not have results for 
until September); they are due solely to our efforts to improve those parts of the algorithm that were 
highlighted as poorly implemented in April 2009. With time we expect many more changes – in addition 
to the proposed p- and h-multigrid preconditioner schemes – all of which should further reduce the time 
to solution such that the multi-physics dynamics calculations we proposed will become feasible.  



5.2 Zero Power Reactor 6 Experiment 6A 
The other problems we chose to simulate for our project this year are the Zero Power Reactor (ZPR) 
experiments 6a and 7 [23]. The ZPR-6 experiments were performed to acquire fundamental data on 
nuclear reactor designs of interest. These particular experiments focused on uranium-fueled (ZPR-6/6a) 
and plutonium-fueled (ZPR-6/7) sodium-cooled fast reactor systems. 

The SN2ND simulations of these experiments will be used to help validate the code and to better 
ascertain the approximation errors in legacy approaches by enabling direct comparisons of computed 
results. While the experiment ZPR-6/7 has more data and is our preference, we have begun with the 6a 
experiment this year because of its simplicity. Figure 7 provides two pictures of the explicit geometry 
model (left, center). The gray color in Figure 7 is used for the matrix tube and drawer fronts that are 
loaded into each tube position. The solid green squares are two-inch depleted uranium metal blocks 
directly loaded into the tubes surrounding the main core and act as a neutron blanket. We separated the 
matrix assemblies, withdrew one of the drawers from the front matrix assembly, and pulled a section of 
the plates out to give a better perspective on the overall geometry. We also provided a plot of the 
enriched uranium plate power (the other plate power contribution is minor) on the right of Figure 7, 
where we have again separated the matrix halves. 

Our initial calculations focused on scoping studies to identify any immediate areas within SN2ND and 
the meshing tools that had to be fixed before attempting the fully explicit calculation. Accordingly, we 
reduced the number of unique fuel drawer types and introduced simple asymmetries into the geometry to 
investigate local flux heterogeneities (note we removed several fuel drawers reducing keff below 1). 
While our more recent work has focused on solving the explicit experiment, we encountered severe 
meshing difficulties within CUBIT that cannot be overcome at this point. 

In general, the exact geometry of a ZPR-6 experiment is difficult to solve with either SN2ND or a legacy 
structured geometry solver because of the large number of material boundaries, as indicated by the left 
picture in Figure 8. Furthermore, for even-parity methods such as SN2ND, the extremely small voids 
separating the plates and various other components can not be explicitly incorporated, and we must 
make some type of geometric simplification (homogenization), as shown on the right of Figure 8. 

 



 
Figure 6. Impact of Various Algorithmic Improvements to SN2ND Since the Original Version of 

This Paper (April 2009) for the ZPR 6/6a Problem in Table 3 on 16,384 Cores of Blue Gene/P. 

 

   
Figure 7. ZPR-6 Experiment 6A Geometry and U-235 Plate Power Solution. 
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Figure 8. Fuel Drawer Model for Initial ZPR-6 Assembly 6A Benchmark 

While one can question the impact of homogenizing the various void regions, our experience indicates 
that the homogenization (where the original density of the matrix tube is reduced and spread into the 
void region) introduces a negligible error in the leakage. The reason is that the void region can impact 
only a small fraction of the solid angle with regard to streaming from the dominant neutron-producing 
plates (uranium and steel). Additionally, the truncation errors resulting from using too few energy 
groups, two few angles in the angular cubature, and too coarse a spatial mesh overwhelm the error 
introduced by this spatial homogenization. Even using the geometric simplifications and the 
homogenization scheme shown on the right of Figure 8, we generate quadratic finite element meshes 
with 15 million vertices and cubic order meshes with 50 million vertices (note that the empty matrix 
tube was removed for these calculations because of its relative lack of importance to the eigenvalue). 
Using the 33-group energy representation with our current preconditioner in space (SSOR-
preconditioned CG in PETSc) quickly forces SN2ND to the memory limit of Blue Gene/P. 

Figure 9 shows a snapshot of the space-energy distribution obtained for two selected drawers from the 
front matrix assembly that can be identified in the leftmost picture. Note that drawer “A” is at the exact 
center of the geometry, while drawer B is chosen significantly away from the core center, and that we 
took the solution slices very near the axial center. The typical cross section generation process (lattice 
calculation) assumes a flux solution similar to that observed at the core center (i.e. drawer A) and thus 
the global flux gradients are not directly accounted for throughout the remaining domain. The 
differences between the drawers illustrate the importance of the global flux gradient on the flux solution 
within each drawer.  

From the 33-group structure, we plot the spatial gradients for each drawer at 1.1 MeV, 243 keV, and 221 
eV. To begin, we note that in the highest energy region, the spatial distributions in the A and B drawers 
are similar. Further inspection shows the flux gradients to be ~10% between the two drawers (difference 
in flux magnitude between the drawer slices) and ~40% over each individual drawer (difference in flux 
magnitude within each drawer slice). At 243 keV, above the resolved resonance range and at the bottom 
end of the fission source, we see much more pronounced gradients in the flux that are associated with the 
scattering events occurring primarily in the steel and uranium materials. In drawer B we see evidence of 
the global flux gradient predominately in the U3O8 plates at the edge of the drawer. This gradient is not 



only left to right on the figure but also bottom to top. Overall, this amounts to only a ~10% gradient 
between the drawers and a ~12% gradient within each drawer. At 221 eV we again see a strong gradient 
around the U3O8 plates attributable to the scattering source. We also note the lower magnitude of 
neutrons in the enriched uranium plates which is an artifact of the higher number of neutrons produced 
in the enriched uranium plates at higher energies that are then scattered down into this group in the 
surrounding materials. Overall, we see a ~9% gradient between the drawers and a ~44% gradient within 
each drawer at this energy. 

In general we can state that the reference calculation used to generate the cross sections is sufficient for 
the test phase. It also seems likely that generating plate wise cross sections using an infinite lattice of the 
core centered drawer as a reference system would be acceptable, although previous experience indicates 
we would need more energy groups in the global calculation to capture the space-energy coupling. We 
emphasize that one can obtain a reference solution to many of the reaction rates within each plate using a 
continuous energy Monte Carlo approach, but no existing Monte Carlo code can obtain spatial gradients 
such as those observed in Figure 9 or the gradients observed in the plates between the different drawers. 
In summary, these results highlight the new ability to visualize and identify the differences between the 
space-energy flux distributions in each drawer.  This data can then be used to devise a better cross 
section generation methodology in which the reference configurations can more accurately represent the 
total core configuration. 

Continuing with our assessment on parallel performance, we consider the strong scaling performance of 
SN2ND on Blue Gene/P in Table 2 where a mesh with 1,822,176 quadratic finite elements and 
14,845,369 vertices was used. In order to fit within the memory requirements on Blue Gene/P, a 9-group 
P3 cross section data library was used. We used 16 angles on the half-sphere and 4 angles per process; 
thus the total number of processors (column 1) is 4 times the number of spatial processors in Table 2. As 
can be seen, the scalability on Blue Gene/P is excellent in this range of processor counts. We note that 
strong spatial scaling up to the full machine is not relevant for the workloads encountered in our scoping 
studies to achieve spatial and angular convergence. The more common workload we are targeting is 
represented by weak scaling where we grow the number of processors as we increase the number of 
angles while keeping the spatial part partitioned among a fixed set of processors. We also point out that 
the SSOR preconditioner is known to require more iterations, and thus more communication, as ever-
finer partitions of the spatial domain are used. At a certain load point we can expect the SSOR 
preconditioner to become completely ineffective and the iteration count to rise dramatically. While we 
have almost always found this point to be about 800 vertices per process, that experience was for 
homogenized assembly problems, and the heterogeneous results indicate that the performance drop-off is 
now just below the level observed in Table 2. Given that the ZPR benchmark requires both a large 
number of vertices and angles, our emphasis on weak scaling is valid. 

