Response and Uniformity Studies of Directly Coupled Tiles

PDF Version Also Available for Download.

Description

A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting ... continued below

Physical Description

12 pages

Creation Information

Zutshi, Vishnu April 2, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting (WLS) fibers inside the tiles which couple it to the photo-detectors. Significant simplification in construction and assembly ensue if the MPPCs can be coupled directly to the scintillator tiles. Equally importantly, the total absence of fibers would offer greater flexibility in the choice of the transverse segmentation while enhancing the electro-mechanical integrability of the design. The NIU high-energy physics group has been studying the fiberless or direct-coupling option for some time now. Encouraging results on response and response uniformity have been obtained using radioactive sources. This MOU seeks to set up a framework to extend these tests using beams at the MTBF. The results will be relevant to high granularity scintillator/crystal electromagnetic and hadronic calorimetry. The tests involve a set of small directly-coupled tile counters fabricated at NIU which will be placed in the beam to study their response and response uniformity as a function of the incident position of the particles passing through them.

Physical Description

12 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FERMILAB-PROPOSAL-1006
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/993865 | External Link
  • Office of Scientific & Technical Information Report Number: 993865
  • Archival Resource Key: ark:/67531/metadc1014943

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 2, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 24, 2017, 2:42 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zutshi, Vishnu. Response and Uniformity Studies of Directly Coupled Tiles, report, April 2, 2010; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc1014943/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.