Effect of secondary ions on the electron beam optics in the Recycler Electron Cooler

PDF Version Also Available for Download.

Description

Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1-0.5 A DC electron beam (as well as by a stochastic cooling system). The unique combination of the relativistic energy ({gamma} = 9.49), an Ampere-range DC beam, and a relatively weak focusing makes the cooling efficiency particularly sensitive to ion neutralization. A capability to clear ions was recently implemented by way of interrupting the electron beam for 1-30 {micro}s with a repetition rate of up to 40 Hz. The cooling properties of the electron beam were analyzed with drag rate measurements and showed that accumulated ions significantly affect the ... continued below

Physical Description

3 pages

Creation Information

Shemyakin, A.; Prost, L.; Saewert, G. & /Fermilab May 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1-0.5 A DC electron beam (as well as by a stochastic cooling system). The unique combination of the relativistic energy ({gamma} = 9.49), an Ampere-range DC beam, and a relatively weak focusing makes the cooling efficiency particularly sensitive to ion neutralization. A capability to clear ions was recently implemented by way of interrupting the electron beam for 1-30 {micro}s with a repetition rate of up to 40 Hz. The cooling properties of the electron beam were analyzed with drag rate measurements and showed that accumulated ions significantly affect the beam optics. For a beam current of 0.3 A, the longitudinal cooling rate was increased by factor of {approx}2 when ions were removed.

Physical Description

3 pages

Source

  • Journal Name: Conf.Proc.C100523:mopd075,2010; Conference: Presented at 1st International Particle Accelerator Conference: IPAC'10, Kyoto, Japan, 23-28 May 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-10-107-AD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 982860
  • Archival Resource Key: ark:/67531/metadc1014919

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 19, 2017, 1:11 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shemyakin, A.; Prost, L.; Saewert, G. & /Fermilab. Effect of secondary ions on the electron beam optics in the Recycler Electron Cooler, article, May 1, 2010; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc1014919/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.