We next consider the weak angle scaling performance of SN2ND on Blue Gene/P and XT5. Using the 
strong scaling information, we target at least 2,500 vertices per process on Blue Gene/P and 3,500 
vertices per process on XT5. For Blue Gene/P, we used the 9-group P3 data with a mesh consisting of 
698,720 quadratic serendipity hexahedral elements and 2,927,567 vertices. While we would generally 
prefer to use a finer mesh and energy structure, the memory constraints on Blue Gene/P limit our 
calculations on the low end of the weak scaling study. Table 3 gives the weak scaling performance on 
Blue Gene/P for SN2ND where we partitioned the mesh over 1,024 cores (2,858 vertices per core) and 
increase the order of the Legendre-Tchebychev cubature in correspondence with the processor count. 



From Table 3, the weak scaling on Blue Gene/P drops off consistently as we increase the number of 
directions and reaches 74% at the full machine capacity of 163,840 cores. 
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Figure 9. Flux Distributions in Selected Drawers of ZPR 6-6a  

 

Table 2. Spatial Strong Scaling Results for Blue Gene/P  

Total  
Cores 

Spatial  
Cores 

Vertices/ 
Process 

Total 
Time 

(seconds) 
Parallel 

Efficiency 
8,192 2,048 7324 2402 100% 
16,384 4,096 3662 1312 92% 
24,576 6,144 2441 873 92% 
32,768 8,192 1831 637 94% 

 
 



Table 3. Weak Scaling by Angle for the ZPR 6/6a Problem on Blue Gene/P (2.9 million vertices 
and 9 energy groups) 

Cores 4π 
Angles keff 

Fission 
Iters. / 
Time 

Total 
Time 

(seconds) 

Time in 
Angular 
System 
Solver 

(seconds) 

Load 
Imbalance in 

Angular 
System 
Solver 

Source 
Update 

(seconds) 

Weak 
Scaling 

16,384 32 0.98952 21 / 38 790 364 2.9 319 100% 
36,864 72 0.98960 21 / 41 855 390 4.2 319 92% 
49,152 96 0.98967 21 / 41 865 397 5.1 319 91% 
65,536 128 0.98997 21 / 42 874 420 5.3 320 90% 
102,400 200 0.99032 20 / 45 894 420 6.1 306 88% 
131,072 256 0.99010 21 / 45 935 441 7.4 321 84% 
163,840 320 0.99040 21 / 51 1066 457 7.8 321 74% 

 
Table 4. Weak Scaling by Angle for the ZPR 6/6a Problem on XT5 (14.8 million vertices and 33 

energy groups) 

Cores 4π 
Angles keff 

Fission 
Iters. / 
Time 

Total 
Time 

(seconds) 

Time in 
Angular 
System 
Solver 

(seconds) 

Load 
Imbalance in 

Angular 
System 
Solver 

Source 
Update 

(seconds) 

Weak 
Scaling 

36,864 72 0.98867 23 / 135 3105 2601 2.2 164 100% 
49,152 96 0.98875 23 / 146 3362 2830 2.8 164 92% 
65,536 128 0.98907 23 / 152 3506 2927 3.2 164 89% 
102,400 200 0.98945 23 / 161 3694 3007 4.0 164 84% 
122,800 240 0.98949 23 / 167 3850 3193 4.9 165 81% 

 

Since XT5 does not have the same memory constraints as does Blue Gene/P, we used the 33-group P3 
cross section data with a mesh containing 1,822,176 quadratic Lagrangian hexahedral elements and 
14,845,369 vertices. Table 4 gives the results of the weak scaling study where we partition the mesh over 
4,096 cores (3,624 vertices per core) and we again increase the Legendre-Tchebychev cubature order. 
We point out that SN2ND code has been run on up to 145,000 cores of XT5 (full machine size) earlier. 
However, some cabinets of the machine are unavailable at the time of writing this manuscript and we 
could manage to get only 122,800 cores. Similar to the Blue Gene/P results we see a consistent drop-off 
in scalability. 

To understand the degradation in weak scaling performance, we included the timing and load imbalance 
information we observed on the preconditioner work (columns 6 and 7 in Tables 3 and 4), which 
displays the same trend as that observed for the total timing. After checking the iteration information, we 
also found that the total iteration count is increasing proportionally to the number of angles such that the 
average number of iterations per angular system is constant. Given that these PETSc operations are not 
connected in angle, the primary factor responsible for this degradation in performance is load imbalance 
in angle caused by variability in the condition number of each angular coefficient matrix (see Equation 
5). As we increase the order of the angular cubature we are making relatively equal refinements of the 



angular domain (4π) such that we are not, on average, increasing or decreasing the combined spectral 
radius of all of the angular systems to be solved (the total number of iterations increases proportionally 
to the number of directions). However, we are not currently making any adjustment in how we distribute 
the individual angular system work and thus appear to be assigning some processors multiple difficult 
systems and other processors relatively easy systems thereby creating a load imbalance in work. While 
this type of load balance by angle can generally be isolated to the ZPR experiments (due to the high 
degree of heterogeneity in one particular geometric direction), it is relatively easy to treat in UNIC and 
we intend to verify the situation and pursue remedies to it in the coming months. We also note that the 
eigenvalue results are also affected by the monolithic plate orientation, and we see a rather haphazard 
and slow convergence of the eigenvalue as we refine the angular order of the cubature. 

In addition to the scaling data on XT5 in Table 4, we discuss the floating-point performance of SN2ND 
measured using PAPI next. Due to inadequate per core memory availability and robustness issues, we 
can only afford to use SSOR preconditioned CG solver from PETSc in SN2ND. It is well known that the 
performance of such sparse-matrix vector operations based solvers is limited by the available memory 
bandwidth [24]. On XT5, the STREAM Triad operation achieves about 2.27 GB/s per core on XT5 
when all eight cores are used (consistent with the approach used for all of our calculations). Following 
the methodology in Gropp et al [24], we estimate the memory bandwidth limited performance bound to 
be ~17% of the theoretical machine peak for sparse matrix-vector multiplication (about 6 bytes per flop). 
However, matrix relaxation operations usually perform at a slower rate than matrix-vector 
multiplications. To investigate this further, we saved a matrix from the SN2ND solver and used the CG 
solver with SSOR preconditioner in a standalone PETSc example (serving as the primary kernel in 
SN2ND). With a similar workload per core as that shown in Table 4, we get only about 340 MFlop/s per 
core (3.7% of machine peak) where no parallelism is involved. Given that the SN2ND solver is spending 
about 85% of its execution time in the PETSc CG/SSOR algorithm (column 6 in Table 4), we can expect 
this PETSc kernel performance to be an upper bound on the SN2ND solver performance. We get 160-
198 MFlop/s per core (47-58% of the ideal PETSc kernel performance on one core) in the processor 
range in Table 4. Two reasons for the reduced performance (relative to the upper bound) are the 
processor idling during the synthetic acceleration solve (currently done by only one processor from each 
set of processors responsible for spatial parts) and the necessary parallel communication. Even though 
we have significantly reduced the execution time since our original submission in April 2009 (as detailed 
in Figure 6), our flop rates have declined from 5-7% of machine peak (518-647 MFlop/s per core). As 
noted earlier, the improvements in execution time came from reduction in extraneous floating point 
operations in local work (via various algorithmic enhancements) and not from machine specific 
optimizations. Over the coming months, we will work on studying the sources of low floating point 
performance and carry out further implementation level optimizations for some significant kernels in 
UNIC and PETSc to get closer to the memory bandwidth limited performance bound. 

