ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

PDF Version Also Available for Download.

Description

The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. ... continued below

Creation Information

Chang, Gray S. May 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

Source

  • PHYSOR 2010, Advances in Reactor Physics to Power the Nuclear Renaissance ,Pittsburgh, PA,05/09/2010,05/14/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-10-17884
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 983344
  • Archival Resource Key: ark:/67531/metadc1014906

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 3, 2017, 4:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chang, Gray S. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES, article, May 1, 2010; Idaho. (digital.library.unt.edu/ark:/67531/metadc1014906/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.