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Abstract— A model-based predictive control (MPC) is de-
signed for optimal thermal energy storage in building cooling
systems. We focus on buildings equipped with a water tank
used for actively storing cold water produced by a series of
chillers. Typically the chillers are operated at night to recharge
the storage tank in order to meet the building demands on the
following day. In this paper, we build on our previous work,
improve the building load model, and present experimental
results. The experiments show that MPC can achieve reduction
in the central plant electricity cost and improvement of its
efficiency.

I. INTRODUCTION

The building sector consumes about 40% of the energy
used in the United States and is responsible for nearly 40% of
greenhouse gas emissions [12]. It is therefore economically,
socially and environmentally significant to reduce the energy
consumption of buildings.

Reductions of 70% in energy use in buildings are re-
quired to achieve the goals for the building sector set by
organizations such as the California Public Utilities Com-
mission. Achieving this goal requires the development of
highly efficient heating and cooling systems, which are more
challenging to control than conventional systems [8], [7],[2].

This work focuses on the modeling and the control of the
central plant (thermal energy generation and storage system)
at the University of California at Merced in USA. The
campus has a significantly enhanced level of instrumentation
in order to support the development and demonstration of
energy-efficient technologies and practices. It consists of a
chiller plant (three chillers redundantly configured as twoin
series, one backup in parallel), an array of cooling towers,
a 7000m3 chilled water tank, a primary distribution system
and secondary distribution loops serving each building of
the campus. The two series chillers are operated each night
to charge the storage tank to meet campus cooling demand
the following day. Although the storage tank enables load
shifting to off-peak hours, the lack of an optimized operation
results in conservatively over-charging the tank.

A simplified model of the central plant and a MPC strategy
has been presented and discussed in [10]. The work in [10]
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uses an oversimplified campus load model and presents
simulation results. In this paper a more detailed campus load
model is developed and validated with measured historical
data. Moreover experimental results with the MPC scheme
are reported.

Although this paper focuses on the specific architecture of
the UC Merced Campus, the main ideas and methodologies
can be applied to a wider class of building systems which
use thermal energy storage. In particular the contributions
of this paper and our previous work [10] include:(i) the
development of a simple, yet descriptive nonlinear model
of the overall cooling system,(ii) the development of a
MPC scheme for minimizing energy consumption,(iii) the
presentation of experimental results showing a reduction of
electricity bill compared to currently adopted policies, and
improvement of the overall system performance.

We remark that the evaluation of optimal controllers for
active and passive building thermal storage has been studied
in the past by several authors (see [4], [9], [6], [5] and
references therein). In particular in [4] the authors investigate
a three-story office building equipped with two chillers with
constant coefficient of performance and a thermal energy
storage system. An optimal controller is designed in order to
compute the cooling capacity produced by the two chillers
without accounting for pump power. Experimental results are
presented in [9] where the optimal controller is implemented
in a receding horizon fashion on an unoccupied test bed.

The paper is organized as follows. Section II introduces
the general system, presents a more detailed campus load
model and a fan coil model. In section III the MPC control
algorithm is outlined. Experimental setups and results are
presented in section IV and section V respectively. Finally,
conclusions are drawn in section VI.

II. SYSTEM MODEL

In this section we describe the main components of the
central plant used to generate and store thermal energy.
UC Merced campus has been built with a vision to create
living laboratories for energy research. In this paper we
focus on the higher level control systems which actuate two
electric chillers that are operated at night to take advantage
of nighttime electricity rates and lower ambient temperature
to fill up a 7000m3 tank of chilled water. The following
day, the chilled water is pumped from the tank to cool down
the campus. The main scheme of the cooling system at UC
Merced is detailed in [10].

The following subsections present a dynamic model of the
system. Our objective is to develop a simplified yet descrip-



tive model which can be used for real time optimization in
a MPC scheme.

A. Nomenclature

The variables, parameters and subscripts listed in table I–II
will be used in this paper.

parameters and variables description
t: time
Q̇: heat flow transferred from one

medium to another [W]
ṁ: mass flow rate [kg/s]
T : Temperature [K]
R: heat resistor [K/W]
C: heat capacitor [J/K]
S: Weight on the energy consumption

Ru: Weight on the control input
Hp: Length of prediction horizon
Hu: Length of control horizon

TABLE I: Parameters and variables

B. Main subsystems of the cooling system

The model developed in [10] has four components: the
chillers and cooling towers, the thermal storage tank, the
campus model and the electricity energy price. In this work
we use the same models as in [10] with the exception
of the campus model. The campus model consists of a
load model and a fan coil model. The load model predicts
the total energy required to cool the campus based on the
information of date, time, occupancy and weather. The coil
model captures the heat exchange between chilled water
and the air in the campus buildings. Weather predictions
are downloaded from the internet and used for campus load
prediction. Details are presented in the next sections.