6. CONCLUSIONS AND FUTURE WORK 
The preceding calculations make it clear that we will meet the time-dependent neutronics requirements 
of the multi-year development and analysis project for sodium cooled fast reactors. With relatively little 
manpower invested into the SN2ND solver, we were able to combine several “off the shelf” computing 
packages in a novel way and rapidly produce a neutronics solver that can reliably and justifiably utilize 
large-scale parallel machines. This new tool already provides accurate and reliable solutions to several 
difficult numerical benchmark problems for neutron transport, and we anticipate obtaining accurate 
solutions to the problems discussed in this manuscript within the next couple of months. We have 



demonstrated the potential of SN2ND solver of our UNIC code to effectively use available large-scale 
machines in addition to future, larger-sized machines. We have also demonstrated in just the past few 
months that there exists much room for performance improvements by reducing the total time to solution 
by a factor of 2.5 via the refactoring of several inefficient parts of the solver algorithm.  

With regard to parallel performance, we have demonstrated good strong scalability with respect to 
spatial parallelization on Blue Gene/P (>90%). The use of the new multigrid preconditioner we are 
developing should improve this performance further and help alleviate current memory requirements. 
We have also demonstrated good weak angle scalability on both Blue Gene/P (74% at 163,840) and XT5 
(81% at 122,800) for problem sizes of up to 120 billion degrees of freedom, and further load-balancing 
efforts should produce even better weak scalability numbers. Time restrictions prevented us from 
investigating strong angle and weak spatial scalability. 

These calculations demonstrate our strong motivation to continue pushing toward larger meshes, more 
angles, and more energy groups in order to achieve the desired level of accuracy. At present, the ZPR 
mesh with 49,800,865 vertices is the largest spatial mesh we have attempted (40,960 processors of 
XT5). Given that we need to further extend the geometry model of ZPR (include the empty matrix tube), 
employ more angles (~400-500), and use more energy groups (~100), one can see that further 
enhancements will be necessary to fully achieve both our short- and long-term goals. As the SN2ND 
solver evolves, we will continue to carry out extensive performance optimizations at the algorithmic and 
implementation levels while adapting to the hostile memory hierarchy limitations. The inclusion of our 
spatial p-multigrid preconditioning scheme – nearly ready for deployment – should provide an 
immediate boost to problem size capability and performance gains since we will be replacing the 
memory-bandwidth limited sparse-matrix operations with more efficient matrix-vector operations that 
have previously demonstrated excellent floating-point performance [25]. The inclusion of an effective h-
multigrid preconditioner scheme, for which we are in the initial research phase, improve the performance 
further and thereby facilitate larger problem sizes. 

In addition to these changes, we intend to implement a fixed-iteration algorithm by angle to impose 
proper load balancing and focus on putting more angles per process. This will reduce the communication 
overhead on the angle communicator. We also need to partition the diffusion synthetic acceleration 
equation (angle preconditioner) over more processors of the angular communicator (currently assigned 
to just the first process). This procedure should allow us to further reduce the time to solution and reduce 
the current load imbalance in angle due to the synthetic equation. We have also initiated work on a 
solution methodology that incorporates parallelization of the last remaining independent variable: 
energy. To accomplish this, we will implement a Krylov-subspace methodology using the algorithm we 
have built as a preconditioner. This is essential because with time-dependent problems, the inclusion of 
the fission source as “upscattering” in T of Eq. (8) will greatly degrade the performance of the Gauss-
Seidel algorithm that we currently use in the steady state mode. While our current level of parallelization 
already saturates the available resources, our desire to refine the energy resolution to improve the 
accuracies will allow us to continue using the larger future machines with millions of cores effectively. 
We hope to start performing calculations with 200+ groups, 400+ angles, and 100+ million vertices 
within the next five years so that explicit geometry time-dependent coupled multiphysics simulations of 
reactor technology can be realized and uncertainties with the existing approaches can be systematically 
removed. 



REFERENCES 
[1] E. E. Lewis and Jr. W. F. Miller, “Computational Methods of Neutron Transport,” John Wiley & 

Sons, New York, 1984. 
[2] G. Palmiotti, M. A. Smith, C. Rabiti, M. Leclere, D. Kaushik, A. Siegel, B. Smith, E.E. Lewis, 

“UNÌC: Ultimate Neutronic Investigation Code,” Joint International Topical Meeting on 
Mathematics & Computation and Supercomputing in Nuclear Applications, Monterey, California, 
April 15-19, 2007. 

[3] Argonne National Laboratory, Argonne Leadership Computing Facility, http://www.alcf.anl.gov. 
[4] Oak Ridge National Laboratory, National Center for Computational Sciences, http://www.nccs.gov. 
[5] C. Rabiti, E. Wolters, M. A. Smith, G. Palmiotti, “Spherical Quadratures for the Discrete Ordinates 

Method,” Trans. Am. Nucl. Soc 96, Boston, MA, June 24-28, 2007. 
[6] J. Lamarsh, “Introduction to Nuclear Engineering,” Addison-Wesley Publishing Co, Massachusetts, 

1983. 
[7] R. E. Alcouffe, R. S. Baker, J. A. Dahl, S.A. Turner, and Robert Ward, “PARTISN: A Time-

Dependent, Parallel Neutral Particle Transport Code System,” LA-UR-05-3925, May 2005. 
[8] W. A. Rhoades, R. L. Childs, M. B. Emmett, and S. N. Cramer, “Application of the Three-

Dimensional Oak Ridge Transport Code,” Proc. Am. Nucl. Soc. Topical Meeting on Reactor Physics 
and Shielding,” pp. 225-238, Chicago, September 17-19, 1984. 

[9] Sjoden, G. and Haghighat, A., “PENTRAN™: Parallel Environment Neutral particle TRANsport in 
3-D Cartesian Geometry”, Proc. Int. Conf. on Mathematical Methods and Supercomputing for 
Nuclear Applications, pp. 232–234. Saratoga Springs, NY (1997). Performance of PENTRAN™ 3-D 
Parallel Particle Transport Code.  

[10] G. Palmiotti, E. E. Lewis and C. B. Carrico, “VARIANT: VARIational Anisotropic Nodal 
Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation,” ANL-95/40 
Argonne National Laboratory, 1995. 

[11] C. R. E. de Oliveira, A. J. H. Goddard, “EVENT - A Multidimensional Finite Element-Spherical 
Harmonics Radiation Transport Code,” Proceedings of the OECD International Seminar on 3D 
Deterministic Radiation Transport Codes, Paris, December 01-02, 1996. 

