The Role of the Tetraheme Cytochrome c3 in Desulfovibrio vulgaris Hildenborough Metabolism

PDF Version Also Available for Download.

Description

The role of tetraheme cytochrome c3 (CycA) in the metabolism of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) was investigated by deletion of the cycA gene using a marker-exchange deletion strategy. A highly abundant periplasmic cytochrome, CycA has the important function of transferring electrons from periplasmic hydrogenases (Hyd, Hyn, Hys) to transmembrane complexes which transport the electrons to the cytoplasm where sulfate is reduced. Previous studies have indicated that during its interaction with periplasmic hydrogenases, CycA is also involved in the reduction of toxic metals. Growth of the cycA mutant strain on lactate as the electron donor and sulfate as ... continued below

Physical Description

1

Creation Information

Semkiw, Elizabeth; Zane, Grant & Wall, Judy May 17, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The role of tetraheme cytochrome c3 (CycA) in the metabolism of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) was investigated by deletion of the cycA gene using a marker-exchange deletion strategy. A highly abundant periplasmic cytochrome, CycA has the important function of transferring electrons from periplasmic hydrogenases (Hyd, Hyn, Hys) to transmembrane complexes which transport the electrons to the cytoplasm where sulfate is reduced. Previous studies have indicated that during its interaction with periplasmic hydrogenases, CycA is also involved in the reduction of toxic metals. Growth of the cycA mutant strain on lactate as the electron donor and sulfate as the terminal electron acceptor showed that, despite its abundance, CycA is not essential for DvH growth. However, the rate of growth of the mutant strain was significantly lower, and the extent of growth less, than rates and extents of growth of the wild type and complement strains on lactate/sulfate medium. This indicates that a portion of the electrons generated from cytoplasmic lactate oxidation are transported by CycA for energy production, possibly in a hydrogen cycling mechanism employed to generate ATP. Failure of the mutant strain to grow on either formate or H2, with sulfate or sulfite as electron acceptors, further indicated that CycA may be the only redox partner of periplasmic hydrogenases. The cycA mutant strain also did not grow as well as either the wild type or complement strains on medium supplemented with pyruvate/sulfate. Final growth on pyruvate/sulfate was comparable, but the mutant grew more slowly than the wild type and complement strains. Interestingly, the mutant grew better than the wild type or complement strains on pyruvate alone, possibly due to the release of H2 and/or CO2 in concentrations which may be somewhat inhibitory to wild type growth.

Physical Description

1

Source

  • 110th General Meeting of the American Society for Microbiology, San Diego, CA

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-3806E-Poster
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/986247 | External Link
  • Office of Scientific & Technical Information Report Number: 986247
  • Archival Resource Key: ark:/67531/metadc1014507

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 17, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 18, 2017, 10:10 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Semkiw, Elizabeth; Zane, Grant & Wall, Judy. The Role of the Tetraheme Cytochrome c3 in Desulfovibrio vulgaris Hildenborough Metabolism, report, May 17, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014507/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.