Lattice design for the ERL electron ion collider in RHIC

PDF Version Also Available for Download.

Description

We present electron ion collider lattice design for the Relativistic Heavy Ion Collider (eRHIC) where the electrons have multi-passes through recirculating linacs (ERL) and arcs placed in the existing RHIC tunnel. The present RHIC interaction regions (IR's), where the electron ion collisions will occur, are modified to allow for the large luminosity. Staging of eRHIC will bring the electron energy from 4 up to 20 (30) GeV as the superconducting cavities are built and installed sequentially. The synchrotron radiation from electrons at the IR is reduced as they arrive straight to the collision while ions and protons come with 10 ... continued below

Creation Information

Trbojevic, D.; Beebe-Wang, J.; Tsoupas, N.; Chang, X.; Kayran, D.; Ptitsyn, V. et al. May 23, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present electron ion collider lattice design for the Relativistic Heavy Ion Collider (eRHIC) where the electrons have multi-passes through recirculating linacs (ERL) and arcs placed in the existing RHIC tunnel. The present RHIC interaction regions (IR's), where the electron ion collisions will occur, are modified to allow for the large luminosity. Staging of eRHIC will bring the electron energy from 4 up to 20 (30) GeV as the superconducting cavities are built and installed sequentially. The synchrotron radiation from electrons at the IR is reduced as they arrive straight to the collision while ions and protons come with 10 mrad crossing angle using the crab cavities.

Source

  • First International Particle Accelerator Conference (IPAC) 2010; Kyoto, Japan; 20100523 through 20100528

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--90784-2010-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 984414
  • Archival Resource Key: ark:/67531/metadc1014729

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 23, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 26, 2017, 6:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Trbojevic, D.; Beebe-Wang, J.; Tsoupas, N.; Chang, X.; Kayran, D.; Ptitsyn, V. et al. Lattice design for the ERL electron ion collider in RHIC, article, May 23, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc1014729/: accessed December 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.