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Abstract— A model-based predictive control (MPC) is de- uses an oversimplified campus load model and presents
signed for optimal thermal energy storage in building coolng  simulation results. In this paper a more detailed campus loa
systems. We focus on buildings equipped with a water tank 44| js developed and validated with measured historical

used for actively storing cold water produced by a series of . .
chillers. Typically the chillers are operated at night to recharge data. Moreover experimental results with the MPC scheme

the storage tank in order to meet the building demands on the are reported.
following day. In this paper, we build on our previous work, Although this paper focuses on the specific architecture of

improve the building load model, and present experimental the UC Merced Campus, the main ideas and methodologies
results. The experiments show that MPC can achieve reduclio 5 e gpplied to a wider class of building systems which
in the central plant electricity cost and improvement of its . L
efficiency. use t_hermal energy storage_. In particular t_he cor_1tr|b8t|on
of this paper and our previous work [10] includ@) the
l. INTRODUCTION development of a simple, yet descriptive nonlinear model
The building sector consumes about 40% of the energyf the overall cooling system(ii) the development of a
used in the United States and is responsible for nearly 40% BPC scheme for minimizing energy consumptidiii) the
greenhouse gas emissions [12]. It is therefore econoryjcalpresentation of experimental results showing a reduction o
socially and environmentally significant to reduce the gper electricity bill compared to currently adopted policiesda
consumption of buildings. improvement of the overall system performance.
Reductions of 70% in energy use in buildings are re- We remark that the evaluation of optimal controllers for
quired to achieve the goals for the building sector set bgctive and passive building thermal storage has been studie
organizations such as the California Public Utilities Comin the past by several authors (see [4], [9], [6], [5] and
mission. Achieving this goal requires the development afeferences therein). In particular in [4] the authors itigede
highly efficient heating and cooling systems, which are mora three-story office building equipped with two chillers hwit
challenging to control than conventional systems [8],[2], constant coefficient of performance and a thermal energy
This work focuses on the modeling and the control of thetorage system. An optimal controller is designed in order t
central plant (thermal energy generation and storagersystecompute the cooling capacity produced by the two chillers
at the University of California at Merced in USA. The without accounting for pump power. Experimental resulés ar
campus has a significantly enhanced level of instrumemtatipresented in [9] where the optimal controller is implemente
in order to support the development and demonstration @i a receding horizon fashion on an unoccupied test bed.
energy-efficient technologies and practices. It consifta o  The paper is organized as follows. Section Il introduces
chiller plant (three chillers redundantly configured as iwo the general system, presents a more detailed campus load
series, one backup in parallel), an array of cooling towersnodel and a fan coil model. In section Ill the MPC control
a 7000m? chilled water tank, a primary distribution systemalgorithm is outlined. Experimental setups and results are
and secondary distribution loops serving each building gfresented in section IV and section V respectively. Finally
the campus. The two series chillers are operated each niglunclusions are drawn in section VI.
to charge the storage tank to meet campus cooling demand
the following day. Although the storage tank enables load Il. SYSTEM MODEL
shifting to off-peak hours, the lack of an optimized opemati  In this section we describe the main components of the
results in conservatively over-charging the tank. central plant used to generate and store thermal energy.
A simplified model of the central plant and a MPC strategyJC Merced campus has been built with a vision to create
has been presented and discussed in [10]. The work in [1B}ing laboratories for energy research. In this paper we
_ _ _ _ focus on the higher level control systems which actuate two
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tive model which can be used for real time optimization in S“bscr"?t'ons description

‘air-. air
a MPC scheme. “emp! campus
“emp,r: campus return
A. Nomenclature “emp,s" campus supply
. . . . . : chilled water supplied from the chillers
The variables, parameters and subscripts listed in tablle 1— ggzz;‘; chilled water ,etﬂ?ning to the chillers
will be used in this paper. ‘amb ambient
‘real data collected from real measurement
parameters and variables  description fin |nS|d'e
- . out: outside
5 time ref reference
Q: heat flow transferred from one ref: set points
medium to another [W] i
™m: mass flow rate [kg/s] )
T Temperature [K] TABLE II: Subscripts
R: heat resistor [K/W]
C: heat capacitor [J/K]
St Weight on the energy consumption inside and outside solar loads and internal load. The caitsid
Ry: Weight on the control input
Hy: Length of prediction horizon solar load reflects the solar energy on the outer surfaceof th
Hy: Length of control horizon building, while the inside solar load is the solar radiatiioto
TABLE I: Parameters and variables the building (e.g. sunshine through the windows into rooms)