1) Campus Load Model:The campus load model has two
subcomponents: “the Solar and Internal Load Predictor” and
the “Building Thermal Load Predictor” (see figure 1).

Fig. 1: Campus Load Model

a) Solar and Internal Load Predictor:The Solar and
Internal Load Predictor uses time (ttd [sec], a number
ranging from 0 to 86400), date (tdy, a number between 1 to
365(366);tdw, a number between 1 to 7) and cloud coverage
(βcloud, a continuous value from 0 to 1, reflecting the impacts
of cloud on the solar energy) as its inputs and calculates

subscriptions description
·air: air
·cmp: campus
·cmp,r: campus return
·cmp,s: campus supply
·CHWS : chilled water supplied from the chillers
·CHWR: chilled water returning to the chillers
·amb: ambient
·real: data collected from real measurement
·in: inside
·out: outside
·ref : reference
·sp: set points

TABLE II: Subscripts

inside and outside solar loads and internal load. The outside
solar load reflects the solar energy on the outer surface of the
building, while the inside solar load is the solar radiationinto
the building (e.g. sunshine through the windows into rooms).
The internal load includes the heat from people, lights and
equipment. The outside and inside solar loads are calculated
as follows:

SHour = (ttd − 12) × 15◦ (1)

SDec = −23.45◦ × cos(360◦
tdy + 10

365
) (2)

ESolar = max(0, cos(SHour) cos(SDec) cos(Latitude)

+ sin(SDec) sin(Latitude)) (3)

Q̇Solar,in = βcloudESolarθin (4)

Q̇Solar,out = βcloudESolarθout (5)

where SHour and SDec are variables calculated based on
time and date to indicate the solar projection angle,ESolar

is the extraterrestrial horizontal radiation,θin (θout) is the
solar load on the inner (outer) wall mass per unit of clear-
sky extraterrestrial horizontal radiation and it depends on
the building geometry. The internal load is assumed to be a
piecewise constant signal with a period of one week, and it
is evaluated as:

γ =

{

1 if tstart ≤ ttd ≤ tend

0 Otherwise
(6)

Q̇internal =







γQ̇Saturday if tdw = 6

γQ̇Sunday if tdw = 7

γQ̇Weekday Otherwise
(7)

where tstart and tend indicate the time interval when the
internal load is different from zero.̇QSaturday, Q̇Sunday and
Q̇Weekday are constant internal load values during different
days of the week.

b) Building Thermal Load Predictor:The Building
Thermal Load Predictor predicts the cooling load of build-
ings whose main components includes walls and windows
which are conventionally modeled by using thermal resis-
tances and thermal capacitors [3]. The proposed campus
thermal load model is sketched in figure 2.R1 represents the
thermal resistance of windows. The wall is separated into
two layers, whereCin and Cout capture the heat capacity
of the wall when influenced by outside and inside solar



load, respectively. The heat resistance betweenCin and
Cout is modeled byR3 while R2 and R4 capture the heat
resistance caused by heat convection. The interconnectionof
the thermal components is shown in figure 2. The model
inputs are ambient temperature (Tamb), outside solar load
(Q̇Solar,out), inside solar load (̇QSolar,in), internal load
(Qinternal) and the indoor temperature set-point (Tsetpoint).
The model internal states are the temperatures of the thermal
masses (Tin, Tout) and the model output is the cooling load
(Q̇Load).

Fig. 2: Building Thermal Load Model

The detailed equations describing the model are:

Q̇Load = max(0, Q̇internal +
Tin − Tair

R4

+
Tamb − Tsp

R1

)

(8)

Ṫin =
Q̇Solar,in + Tout−Tin

R3
+

Tsp−Tin

R4

Cin

(9)

Ṫout =
Q̇Solar,out + Tamb−Tout

R2
+ Tin−Tout

R3

Cout

(10)

The campus load model is described as a thermodynamic
system by collecting equation (1)–(10).

