Transient Enhancement ('Spike-on-Tail') Observed on Neutral-Beam-Injected Energetic Ion Spectra Using the E||B Neutral Particle Analyzer in the National Spherical Torus Experiment

PDF Version Also Available for Download.

Description

An increase of up to four-fold in the E||B Neutral Particle Analyzer (NPA) charge exchange neutral flux localized at the Neutral Beam (NB) injection full energy is observed in the National Spherical Torus Experiment (NSTX). Termed the High-Energy Feature (HEF), it appears on the NB-injected energetic ion spectrum only in discharges where tearing or kink-type modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak (δBrms < 75 mGauss) and CAE/GAE activity (f ~ 400 – 1200 kHz) is robust. The feature exhibits a growth time of ~ 20 - 80 ms and occasionally develops ... continued below

Physical Description

46 p.

Creation Information

Medley, S. S.; Gorelenkov, N. N.; Bell, R. E.; Fredrickson, E. D.; Gerhardt, S. P.; LeBlanc, B. P. et al. June 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

  • Medley, S. S.
  • Gorelenkov, N. N. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  • Bell, R. E. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  • Fredrickson, E. D. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  • Gerhardt, S. P. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  • LeBlanc, B. P. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  • Podesta, M. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  • Roquemore, A. L. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An increase of up to four-fold in the E||B Neutral Particle Analyzer (NPA) charge exchange neutral flux localized at the Neutral Beam (NB) injection full energy is observed in the National Spherical Torus Experiment (NSTX). Termed the High-Energy Feature (HEF), it appears on the NB-injected energetic ion spectrum only in discharges where tearing or kink-type modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak (δBrms < 75 mGauss) and CAE/GAE activity (f ~ 400 – 1200 kHz) is robust. The feature exhibits a growth time of ~ 20 - 80 ms and occasionally develops a slowing down distribution that continues to evolve over periods of 100's of milliseconds, a time scale long compared with the typical ~ 10's ms equilibration time of the NB injected particles. The HEF is observed only in H-mode (not L-mode) discharges with injected NB power of 4 MW or greater and in the field pitch range v||/v ~ 0.7 – 0.9; i.e. only for passing (never trapped) energetic ions. The HEF is suppressed by vessel conditioning using lithium deposition at rates ~ 100 mg/shot, a level sufficient to suppress ELM activity. Increases of ~ 10 - 30 % in the measured neutron yield and total stored energy are observed to coincide with the feature along with broadening of measured Te(r), Ti(r) and ne(r) profiles. However, TRANSP analysis shows that such increases are driven by plasma profile changes and not the HEF phenomenon itself. Though a definitive mechanism has yet to be developed, the HEF appears to be caused by a form of TAE/CAE wave-particle interaction that distorts of the NB fast ion distribution in phase space.

Physical Description

46 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL--4528
  • Grant Number: ACO2-09CH11466
  • DOI: 10.2172/981722 | External Link
  • Office of Scientific & Technical Information Report Number: 981722
  • Archival Resource Key: ark:/67531/metadc1014905

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 6, 2017, 5:39 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Medley, S. S.; Gorelenkov, N. N.; Bell, R. E.; Fredrickson, E. D.; Gerhardt, S. P.; LeBlanc, B. P. et al. Transient Enhancement ('Spike-on-Tail') Observed on Neutral-Beam-Injected Energetic Ion Spectra Using the E||B Neutral Particle Analyzer in the National Spherical Torus Experiment, report, June 1, 2010; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc1014905/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.