The internal load includes the heat from people, lights and
equipment. The outside and inside solar loads are calcllate
B. Main subsystems of the cooling system as follows:

The model developed in [10] has four components: the
chillers and cooling towers, the thermal storage tank, the
campus model and the electricity energy price. In this work SpDec = —23.45° x cos(360°
we use the same models as in [10] with the exception
of the campus model. The campus model consists of a
load model and a fan coil model. The load model predicts + sin(Spec) sin(Latitude)) 3)
the total energy required to cool the campus based on the;')SOW_m = BerowdEsotartin (4)
information of date, time, occupancy and weather. The coik2
model captures the heat exchange between chilled water
and the air in the campus buildings. Weather predictionshere Sy, and Sp.. are variables calculated based on
are downloaded from the internet and used for campus logithe and date to indicate the solar projection andle,iq
prediction. Details are presented in the next sections. is the extraterrestrial horizontal radiatiofy,, (f,.:) is the

1) Campus Load ModelThe campus load model has twosolar load on the inner (outer) wall mass per unit of clear-
subcomponents: “the Solar and Internal Load Predictor” argky extraterrestrial horizontal radiation and it depends o

SHour = (ttd — 12) x 15° (1)

tay + 10

Zdy T 2V 2
365 ) )

Esoiar = max(0, cos(SHour ) c0s(Spec) cos(Latitude)

Solar,out = ﬁcloudESolareout (5)

the “Building Thermal Load Predictor” (see figure 1). the building geometry. The internal load is assumed to be a
piecewise constant signal with a period of one week, and it
is evaluated as:
e Solar and Internal 1 i tspart < tia < tena ©)
Load Predictor 771 o Otherwise

Time

'YQSaturday if tdw =6

amb

where tg.+ and t.,q indicate the time interval when the
internal load is different from zer@) sqiurday, @ sunday @nd
Qweekday are constant internal load values during different

\ | ‘ \ \

]I]jzl:dr ‘L:taedma] Qinternal - 'YQSunday if tdw =7 (7)
i YQWeekday ~ Otherwise

Tserpint

Bui\dingTh?rmai dayS of the week.
P b) Building Thermal Load Predictor:The Building
Fig. 1: Campus Load Model Thermal Load Predictor predicts the cooling load of build-

ings whose main components includes walls and windows
a) Solar and Internal Load PredictorThe Solar and which are conventionally modeled by using thermal resis-
Internal Load Predictor uses time,{ [sec], a number tances and thermal capacitors [3]. The proposed campus
ranging from 0 to 86400), daté.(,, a number between 1 to thermal load model is sketched in figure2, represents the
365(366);t4.,, @ number between 1 to 7) and cloud coveragthermal resistance of windows. The wall is separated into
(Beioud, @ continuous value from 0 to 1, reflecting the impactéwo layers, whereC;,, and C,,,; capture the heat capacity
of cloud on the solar energy) as its inputs and calculated the wall when influenced by outside and inside solar



Optimized Parameter  Description

load, respectively. The heat resistance betwégp and

. . tstart starting time of the internal load
Cout is modeled byR3 while Ry, and R4 capture the heat tomd ending time of the internal load
resistance caused by heat convection. The interconneation QSaturday internal load for Saturdays
the thermal components is shown in figure 2. The model gSunday !”tema: :Oag IOF \?\;’”?(ZYS
Weekday internal load for Weekdays
inputs are ambient temperaturé,f,,), outside solar load Al inside solar gain related to building
(QSOW out); INside solar load @Solar,ln) internal load geometry
(themal) and the indoor temperature Set'DOim&point)- Oout outside solar gain related to building
: geometry
The model internal states are the temperatures of t_he therma Ri—R4 fhermal resistors in Building Thermal
massesT;,, Tout) and the model output is the cooling load Load component
(QLoad)_ Cout, Cin thermal capacitors in Building Thermal
Load component
R1 ] . -
— TABLE lIl: Tuning parameters of the building load model
Lanis Tsstpoint
9 . " . Roas Parameter values Parameter  values
3 T - 6 Tout 6.25
3 Lend 20 By 8069.8125
terne! Qsaturday 154180 Ry 37870
T T QSunday 154178.25 R3 10135
Solar Solar QWeekday 154258 Ry 161313
Outside Inside Bm 6.25 Cout 221630.42
Cin 398005.88