[12] John M. McGhee, Randy M. Roberts, Jim E. Morel, “The DANTE Boltzmann Transport Sove: 
An Unstructured Mesh, 3-D, Spherical Harmonics Algorithm Compatible with Parallel Computer 
Architectures,” Jnt. Int. Conf. on Math. Meth. and super. For Nuc. Apps., Saratoga Springs, New 
York, Oct. 5-10, 1997. 

[13] T. A. Wareing, J. M. McGhee, J. E. Morel, and S. D. Pautz, “Discontinuous Finite Element Sn 
Methods on 3-D Unstructured Meshes,” Nuclear Science and Engineering, 138:1-13, 2001. 

[14] A. Siegel, D. Kaushik, P. Fischer, G. Palmiotti, M. A. Smith, C. Rabiti, J. Ragusa, “Software 
Design of SHARP,” Joint International Topical Meeting on Mathematics & Computation and 
Supercomputing in Nuclear Applications, Monterey, California, April 15-19, 2007. 

[15] Rabiti, M. A. Smith, G. Palmiotti, “A Three-dimensional Method of Characteristics on 
Unstructured Tetrahedral Meshes,” Trans. Am. Nucl. Soc. 96, 470, 2007. 

[16] M. A. Smith, G. Palmiotti, C. Rabiti, D. Kaushik, A. Siegel, B. Smith, E.E. Lewis, “PNFE 
Component of the UNÌC Code,” Joint International Topical Meeting on Mathematics & 
Computation and Supercomputing in Nuclear Applications, Monterey, California, April 15-19, 2007. 

[17] S. Balay, K. R. Buschelman, W. D. Gropp, D. K. Kaushik, M. G. Knepley, L. C. McInnes, and B. 
F. Smith, “PETSc Home Page,” http://www.mcs.anl.gov/petsc. 



[18] M. A. Smith, G. Palmiotti, et al., “Benchmark on Deterministic Transport Calculations Without 
Spatial Homogenization (MOX Fuel Assembly 3-D Extension Case),” OECD/NEA document, 
NEA/NSC/DOC(2005)16, October 2005. 

[19] Personal Communication, Frederic Varaine, CEA, “IAEA CRP on PHENIX End of Life Tests; 
Control Rod Withdrawal,” 2009. 

[20] Lawrence Livermore National Laboratory, “Visit: A Distributed, Parallel, Visualization Tool,” 
https://wci.llnl.gov/codes/visit/home.html. 

[21] Sandia National Laboratory, “CUBIT: Geometry and Mesh Generation Toolkit,” 
http://cubit.sandia.gov/. 

[22] Amine Abou-Rjeili and George Karypis, “Multilevel Algorithms for Partitioning Power-Law 
Graphs,” IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2006. 

[23] NEA Nuclear Science Committee, “International Handbook of Evaluated Criticality Safety 
Benchmark Experiments,” NEA/NSC/DOC(95)03, September 2007. 

[24] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Toward Realistic Performance 
Bounds for Implicit CFD Codes,” In D. Keyes, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, editors, 
Proceedings of Parallel CFD’99, pages 233–240. Elsevier, 1999. 

[25] D. Kaushik, W. Gropp, M. Minkoff, B. Smith, “Improving the Performance of Tensor Matrix 
Vector Multiplication in Cumulative Reaction Probability Based Quantum Chemistry Codes,” 
Proceedings of the 15th International Conference on High Performance Computing (HiPC 2008), 
Bangalore, India, Springer LNCS5374:120-130, December, 2008. 

 

 



Enabling High-Fidelity Neutron Transport 
Simulations on Petascale Architectures 

Supercomputing 2009, Portland, Oregon, Nov 14-20, 2009

Dinesh Kaushik
Micheal Smith
Allan Wollaber
Barry Smith
Andrew Siegel
Won Sik Yang

Argonne National Laboratory
Argonne, IL 60439
kaushik@mcs.anl.gov



Organization of the Presentation

 Overview of SHARP Project at Argonne

 Computational issues for neutronics

 Full-core test problems

 Parallel performance of UNIC

 Summary 



Nuclear Reactor Simulations

 Nuclear fission energy is key component of our current and future energy needs

 Urgent need to develop reactors that are
– Safe

– efficient

– Affordable

 Modeling and simulation tools were simplified to match the available computing 
technology

– designers relied on expensive and complicated experiments for satisfactory answers

 Advanced simulation can help in evaluating new designs with reduced 
dependence on experiments

 This work is supported by Nuclear Energy Advanced Modeling and Simulation 
(NEAMS) program of US Department of Energy

3



Case for Fast Reactor Simulations

 High energy neutrons are used to convert uranium to 
plutonium

 Recycle the spent fuel from light water reactors (LWR)
– Reducing heat load on storage because of lower 

concentration of transuranic elements

 Through high fidelity simulations, 
– Lower uncertainty margins of the new reactor designs

• 1% improvement in daily power output translates to millions of 
dollars for utility companies

– Global design optimization for enhanced safety and cost



Simulation based High-efficiency  Advanced Reactor 
Prototyping (SHARP)

 A tight integration of multiphysics and multiscale modeling of physics
phenomena based on a first principles approach

– an integrated system of software tools

– accurate description of
• the overall nuclear plant behavior in a high fidelity way

• coupling among the different phenomena taking place during reactor operation ranging
from neutronics to fuel behavior, from thermal-hydraulics to structural mechanics

 Features
– Ability to derive basic data and static and dynamic (operating conditions) properties

from first principles based methodologies and fundamental experiments

– to define and plug-in new and different combinations of physics-module
implementations to study different phenomena,

– define and combine different numerical techniques, configure the code easily to run
on new platforms

– develop new physics components without expert knowledge of the entire system.



Schematic diagram of a fast reactor



Homogenization at various levels

Homogenized 
assembly

Homogenized 
assembly internals

Homogenized 
pin cells

Fully explicit 
assembly



Fine Detail: Wire Wrapped Pins in Subassembly
 Resolving wire wrap (diameter = 0.11 cm) leads to 10-100 billion 

element meshes and about 1015 degrees of freedom (DOF) for advanced 
burner test reactor (ABTR) core (2.3 m in diameter and 3.5 meter long)

H

Fuel Pin
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Corner
Subchannel
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UNIC: Neutronics Module in SHARP

– A 3D unstructured deterministic neutron transport code

– solves 
• second order form of transport using FEM (PN2ND and SN2ND) and 

• first order form by method of characteristics (MOC)

– Parallel implementation using PETSc solvers



The Steady State Transport Equation (p46 in Lewis)
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The neutron flux (neutron density multiplied by speed)

The total probability of interaction in the domain

The scattering transfer kernel

The steady state multiplicative fission source

A generic source

k The multiplication eigenvalue



Solving the Eigenvalue Problem
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Standard eigenvalue notation:

Cast the transport equation as a pseudo matrix-vector operation

T = streaming/collision/scattering F = fission



k-Eigenvalue Power Iteration
Begin Outer Iteration

Begin Loop over energy groups

Begin Scattering iteration for the within-group scattering system

Begin Conjugate gradient over the whole space-angle system

Obtain group scattering+fission+fixed sources

Solve a symmetric positive definite linear system for flux

(preconditioned conjugate gradient)

End Conjugate gradient over the whole space-angle system

End Scattering iteration for the within-group scattering system

End Loop over energy groups

Check for convergence in eigenvalue, angular flux, and sources

End Outer Iteration



Features of Second Order Form Solutions in UNIC
 PN2ND and SN2ND solvers have been developed to solve the steady-state, second-order, 

even-parity neutron transport equation

– PN2ND: Spherical harmonic method in 1D, 2D and 3D geometries with FE mixed mesh 
capabilities