The model can be compacted as:

Tstate =[Tin; Tout] (11a)

Φ =[ttd; tdy; tdw; βcloud; Tamb; Tsetpoint; Tair] (11b)

Ṫstate =g(Tstate, Φ) (11c)

Q̇Load =LOAD(Tstate, Φ) (11d)

The parameters used in model (11) are summarized in
table III. These parameters are identified by using historical
data collected in 2008, and minimizing the root mean square
of the error between the model output and the measured load
of the campus. The identified set of parameters are listed in
table IV.

Figure 3 shows the identification result. The proposed
campus load model captures the main load dynamics in
May 2009. However, the peak values are not well modeled
during the high load sessions and the campus load is slightly
overpredicted by the model for low load period of time. This
can be improved by using a different set of parameters for
different level of building load.

The identified campus load model is validated by using
load measurements from Jun 01st to Jun 05th, 2009. Figure 4
presents the validation results. The measured campus load
is depicted as the dotted line, and the solid line shows the

Optimized Parameter Description
tstart starting time of the internal load
tend ending time of the internal load
Q̇Saturday internal load for Saturdays
Q̇Sunday internal load for Sundays
Q̇Weekday internal load for Weekdays
θin inside solar gain related to building

geometry
θout outside solar gain related to building

geometry
R1–R4 thermal resistors in Building Thermal

Load component
Cout, Cin thermal capacitors in Building Thermal

Load component

TABLE III: Tuning parameters of the building load model

Parameter values Parameter values
tstart 6 θout 6.25
tend 20 R1 8069.8125
Q̇Saturday 154180 R2 37870
Q̇Sunday 154178.25 R3 10135
Q̇Weekday 154258 R4 161313
θin 6.25 Cout 221630.42
Cin 398005.88

TABLE IV: Identified parameters of the campus load model
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Fig. 3:Campus load model validation (measured data dots in red and
simulation output in blue line)

campus load prediction by the proposed campus load model.
Clearly, the load dynamics are successfully captured by the
proposed model.
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Fig. 4: Campus load validation

2) Fan Coil Model: The fan coil models the heat ex-
change between the chiller water supplied to the campus and
air in the buildings. Several fan coil models are available in
the literature. In this work we used the simplified model



presented in [1] where the model inputs are the cooling
load (Q̇Load) calculated from campus load model described
in II-B.1, water supply temperature (Tcmp,s) and ambient
temperature (Tamb). The model outputs are water mass flow
rate supplied to the campus (ṁcmp,s) and the return water
temperature from the campus (Tcmp,r). The resulting semi-
empirical model [1] can be compactly represented by using
the following implicit function:

FanCoil(Q̇Load, Tcmp,s, Tamb, ṁcmp,s, Tcmp,r) = 0 (12)

The fan coil model is implemented as a look up table
(2000 × 18 × 60) to avoid solving implicit equations which
are computational prohibitive for online optimization. We
grid over the input space of the model[Q̇Load; Tcmp,s; Tamb]
and compute the corresponding outputs[ṁcmp,s; Tcmp,r] by
solving equation (12).

3) Weather Predictions:The weather predictions are
downloaded from the webhttp://www.weather.gov.
The weather data includes temperature and humidity for the
following 3 days with a sampling time of 2 hours. The
predicted weather information is used to predict the campus
load.

C. Control Variables

1) TCWS,ref : Reference temperature of the water exiting
the cooling tower.

2) ṁCHWS,ref : Mass flow rate of the chiller water sup-
ply. It is a disconnected set. The mass flow rate is 0
when chiller is off, and[148, 235]kg/s while the chiller
is operating.

3) TCHWS,ref : Reference temperature of the water flow-
ing out of the chiller.

D. Measured Variables

1) TCHWR: Temperature of the water return to the chiller.
2) Ta: Temperature of the cool water in the tank.
3) Tb: Temperature of the warm water in the tank.
4) za: Height of warm tank water above the thermocline.
5) zb: Height of cool tank water below the thermocline.

E. Operation Constraints

The following constraints avoid the malfunction of the
system components.

1) TCWS,ref ∈ [288, 295]K.
2) ṁCHWS,ref ∈ {0}

⋃

[148, 235]kg/s.
3) TCHWS,ref ∈ [276.5, 280.4]K.
4) TCHWR ∈ [283, 295]K.
5) zb ∈ [0.3, 1]ztank.