Fig. 2: Building Thermal Load Model

TABLE IV: Identified parameters of the campus load model
The detailed equations describing the model are:

3500 T
: s Tin - Tair Tamb - Tsp é © measurement
QLoad = Inax(O, Qinternal + R4 + Rl ) . 3000 r‘: ; prediction
@8) Z 2500t ft A
=~ £ ;
- Ts Tm g 2000F] |, 8 ?
. QSolar in T Tout Tm + p S :
T;n = (9) 21500 . < 4
Cm g ; 3 B
- T 1000 b AEYV A AR Y 3
. QSola’r out + amb Tout + TLvLRzout S ’ SR .li : .( ) A [ 3 v )
Tout = C (20) 500f SN Y LR LK
out o . R . .
The campus load model is described as a thermodynan 05/17/09 05/24/09 05/31/09
system by collecting equation (1)—(10).
The model can be compacted as: Fig. 3: Campus load model validation (measured data dots in red and
simulation output in blue line)
Tstate :[Ena Tout] (113)

2 =[t1a; tay: taws Betouds Tamp; Tactpoint; Tair] - (11D) campus load prediction by the proposed campus load model.
Tstate =9(Tstate, P) (11c) Clearly, the load dynamics are successfully captured by the
QLoad —LOAD( states CI)) (11d) prOpOSEd model.

The parameters used in model (11) are summarized " 2000 ———————————
table 1ll. These parameters are identified by using hisabric . . ' ;ZEISC“J;TW
data collected in 2008, and minimizing the root mean squa = 2 1500} k
of the error between the model output and the measured Iov
of the campus. The identified set of parameters are listed g
table IV.

Figure 3 shows the identification result. The propose s
campus load model captures the main load dynamics 500
May 2009. However, the peak values are not well modele

o
_l
@ 1000f
o
£
o]

during the high load sessions and the campus load is sligh 00 06 12 18 00 06 12 18 l?n‘ie%?) 12 18 00 06 12 18 00 06
overpredicted by the model for low load period of time. This
can be improved by using a different set of parameters for Fig. 4: Campus load validation

different level of building load.

The identified campus load model is validated by using 2) Fan Coil Model: The fan coil models the heat ex-
load measurements from Jun 01st to Jun 05th, 2009. Figure&eBange between the chiller water supplied to the campus and
presents the validation results. The measured campus lagd in the buildings. Several fan coil models are available i
is depicted as the dotted line, and the solid line shows thbe literature. In this work we used the simplified model



presented in [1] where the model inputs are the coolinghere
load @r.0qq) calculated from campus load model described { Fu@(t), u(t), ®(t),0);  if meaws < hemp

fg(x(t),u(t),q)(t),t), if mCHWS > mcmp
u(t) = Toews,rer;moaws; Tecaws,ref] € U

in 11-B.1, water supply temperaturel'(,,, ;) and ambient f=
temperature,.,.,). The model outputs are water mass flow
rate supplied to the campusi,,, ) and the return water
temperature from the campus$.(,, ). The resulting semi- z(t) = [Ua; Uvs 245 20 Tin’ Tout]
empirical model [1] can be compactly represented by using y(t) = [Tcuwr; 2] € Y.

the following implicit function: U is the feasible control input set defined in section IRE;

FanCoz‘l(QLoad,Tcmp,s, Tamb, Memp,s, Temp,r) =0 (12)  is the feasible output set defined in section II-E.