– SN2ND: Discrete ordinates in 2D and 3D geometries with FE mixed mesh capabilities

 These second order methods have been implemented on large scale parallel machines

– Linear tetrahedral and quadratic hexahedral elements

– Fixed source and eigenvalue problems

– Arbitrarily oriented reflective and vacuum boundary conditions

– PETSc solvers are utilized to solve within-group equations

• Conjugate gradient method with SSOR and 

• ICCgives better flop rates but requires more memory (not used)

– Synthetic diffusion acceleration for within-group scattering iteration

– Inverse Power iteration method for eigenvalue problem

– MeTiS is employed for mesh partitioning



ABTR Whole-Core Calculations

Angular
Directions

Spatial Mesh Approximation

78243 113873 461219 671219 785801

32 -241 -233 -69 -64 -59

50 -220 -210 -47 -40 -37

72 -225 -217 -51

98 -216 -207 -43

288 -216



ZPPR-15 Critical Experiments

Computational Mesh and Example Flux Solutions of ZPPR-15 Critical Experiment 

Flux expansion order Scattering order Eigenvalue
P1 P1 0.99258
P3 P3 0.99640
P5 P3 0.99651

Monte Carlo (VIM) 0.99616±0.00010



Over a period of 30 
years more than a 
hundred Zero Power 
Reactor (ZPR) critical 
assemblies were 
constructed at Argonne 
National Laboratory.  

ZPR-3, ZPR-6, ZPR-9 and 
ZPPR, were all separate 
fast critical assembly 
facilities with each 
machine being used for 
thousands of individual 
experiments

ZPR-3



ZPR Test Problem

Single ZPR Drawer

Plate by Plate ZPR Geometry

A ZPR calculation is the first step to full core heterogeneous reactor calculations
 Up to 50 million vertices (~equivalent to 200 million PARTISN finite difference cells)
 100+ angles with P5 anisotropic scattering
 100 energy groups
 No thermal-hydraulics considerations (i.e. clean comparison, MCNP/VIM solvable)



Parallelism in Space, Angle, and Energy

 Hierarchical Partitioning by using MPI 
communicators

 Parallelization in every dimension is 
important (to avoid per-core memory limit)

 User defined MPI communicators are not 
always optimized for mapping to cores 



Performance on Blue Gene/P – Strong Scaling

 9 energy groups

 Mesh (simplified geometry)
• 15 million vertices and 1.8 million hexahedral quadratic elements

• Spread over 4,096 processor cores (virtual node mode)

• 4 angles per processor-core

Strong Scalability
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> 92% scalability

Total 
Cores

Vertices/
Process

Total 
Time

(seconds)

Parallel
Efficiency

8,192 7,324 2,402 100%
16,384 3,662 1,312 92%
24,576 2,441 873 92%
32,768 1,831 637 94%



Performance on Blue Gene/P – Weak Scaling
ANL: 40 racks (163,840 cores); JSC: 72 racks (294,912 cores)

 Weak scaling important for scoping studies

 9 energy groups

 Mesh
• 7 million vertices and 1.7 million hexahedral quadratic elements

• Spread over 4,096 processor cores (virtual node mode)

• 2 angles per processor-core

Total
Cores

4π 
Angles

Total Time
(seconds)

Weak
Scaling

32,768 32 579 100%
73,728 72 572 101%

131,072 128 581 100%
163,840 160 691 84%
294,912 288 763 76%



Performance on XT5
Recently upgraded hex-core system, 2.6 GHz, 225K total cores

 33 energy groups

 Mesh (real experimental geometry)
• 10 million vertices and 2.4 million hexahedral quadratic elements

• Spread over 2,064 processor cores

• 2 angles per processor-core

Total
CoresTotal

Cores
4π 

Angles
Total Time
(seconds)

Weak
Scaling

16,512 32 1891 100%
37,152 72 1901 99%
66,048 128 1829 103%

103,200 200 2050 92%
148,608 288 2298 82%
222,912 432 2517 75%



Performance Optimizations

 Reordering for better cache reuse

 Unrolled loops for specific element types (better vectorization)

 Weighted partitioning for load balance in mesh partitioning

 Fixed iteration scheme for load balance across angular systems

 Eisenstat’s Trick (lower flop rate but better execution time)
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Performance Optimizations –
Execution Time Reduced by a Factor of 4 on 16,384  Cores



Assessing the Single Core Performance

 Execution time was optimized (often) at the cost of flops (likely unnecessary)

 Sparse matrix vector multiplication  (BLAS Level 2) operation is the main kernel
– Performance is memory bandwidth limited (little data reuse)

– High ratio of load/store to instructions/floating-point ops

– Flops not the right metric

– Inadequate memory bandwidth on both architectures
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Stream Benchmark on Cray XT5 and BlueGene/P 
(MB/s for the Triad Operation)

Threads 
per Node

Cray XT5 BlueGene/P

Total Per Core Total Per Core

1 8448 8448 2266 2266

2 10112 5056 4529 2264

4 10715 2679 8903 2226

6 10482 1747 - -



Ideal Sparse Matrix-Vector Performance 

Required: 6 bytes/flop



Summary

 UNIC provides reactor designers a scalable and flexible simulation tool that has 
the potential to transform the reactor analysis field by exploiting 
supercomputing with far reaching consequences on reactor development cost 
and safety.

 We were able to resolve the complex geometric features of the full ZPR core 
geometry for the first time.

 UNIC scales well on the two largest machines:
– 76% on 294,942 cores of Blue Gene/P (ANL& JSC, Jugene is the largest in core count)

– 75% on 222, 912 cores of XT5 (ORNL, #1 in TOP500)

– Uses up to 500 billion degrees of freedom

 No other code in the field (deterministic neutron transport) has scaled to this 
level or solved full core-sized problems with this fidelity.

 Computational challenges need to be tackled at the modeling, algorithmic, and 
architectural levels for future machines with millions of cores.
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 Outline

• ITAPS Data Model

• iMesh Interface (w/ examples)

• MOAB vs. ITAPS

• Best Practices (for Performance)

• Parallel Data

• MCS Access
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Introduction

• ITAPS is an interface specification
– Data model + functions

• MOAB is an implementation of ITAPS
• MOAB's data model very similar to ITAPS', because ITAPS 

derives in part from MOAB
• The two are tuned for different things:

– MOAB tuned for memory efficiency first, speed a close 
second

– ITAPS tuned for interoperability (MOAB has only a C++ 
native interface)

• Use ITAPS from Fortran & where memory isn't important, 
otherwise MOAB
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ITAPS Data Model

• 4 fundamental “types”:
– Entity: fine-grained entities in interface (vertex, 

tri, hex)
– Entity Set: arbitrary set of entities & other sets

• Parent/child relations, for embedded graphs between 
sets

– Interface: object on which interface functions are 
called and through which other data are obtained

– Tag: named datum annotated to Entitys, Entity 
Sets, Interface

• Instances accessed using opaque (type-
less) “handles”
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ITAPS Data Model Usage

Klystron mesh, SLAC/SNL

Dual surfaces

level 1

level 2

level 3

OBB Tree

Hierarchical
OBB Tree

Geometric Model
Partition

Design 
Velocities

Mesh Partition
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ITAPS Data Model (cont.)

