Origin of the Delayed Current Onset in High Power Impulse Magnetron Sputtering

PDF Version Also Available for Download.

Description

Repetitive pulses of voltage and current are applied in high power impulse magnetron sputtering. The current pulse usually lags the applied voltage by a significant time, which in some cases can reach many 10s of microseconds. The current time lag is generally highly reproducible and jitters less than 1percent of the delay time. This work investigates the time lag experimentally and theoretically. The experiments include several different target and gas combinations, voltage and current amplitudes, gas pressures, pulse repetition rates, and pulse durations. It is shown that in all cases the inverse delay is approximately proportional to the applied voltage, ... continued below

Physical Description

21

Creation Information

Yushkov, Georgy Yu. & Anders, Andre July 19, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Repetitive pulses of voltage and current are applied in high power impulse magnetron sputtering. The current pulse usually lags the applied voltage by a significant time, which in some cases can reach many 10s of microseconds. The current time lag is generally highly reproducible and jitters less than 1percent of the delay time. This work investigates the time lag experimentally and theoretically. The experiments include several different target and gas combinations, voltage and current amplitudes, gas pressures, pulse repetition rates, and pulse durations. It is shown that in all cases the inverse delay is approximately proportional to the applied voltage, where the proportionality factor depends on the combination of materials and the conditions selected. The proportionality factor contains the parameters of ionization and secondary electron emission. The statistical time lag is negligible while the formative time lag is large and usually dominated by the ion motion (inertia), although, at low pressure, the long free path of magnetized electrons causing ionization contributes to the delay.

Physical Description

21

Source

  • Journal Name: IEEE Transactions on Plasma Science; Journal Volume: 38

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3925E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1109/TPS.2010.2063041 | External Link
  • Office of Scientific & Technical Information Report Number: 988857
  • Archival Resource Key: ark:/67531/metadc1014540

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 19, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 7, 2017, 7:15 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yushkov, Georgy Yu. & Anders, Andre. Origin of the Delayed Current Onset in High Power Impulse Magnetron Sputtering, article, July 19, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014540/: accessed July 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.