F. Model Summary

The model consists of the chillers and cooling towers,
the thermal storage tank and the electricity energy prices
introduced in [10], the campus load model described in
section II-B.1, and the fan coil model in section II-B.2. The
model can be summarized as:

x(t + 1) = f(x(t), u(t), Φ(t), t) (13a)

y(t) = g(x(t), u(t), Φ(t), t); (13b)

where

f =

{

f1(x(t), u(t), Φ(t), t); if ṁCHWS ≤ ṁcmp

f2(x(t), u(t), Φ(t), t); if ṁCHWS > ṁcmp

u(t) = [TCWS,ref ; ṁCHWS ; TCHWS,ref ] ∈ U

x(t) = [Ua; Ub; za; zb; Tin; Tout]

y(t) = [TCHWR; zb] ∈ Y.

U is the feasible control input set defined in section II-E;Y

is the feasible output set defined in section II-E.

III. MPC PROBLEM FORMULATION

We refer to [10] for the detailed MPC design procedure.
The objective of the optimal controller is to find the op-
timal control sequence so that we can satisfy the required
cooling load while minimizing the electricity costs. Let
U⋆

0→N−1|t = {u⋆
0|t, · · · , u⋆

N−1|t} be the optimal solution of
such optimization problem at timet. Then, the first element
of U⋆

0→N−1|t is implemented to the system (u(t) = u⋆
0|t).

The optimization problem is repeated at timet + 1,
based on the new statext+1|t+1 = x(t + 1), yielding a
moving or receding horizon controlstrategy. The proposed
MPC controller uses a move blocking strategy to reduce the
computational time required for its real time implementation.
Furthermore, terminal constraints are imposed to guarantee
the persistent feasibility of the MPC. The technical details
can be found in [10], [11]. The control sampling time is one
hour, and prediction horizon is set to 24h (one day).

IV. EXPERIMENTAL SETUP

The MPC controller outlined in section III has been
implemented at UC Merced. The detailed experimental setup
is described below. The MPC controller computes the set
points for the chillers and cooling towers at the central plant.
Because of lower level control loops, the closed loop system
indirectly affects all the components of the campus including
the pumps and fan coils of the distribution system. The
MPC algorithm is implemented in MatlabR© and running
in real-time on a Pentium 4 IntelR© processor. The MPC
algorithm receives and sends data to the campus through
the Automated Logics Web Control (ALC) system. ALC
is a building automation system, offering a user interface
and some control features. ALC enables one to access all
building management functions including (1) set and change
schedules; (2) adjust setpoints and other control parameters;
(3) trend building conditions; (4) view and acknowledge
alarms and events; (5) run preconfigured and customized
reports on energy usage, occupant overrides, tenant billing.

V. EXPERIMENTAL RESULTS

Three types of scenarios have been studied in order to
evaluate the performance of the controller:

[S1] Scenario 1 is the baseline performance. The plant is
operated manually by using the policy defined by the
plant managers. There is no optimal control algorithm
involved. Rather, the control policy is based on the
operators’ experience. The data for experiment S1 are
collected from May 27th to May 31st, 2009.



[S2] Scenario 2 implements the MPC control in section III.
The data for experiment S2 are collected from June 2nd
to June 6th 2009.

[S3] In Scenario 3 the plant is operated manually by using
a modified policy defined by the plant managers. The
modifications are extracted by observing the policy used
by the MPC controller in S2. The data for experiment
S3 are collected from June 8th to June 12th, 2009.

A. Comparison Metrics

Two comparison metrics are defined to evaluate the per-
formance of MPC: the electricity bills and the coefficient of
performance.

a) Electricity Bill: The electricity bill

Bill =

N
∑

k=0

C(k∆t)Power(x(k∆t), u((k − 1)∆t))∆t (15)

is the cost function that the proposed MPC controller mini-
mizes.Power(x, u) is the electrical power consumption as
a function of states and inputs, andC(t) is the price of
electricity at timet. Both are defined in [10]. By comparing
the electricity bill we can quantify the cost savings generated
by the MPC controller.

b) Coefficient of Performance:The Coefficient of Per-
formance (COP)

COP = EThermal
Generated/EElectrical

plant (16)

captures the efficiency of the central plant, i.e., the amount
of thermal energy (J) generated by the central plant with
1 J of electrical energy.EElectrical

plant is the electrical energy
consumed by the central plant, andEThermal

Generated is the thermal
energy generated by the central plant defined as

EThermal
Generated =

∑N

k=0
ṁCHWS(k∆t)(TCHWR(k∆t)

−TCHWS(k∆t))∆t (17)

By comparing the COP between the three scenarios S1,
S2, and S3, we can better understand if MPC improves the
efficiency of the central plant.

B. Discussion of Experimental Results

Next we compare the three experiments S1, S2 and S3
by analyzing the performance of the central plant and the
corresponding control profiles.