• Important enumerated types:
– EntityType (iBase_VERTEX, EDGE, FACE, REGION)
– EntityTopology (iMesh_POINT, LINE, TRI, QUAD, ...)
– StorageOrder (iBase_BLOCKED, INTERLEAVED)
– TagDataType (iBase_INTEGER, DOUBLE, 

ENTITY_HANDLE)
– ErrorType (iBase_SUCCESS, iBase_FAILURE, ...)

• Enumerated type & function names have iBase, 
iMesh, iGeom, other names prepended
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ITAPS Interfaces Designed for 
Interoperability

iMesh
(C)

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

Babel

Server

f77 client

Python client

Java client

app1.f77

app2.py

app3.java

• Interoperability across language, 
application, implementation

• Multiple call paths to the same 
implementation

• Efficiency preserved using 
direct, C-based interface
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Simple Example:
HELLO iMesh (C++)

• Simple, typical application which 1) Instantiates iMesh interface, 2) 
Reads mesh from disk, 3) Reports # entities of each dimension
#include <iostream>
#include "iMesh.h"

int main( int argc, char *argv[] )
{
    // create the Mesh instance
  char *options = NULL;
  iMesh_Instance mesh;
  int ierr, options_len = 0;
  iMesh_newMesh(options, &mesh, &ierr, 
                options_len);
  
    // load the mesh
  iMesh_load(mesh, argv[1], options, &ierr, 
             strlen(argv[1]), options_len);

    // report the number of elements of each dimension
  for (int dim = iBase_VERTEX; dim <= iBase_REGION; dim++) {
    int numd;
    iMesh_getNumOfType(mesh, 0, dim, &numd, &ierr);
    std::cout << "Number of " << dim << "d elements = " 
              << numd << std::endl;
  }
  return true;}

1

• Makefile:
include ../../iMesh-Defs.inc

HELLOiMesh: HELLOiMesh.o  ${iMesh_FILES}

$(CXX)  $(CXXFLAGS) -o $@ HELLOiMesh.o \ 

     ${iMesh_LIBS}

.cpp.o:

${CXX} -c ${CXXFLAGS} $iMesh_INCLUDES} $<

2

3

Note: no error checking here for brevity, 
but there should be in your code!!!
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ITAPS API's: Argument Handling 
Conventions

• ITAPS API's are C-like and can be called directly from C, Fortran, C++
• Arguments pass by value (in) or reference (inout, out)

– Fortran: use %VAL extension

• Memory allocation for lists done in application or  implementation
– If inout list comes in allocated, length must be long enough to store results of 

call
– By definition, allocation/deallocation done using C malloc/free; application 

required to free memory returned by implementation
– Fortran: Use “cray pointer” extension (equivalences to normal f77 array)

• Handle types typedef'd to size_t (iBase_EntityHandle, 
iBase_EntitySetHandle, iBase_TagHandle, iMesh_Instance)

• Strings: char*, with length passed by value after all other args
• Enum's: values (iBase_SUCCESS, etc.) available for comparison 

operations, but passed as integer arguments
– Fortran: named parameters
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Argument Handling Conventions

Issue C FORTRAN

Function
Names

iXxxx_ prefix Same as C

Interface
Handle

Typedef'd to size_t, as type
iXxxx_Instance; instance handle is 1st

argument to all functions

#define'd as type Integer; handle instance
is 1st argument to all functions

Enumerated
Variables

All arguments integertype instead of
enumtype; values from enumerated types

Same, with enum values defined as
FORTRAN parameters

Entity, Set,
Tag Handles

Typedef'd as size_t; typedef types
iBase_EntityHandle,
iBase_EntitySetHandle, iBase_TagHandle

#define'd as type Integer

Lists · In: X *list, int occupied_size Same, with Cray pointers used to
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iMesh API Summary

• Logically arranged into interfaces, but not explicitly 
arranged as such in C
– See iMesh.h or iMesh.sidl

• Basic (Mesh): load, save, getEntities, 
getNumOfType/Topo, getAllVtxCoordinates, 
getAdjacencies

• Entity: init/get/reset/endEntIter (iterators), 
getEntType/Topo, getEntAdj, getVtxCoord

• Arr (Entity arrays): like Entity, but for arrays of 
entities

• Modify: createVtx/Ent, setVtxCoord, deleteEnt
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Imesh API Summary (cont.)

• From iBase:
– Tag: create/destroyTag, 

getTagName/SizeBytes/SizeValues/Handle/Type
– EntTag: get/setData, get/setInt/Dbl/EHData, getAllTags, rmvTag
– ArrTag: like EntTag, but for arrays of entities
– SetTag: like EntTag, but for entity sets
– EntSet: create/destroyEntSet, add/remove entity/entities/set, 

isEnt/EntSetContained
– SetRelation: add/rmvPrntChld, isChildOf, getNumChld/Prnt, 

getChldn/Prnts
– SetBoolOps: subtract, intersect, unite

• iBase-inherited function names still start with 'iMesh_' to 
avoid name collision with other iBase-inherited interfaces 
(iGeom, iRel, etc.)
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Slightly More Complicated Example:
FindConnect (C)
#include <iostream>
#include "iMesh.h"

typedef void* EntityHandle;

int main( int argc, char *argv[] )
{
    // create the Mesh instance
  iMesh_Instance mesh;
  int ierr;
  iMesh_newMesh("", &mesh, &ierr, 0);
  
    // load the mesh
  iMesh_load(mesh, 0, "125hex.vtk", "", 

&ierr, 10, 0);

    // get all 3d elements
  iMesh_EntityHandle *ents;
  int ents_alloc = 0, ents_size;
  iMesh_getEntities(mesh, 0, iBase_REGION,
                    iMesh_ALL_TOPOLOGIES,
                    &ents, &ents_alloc, 
                    &ents_size, &ierr);

  int vert_uses = 0;

    // iterate through them
  for (int i = 0; i < ents_size; i++) {
      // get connectivity
    iBase_EntityHandle *verts;
    int verts_alloc = 0, verts_size;

    iMesh_getEntAdj(mesh, ents[i], iBase_VERTEX,
             &verts, &verts_alloc, &verts_size,
             &ierr);
      // sum number of vertex uses
    vert_uses += verts_size;
    free(verts);
  }

    // now get adjacencies in one big block
  iBase_EntityHandle *allv;
  int *offsets;
  int allv_alloc = 0, allv_size, 
    offsets_alloc = 0, offsets_size;
  iMesh_getEntArrAdj(mesh, ents, ents_size, 
       iBase_VERTEX, 
       &allv, &allv_alloc, &allv_size,
       &offsets, &offsets_alloc, &offsets_size,
       &ierr);
  
    // compare results of two calling methods
  if (allv_size != vert_uses)
    std::cout << "Sizes didn't agree" << std::endl;
  else 
    std::cout << "Sizes did agree" << std::endl;
  
  return true;
}

1

2

3
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FindConnect (C) Notes

•  Typical inout list usage
• X *list,  int list_alloc = 0, int list_size
• Setting list_alloc to zero OR list = NULL indicates list is unallocated, so it will 

be allocated inside iMesh_getEntities
• Addresses of these parameters passed into iMesh_getEntities

