PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. II. PROPERTIES OF ILLUMINATED CELLS AND EFFECTS OF DOPING WITH ELECTRON ACCEPTORS

PDF Version Also Available for Download.

Description

Photocurrent generation in thin films of a merocyanine photosensitizing dye sandwiched between a TiO{sub 2} single crystal doped n type and an Au overlayer has been studied using photovoltaic techniques. A theoretical model was developed to explain the observed photovoltaic properties. The model assumes that the principal route for the formation of charge carriers is via singlet excitons diffusing to the merocyanine - TiO{sub 2} interface followed by dissociation of the excitons into electron-hole pairs, the electrons being injected into the TiO{sub 2} conduction band and the holes into the merocyanine. The model also incorporates field dependence of the quantum ... continued below

Physical Description

43 p.

Creation Information

Skotheim, T.; Yang, J.-M.; Otvos, J. & Klein, M.P. July 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Photocurrent generation in thin films of a merocyanine photosensitizing dye sandwiched between a TiO{sub 2} single crystal doped n type and an Au overlayer has been studied using photovoltaic techniques. A theoretical model was developed to explain the observed photovoltaic properties. The model assumes that the principal route for the formation of charge carriers is via singlet excitons diffusing to the merocyanine - TiO{sub 2} interface followed by dissociation of the excitons into electron-hole pairs, the electrons being injected into the TiO{sub 2} conduction band and the holes into the merocyanine. The model also incorporates field dependence of the quantum efficiency for charge generation. An exciton diffusion length of 79 {angstrom} was determined by analyzing the short circuit action spectra using the theoretical model developed. The low fill factor of 0.35 for these cells was attributed to the field dependence of the quantum efficiency and the high series resistance of the undoped merocyanine films. Doping the merocyanine films with iodine was found to increase both the dark conductivity and the steady state photoconductivity, the latter by as much as a factor of 5. This resulted in a quantum yield of 12% for a 500 {angstrom} thick film and an increase in the fill factor to 0.44 giving a monochromatic power conversion efficiency of 0.4% at 520 nm. The carrier generation in iodine doped films is shown to result from a bulk process, possibly involving collisions between singlet excitons and acceptor-hole complexes resulting in activation out of the bound states formed by the charge-transfer complex. The quenching of excitons in the immediate vicinity of the metal surface was studied by monitoring the photoconductive response of a 200 {angstrom} merocyanine film with varying thickness of perylene sandwiched between the metal and the merocyanine. Perylene was shown to be able to transport the photoexcited holes from the merocyanine to the Au electrode. The quantum efficiency for photocarrier production increased to a maximum of 21% for a 750 {angstrom} thick perylene layer.

Physical Description

43 p.

Source

  • Journal Name: Journal of Chemical Physics; Journal Volume: 77; Journal Issue: 12

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-11231
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 994002
  • Archival Resource Key: ark:/67531/metadc1014617

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1980

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 6:25 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Skotheim, T.; Yang, J.-M.; Otvos, J. & Klein, M.P. PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. II. PROPERTIES OF ILLUMINATED CELLS AND EFFECTS OF DOPING WITH ELECTRON ACCEPTORS, article, July 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014617/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.