1) Performance Comparison:The performance of the
central plant will be compared by using the metrics defined in
section V-A. Table V lists the electrical energy consumption,

S1 S2 S3
Energy Consumption (Electrical) [106KJ] 8.63 4.25 4.40
Energy Generated (Thermal) [107KJ] 4.05 2.01 2.31
COP 4.70 4.77 5.26
Bill [dollar] 1680 418 475

TABLE V: Central plant performance comparison (all quantities correspond to daily
average)

thermal energy generated, COP and the electricity bill for
experiments S1, S2 and S3. We can observe that: i) com-
paring S1 with S2. The MPC controller has significantly

reduced the daily electricity bill in experiment S2 by$1265
compared to experiment S1. Meantime, the efficiency of
central plant, COP, is also improved by1.5%, ii) comparing
S3 with S1.The electricity bill reduction is$1205 and COP
is increased by11.9%.

The performance improvement is further discussed by
looking at the implemented control profiles in the rest of
the section.
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Fig. 5: Control Sequence Set points (Set points are valid only during
the charging period of time)

S1 S2 S3
TCWS [K] 289.0 292.3 293.2
ṁCHWS [Kg/s] [KJ] 152.6 158.2 178.0
TCHWS [K] 276.7 276.4 276.9

TABLE VI: Average values of central plant flows and temperatures during charging
time

2) Control Profile: Figure (5) shows the control profiles
for experiments S1, S2 and S3 respectively. Table VI lists the
average values of the control set points during the charging
time. Based on these information the following remarks can
be drawn:

• The MPC controller in S2 uses higher condensed water
supply temperature set points (TCWS,ref ) for cooling
towers than experiment S1. In the baseline control (ex-
periment S1), the operators usually set theTCWS,ref as
low as possible so that the cooling towers always work

jawolslegel
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at full load. However, it turns out the cooling towers
are overloaded, which means higherTCWS,ref can also
guarantee the functionality of the cooling towers while
consuming less energy.

• During experiment S2, the central plant is working with
shorter charging windows, and the average mass flow
rateṁCHWS is greater than that in S1.

• The set points of chilled water supply temperature
TCHWS,ref for S1, S2 and S3 are reported in fig-
ure (5(c)), and for all three scenarios, there is no
noticeable difference.

• The level of the tank cool water is brought to 90% at
the end of each charging event in both experiments S2
and S3, while it is brought to 100% and overcharged in
experiment S1.

We notice that experiment S3 improves COP over experiment
S2 (with MPC in the loop). The reason is that the MPC in
S2 assumes the start time and stop time of the central plant
can only be multiple of the sampling time (one hour). As a
result a constant and high mass flow rate would overcharge
the tank. As it can be observed in figure 5, the mass flow
rate (ṁCHWS,ref ) in experiment S2 is high only at the
beginning of the charging window. Then, it decreases in
order to satisfy the load demand. Since for the specific
scenario and chillers performance curves, a high COP is
always obtained for higher mass flow rates (ṁCHWS,ref ),
the decrease inṁCHWS,ref erodes the efficiency of the
central plant. Decreasing the control sampling can address
this problem.

After experiment S2 the operators observed the behavior
of the MPC and decided to apply maximum chilled water
supply mass flow rate, not fully charge the tank everyday, and
set the condensed water supply temperature around 293.7K.
These modification are used in scenario S3. As observed
from table VI, the performance of the central plant, in terms
of COP, is improved by11.9% compared to their original
baseline control S1.

VI. CONCLUSIONS

This paper builds on the work [10]. We have improved the
oversimplified campus model in [10] with one that includes a
load model and a fan coil model. Historical data are used to
identify and validate the model. Experimental results have
been presented. The proposed Model Predictive Controller
(MPC) has optimized the scheduling and operation of the
central plant to achieve lower electricity cost and better
efficiency.

Two main conclusions can be drawn from the experiments.
Our study has enabled a11.9% improvement of the plant
Coefficient of Performance (COP) and$1205 daily electricity
bill saving. The actual tests with the MPC in feedback loop
have provided a1.5% COP improvement. The small1.5%
reduction in COP is related to a coarse sampling of the MPC
scheme. Also, the scheme has been used to confirm that
some of the control profiles chosen by the operators and
plant manager are very close to the optimal solution.

Ongoing research is trying to improve models, increase
MPC sampling time while maintain real-time feasibility [11],
and consider additional degrees of freedom such as night air
ventilation in the campus buildings.
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