2. Inout list declared inside 'for' loop
3. Memory de-allocated inside loop
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Slightly More Complicated Example:
FindConnect (Fortran)
      program findconnect
#include "iMesh_f.h"

c declarations
      iMesh_Instance mesh
      integer*8 ents
      pointer (rpents, ents(0:*))
      integer*8 rpverts, rpallverts, ipoffsets
      pointer (rpverts, verts(0:*))
      pointer (rpallverts, allverts(0:*))
      pointer (ipoffsets, ioffsets(0,*))
      integer ierr, ents_alloc, ents_size
      integer verts_alloc, verts_size
      integer allverts_alloc, allverts_size
      integer offsets_alloc, offsets_size

c create the Mesh instance
      call iMesh_newMesh("MOAB", mesh, ierr)

c load the mesh
      call iMesh_load(%VAL(mesh), %VAL(0),
     1    "125hex.vtk", "", ierr)

c get all 3d elements
      ents_alloc = 0
      call iMesh_getEntities(%VAL(mesh), 
     1     %VAL(0), %VAL(iBase_REGION), 
     1     %VAL(iMesh_ALL_TOPOLOGIES), 
     1     rpents, ents_alloc, ents_size,
     1     ierr)

      ivert_uses = 0

c iterate through them; 
      do i = 0, ents_size-1
c get connectivity
        verts_alloc = 0
        call iMesh_getEntAdj(%VAL(mesh), 
     1  %VAL(ents(i)), %VAL(iBase_VERTEX), 
     1  rpverts, verts_alloc, verts_size, ierr)
c sum number of vertex uses
        vert_uses = vert_uses + verts_size
        call free(rpverts)
      end do

c now get adjacencies in one big block
      allverts_alloc = 0
      offsets_alloc = 0
      call iMesh_getEntArrAdj(%VAL(mesh), 
     1  %VAL(rpents), %VAL(ents_size), 
     1  %VAL(iBase_VERTEX), rpallverts, 
     1  allverts_alloc, allverts_size, ipoffsets, 
     1  offsets_alloc, offsets_size, ierr)
  
c compare results of two calling methods
      if (allverts_size .ne. vert_uses) then
         write(*,'("Sizes didn''t agree!")')
      else 
         write(*,'("Sizes did agree!")')
      endif

      end

1

2

4

3
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FindConnect (Fortran) Notes

1. Cray pointer usage
• “pointer” (rpverts, rpoffsets, etc.) declared as type integer

• Careful – integer*8 or integer*4, 64- or 32-bit
• “pointee” (verts, ioffsets, etc.) implicitly typed or declared explicitly
• pointer statement equivalences pointer to start of pointee array
• pointee un-allocated until explicitly allocated

2. Set allocated size (ents_alloc) to zero to force allocation in 
iMesh_getEntities; arguments passed by reference by 
default, use %VAL extension to pass by value; pointers 
passed by reference by default, like arrays

3. Allocated size set to zero to force re-allocation in every 
iteration of do loop

4. Use C-based free function to de-allocate memory
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FindConnect Makefile
include /sandbox/tautges/MOAB/lib/iMesh-Defs.inc

FC = ${iMesh_FC}
CXX = g++
CC = gcc

CXXFLAGS = -g
CFLAGS = -g
FFLAGS = -g 
FLFLAGS = -g  ${iMesh_FCFLAGS}

FindConnectS: FindConnectS.o
$(CXX)  $(CXXFLAGS) -o $@ FindConnect.o ${iMesh_SIDL_LIBS} 

FindConnectC: FindConnectC.o
$(CC)  $(CFLAGS) -o $@ FindConnectC.o ${iMesh_LIBS} 

FindConnectF: FindConnectF.o
$(FC) -o $@ FindConnectF.o $(FLFLAGS) ${iMesh_LIBS} 

.cpp.o:
${CXX} -c ${CXXFLAGS} ${iMesh_INCLUDES} ${iMesh_SIDL_INCLUDES} $<

.cc.o:
${CC} -c ${CFLAGS} ${iMesh_INCLUDES} ${iMesh_SIDL_INCLUDES} $<

.F.o:
${FC} -c ${FFLAGS} ${iMesh_INCLUDES} $<
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Using MOAB/ITAPS on MCS Systems

• On MCS Systems: ~tautges/MOAB, ~tautges/MOABpar
– MOABpar compiled for parallel operation

• If you want to build your own:
– Will need hdf5, and if you want to read Exodus files, 

netcdf (incl. C++ library for netcdf)
– svn: https://svn.mcs.anl.gov/repos/ITAPS/MOAB/trunk

• Will need relatively up-to-date autotools stack, follow 
directions in README.CONFIGURE

–  tarball: 
http://www.mcs.anl.gov/~tautges/downloads/MOAB-current.tar.gz

– Follow building directions in README
• Example code from this course on gnep in 

/sandbox/tautges/shortcourse/Examples (or download from 
http://www.mcs.anl.gov/~tautges/downloads/shortcourse_examples.tar.gz)

https://svn.mcs.anl.gov/repos/ITAPS/MOAB/trunk
http://www.mcs.anl.gov/~tautges/downloads/MOAB-current.tar.gz
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ListSetsNTags Example

• Read in a mesh
• Get all sets
• For each set:

– Get tags on the set and names of those tags
– If tag is integer or double type, also get value
– Print tag names & values for each set

• Various uses for sets & tags, most interesting ones involve 
both together
– Geometric topology
– Boundary conditions
– Processor decomposition
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ListSetsNTags Example (SIDL/C++)
#include "iBase.hh"
#include "iMesh_SIDL.hh"

typedef void* iBase_EntityHandle;
typedef void* iBase_EntitySetHandle;
typedef void* iBase_TagHandle;

int main( int argc, char *argv[] )
{
  // Check command line arg
  std::string filename = argv[1];

    // create the Mesh instance
  iMesh::Mesh mesh;
  iMesh_SIDL::MeshSidl::newMesh("", mesh);
  
    // load the mesh
  string options;
  mesh.load(0, filename, options);

    // get all sets; use EntSet interface
  sidl::array<iBase_EntitySetHandle> sets;
  int sets_size;
  iBase::EntSet mesh_eset = mesh;
  mesh_eset.getEntSets(0, 1, 
                       sets, sets_size);

    // iterate through them, checking whether 
they have tags

  iBase::SetTag mesh_stag = mesh;
  for (int i = 0; i < sets_size; i++) {
      // get connectivity
    sidl::array<iBase_TagHandle> tags;
    int tags_size;

    mesh_stag.getAllEntSetTags(sets[i], 
                               tags, tags_size);

    if (0 != tags_size) {
      cout << "Set " << sets[i] << ": Tags: ";
        // list tag names on this set
      for (int j = 0; j < tags_size; j++) {
        string tname;
        int int_val;
        double dbl_val;
        mesh_stag.getTagName(tags[j], tname);
        cout << tname;
        iBase::TagValueType tag_type;
        mesh_stag.getTagType(tags[j], tag_type);
        if (iBase::TagValueType_INTEGER == 
            tag_type) {
          mesh_stag.getEntSetIntData(sets[i], 
                            tags[j], int_val);
          cout << " (val = " << int_val << "); ";
        }
        else if (iBase::TagValueType_DOUBLE == 
                 tag_type) {
          mesh_stag.getEntSetDblData(sets[i], 
                 tags[j], dbl_val);
          cout << " (val = " << dbl_val << "); ";
        }
        else cout << "; ";
      }
    }
    cout << endl;
  }
  
  return true;
}

1

2
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ListSetsNTags Example Notes

