Interlaboratory Comparisons of NbTi Critical Current Measurements

PDF Version Also Available for Download.

Description

We report on a multi-institute comparison of critical current data measured on a modern NbTi wire for the Large Hadron Collider (LHC), which has shown a standard deviation below 1% in critical current density spread in more than 1500 measurements. Interlaboratory comparisons on Nb{sub 3}Sn wires have shown ambiguities that could be attributable to strain related differences in critical current density, originating from differences in sample handling, reaction, and mounting techniques, or also to differences in the magnetic field and current calibrations between the institutes. A round robin test of a well characterized NbTi wire provides a baseline variance in ... continued below

Creation Information

Godeke, A.; Turrioni, D.; Boutboul, T.; Cheggour, N.; Goodrich, L.F.; Ghosh, A. et al. August 16, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report on a multi-institute comparison of critical current data measured on a modern NbTi wire for the Large Hadron Collider (LHC), which has shown a standard deviation below 1% in critical current density spread in more than 1500 measurements. Interlaboratory comparisons on Nb{sub 3}Sn wires have shown ambiguities that could be attributable to strain related differences in critical current density, originating from differences in sample handling, reaction, and mounting techniques, or also to differences in the magnetic field and current calibrations between the institutes. A round robin test of a well characterized NbTi wire provides a baseline variance in critical current results that is presumed to be attributable only to differences in the characterization systems. Systematic differences on the order of 3.5% are found in the comparison. The most likely cause for the observed differences is a small diameter holder that brings the wire into a strain regime in which strain effects can no longer be ignored. A NbTi round robin test, when performed properly, will separate system differences from sample specific differences and provide laboratories with an opportunity to calibrate equipment against a standard measurement.

Source

  • Journal Name: IEEE Transaction on Applied Superconductivity; Journal Volume: 19; Journal Issue: 3

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3692E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 985742
  • Archival Resource Key: ark:/67531/metadc1014511

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 16, 2009

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 7, 2017, 7:19 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Godeke, A.; Turrioni, D.; Boutboul, T.; Cheggour, N.; Goodrich, L.F.; Ghosh, A. et al. Interlaboratory Comparisons of NbTi Critical Current Measurements, article, August 16, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014511/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.