• Enumerated variables declared in SIDL-based code 
as Iface::enumNAME, e.g. iBase::EntityType or 
iBase::TagType

• Enumerated variable values appear as 
Iface::enumNAME_enumVALUE, e.g. 
iMesh::EntityTopology_TETRAHEDRON or 
iBase::TagType_INTEGER
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ListSetsNTags Assignment

• Translate this app to your favorite language (C++, C, 
Fortran) & call through ITAPS C interface
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Performance
• Large applications balance memory and cpu time performance
• Implementations of iMesh vary on speed vs. memory performance

– Create, v-E, E-v query, square all-hex mesh
– Entity- vs. Array-based access

• Compare iMesh (C, SIDL), Native (MOAB), Native Scd (MOAB), CUBIT
– Ent-, Arr-based access
– All-hexahedral square structured mesh

Native Scd
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CUBIT
SIDL Ent
SIDL Arr
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Native Arr

SIDL Arr

SIDL Ent

C Ent, C Arr
Native Scd
Native Ent
Native Arr
CUBIT
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iMesh Review

• Data model consists of 4 basic types: Interface, Entity, Entity 
Set, Tag

• Applications reference instances of these using opaque 
handles

• ITAPS interfaces use C-based APIs, for efficiency and 
interoperability
– SIDL-based implementation also available, which work through C-

based API

• Not covered here:
– Iterators (intermediate-level, “chunked” access to mesh)
– Modify (relatively coarse-grained, basically create and delete whole 

entities)
– Set parent-child links
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MOAB

• MOAB entity types include entity set & are sorted by 
dimension (defined in MBEntityType.h)
– MBVERTEX, MBEDGE, MBTRI, MBQUAD, MBPOLYGON, MBTET, ..., 

MBENTITYSET

• MBEntityHandle properties
– MOAB entity handle is an integer type, embeds entity type, proc rank, entity 

id
– List of contiguous handles can be stored in ranges, const-space lists
– Sort by type, dimension
– Set booleans (intersect, union, subtract) very fast on ranges
– Config option to use 64-bit handles on 32-bit apps if id space is a concern 

• MBRange class: series of sub-ranges of entity handles
• MOAB functionality accessed through MBInterface, an 

abstract base class
– Most functionality similar to what's in iMesh, plus a little more
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MOAB Tools

• Some functions support set booleans implicitly:
  virtual MBErrorCode get_adjacencies(const MBRange &from_entities,
                   const int to_dimension, const bool create_if_missing,    
                   MBRange &adj_entities,
                   const int operation_type = MBInterface::INTERSECT);

– For multiple from_entities, adj_entities will be intersection of queries on each 
from_entity

• To get common vertices between two entities, call with to_dimension=0 
and MBInterface::INTERSECT

• To get all vertices used by group of entities, call with to_dimension=0 
and MBInterface::UNION

• MBSkinner: gets skin (bounding (d-1)-dimensional entities) of a set of entities

• IO: format designated by file extension; 
– CUBIT .cub (R), Exodus (.g, .exoII) (RW), vtk (.vtk) (RW), native HDF5 

format (.h5m, .mhdf) (RW)
– Use .h5m/.mhdf to save everything MOAB can represent in data model (sets, 

tags, set parents/children, polygons/polyhedra, etc.)
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MOAB Parallel

• Configure with --with-mpi= option
• Parallel read (bcast_delete, read_delete) working

– Can use any “covering” set of sets as partition
– Read method designated with options to MOAB's load_file function, e.g.

“PARALLEL=BCAST_DELETE;PARALLEL_PARTITION=MATERIAL_SET”
“PARALLEL=BCAST_DELETE;PARALLEL_PARTITION=GEOM_DIMENSI
ON;PARTITION_VAL=3;PARTITION_DISTRIBUTE”

• Other classes
– MBParallelComm: pass entities/tags/sets between processors, define 

communicator
– MBParallelData: convenience functions for getting partition, interface entities

• Relevant tags (defined in MBParallelConventions.h):
• PARALLEL_SHARED_PROC: 2 ints, ranks of sharing procs on 2-proc interface

• PARALLEL_SHARED_PROCS: N ints, ranks of sharing procs when > 2 procs share iface

• PARALLEL_OWNER: rank of owning processor for interface entities, sets

• PARALLEL_GHOST: rank of owning processor for ghost entities, sets

• PARALLEL_GID: global id, used to match vertices, other entities
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MOAB Parallel Example
(condensed from mbparallelcomm_test.cpp in MOAB source dir)

int main(int argc, char **argv) 
{
  int err = MPI_Init(&argc, &argv);
  int nprocs, rank;
  err = MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
  err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    // create MOAB instance based on that
  MBInterface *mbImpl = new MBCore(rank, nprocs);
  MBParallelComm *pcomm = new MBParallelComm(mbImpl);

    // read a file in parallel
  const char *options = 

“PARALLEL=BCAST_DELETE;PARTITION=GEOM_DIMENSION;PARTITION_VAL=3;PARTITION_DI
STRIBUTE”;  

  MBEntityHandle file_set;
  MBErrorCode result = mbImpl->load_file(filename, file_set, options);

    // resolve shared vertices
  result = pcomm->resolve_shared_ents();

    // get shared vertices on this proc
  MBRange shared_ents;
  result = pcomm->get_shared_entities(0, shared_ents);

  MPI_Finalize();
  return 0;
}
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ITAPS Interfaces
Best Practices

• Use C-based interface where possible, for efficiency
• Pre-allocate memory in application or re-use memory 

allocated by implementation
– E.g. getting vertices adjacent to element – can use static 

array, or application-native storage
• Take advantage of implementation-provided 

capabilities to avoid re-inventing
– Partitioning, IO, parallel communication, (parallel) file readers

• Be careful about integer*8, integer*4, memory 
corruption in Fortran apps (valgrind is your friend)

• Implement iMesh on top of your data structure
– Take advantage of tools which work on iMesh API

• Let us help you
– Not all the tricks can be easily described and may not be self-

evident
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Best Practices: MOAB vs. ITAPS

• MOAB has a few functions not included in ITAPS
– get_entities_by_type_and_tag
– parallel functions

• When handling & manipulating large lists of entity handles, 
using MBRange can save lots of memory

• Lower overhead (~5-10%) with MOAB native interface
• NO MOAB Fortran or C interface, only C++



Obtaining the ITAPS Software
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 ITAPS Software Web Pages

• Provides help getting 
started

• Usage strategies
• Data model description
• Access to interface 

specifications, 
documentation, 
implementations

• Access to compatible 
services software

http://www.itaps- scidac.org/software/
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Interface Software Access

• Links to the interface user 
guides and man pages where 
available

• Links to the C-binding and 
SIDL-binding files

• Links to implementations for 
iMesh, iGeom, iRel
– Version 0.7 compatible software
– Links to the home pages for 

more information

• Simple examples, compliance 
testing tools and build 
skeletons coming soon
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Services Software Access

• Links to the services built on 
the ITAPS interfaces

• Currently or very soon to be 
available
– Mesquite (C, SIDL)
– Zoltan (C, SIDL)
– Swapping (SIDL)
– Frontier (SIDL)
– VisIt Plug In (C, SIDL)

• Links to home pages for more 
information

• Instructions for build and links 
to supporting software
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 MOAB Software Web Pages

• General information
• Browse svn repo
• FAQ
• Pointers to mailing list 

archives

http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB
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