The fan coil model is implemented as a look up table I1l. MPC PROBLEM FORMULATION

(2000 x 18 x 60) to avoid solving implicit equations which  \ye refer to [10] for the detailed MPC design procedure.
are computational prohibitive for online optimization. Wethe gpjective of the optimal controller is to find the op-
grid over the input space of the mod€lzoad; Temp,s; Tams]  timal control sequence so that we can satisfy the required
and compute the corresponding OUtpUts .y, s; Temp,rl BY  cooling load while minimizing the electricity costs. Let
solving equation (12). o Ug 1y = {uys-- -y ui_y,} be the optimal solution of

3) Weather Predictions:The weather predictions are g,ch optimization problem at time Then, the first element
downloaded from the weht t p: / / www. weat her . gov. U&Nﬂjt is implemented to the system(¢) = “3|t)-

The weather data includes temperature and humidity for thgThe optimization problem is repeated at timet 1,
followlng 3 days w|th a s_ampllng time of 2_ hours. Thepased on the new state,, 141 = x(t + 1), yielding a
predicted weather information is used to predict the CampYSoving or receding horizon contraitrategy. The proposed
load. MPC controller uses a move blocking strategy to reduce the
C. Control Variables computational time required for its real time implemerdati

urthermore, terminal constraints are imposed to guagante
he persistent feasibility of the MPC. The technical dstail
can be found in [10], [11]. The control sampling time is one
Bour, and prediction horizon is set to 24h (one day).

1) Tews,ref: Reference temperature of the water exitin
the cooling tower.

2) mcuws,ref. Mass flow rate of the chiller water sup-
ply. It is a disconnected set. The mass flow rate is
when chiller is off, and148, 235]kg/ s while the chiller IV. EXPERIMENTAL SETUP
is operating.

3) Teuws,rep: Reference temperature of the water flow
ing out of the chiller.

The MPC controller outlined in section Ill has been
implemented at UC Merced. The detailed experimental setup
is described below. The MPC controller computes the set
D. Measured Variables points for the chillers and cooling towers at the centrahpla

1) Temwr: Temperature of the water return to the ChiHer_Bec;ause of lower level control loops, the closed Ioo_p syst_em

2) T,: Temperature of the cool water in the tank. indirectly affects all the c_omponents _of t_he campus incigdi

the pumps and fan coils of the distribution system. The

3) T,: Temperature of the warm water in the tank. . o ) @ .
4) z,: Height of warm tank water above the thermoclineMPC algorithm is implemented in Matlab and running

5) z,: Height of cool tank water below the thermocline. I réal-time on a Pentium 4 Intél processor. The MPC
algorithm receives and sends data to the campus through

E. Operation Constraints the Automated Logics Web Control (ALC) system. ALC
The following constraints avoid the malfunction of theis a building automation system, offering a user interface
system components. and some control features. ALC enables one to access all
1) Tews.ref € [288,295]K. building management functions including (1) set and change
2) rcaws.rer € {0} J[148,235]kg/s. schedules; (2) adjust setpoints and other control parasjete
3) Touws.ref € [276.5,280.4]K. (3) trend building conditions; (4) view and acknowledge

4) Topwnr € (283,295 K. alarms and events; (5) run preconfigured and customized
5) 2z € (0.3, 1] ztank- reports on energy usage, occupant overrides, tenantgillin
F. Model Summary V. EXPERIMENTAL RESULTS

The model consists of the chillers and cooling towers, Three types of scenarios have been studied in order to
the thermal storage tank and the electricity energy pric&aluate the performance of the controller:
introduced in [10], the campus load model described [81] Scenario 1 is the baseline performance. The plant is
section II-B.1, and the fan coil model in section II-B.2. The operated manually by using the policy defined by the
model can be summarized as: plant managers. There is no optimal control algorithm
involved. Rather, the control policy is based on the
2t +1) = f(@(t), u(®), ®(¢),1) (13a) operators’ experience. The datpa fo?/ experiment S1 are
y(t) = g(z(t), u(t), (1), 1); (13b) collected from May 27th to May 31st, 2009.



[S2] Scenario 2 implements the MPC control in section Illreduced the daily electricity bill in experiment S2 by265
The data for experiment S2 are collected from June 2ncbmpared to experiment S1. Meantime, the efficiency of
to June 6th 2009. central plant, COP, is also improved by %, ii) comparing

[S3] In Scenario 3 the plant is operated manually by usin§3 with S1.The electricity bill reduction 61205 and COP
a modified policy defined by the plant managers. The increased byl 1.9%.
modifications are extracted by observing the policy used The performance improvement is further discussed by
by the MPC controller in S2. The data for experimentooking at the implemented control profiles in the rest of
S3 are collected from June 8th to June 12th, 2009. the section.

A. Comparison Metrics 296

Two comparison metrics are defined to evaluate the per- 294
formance of MPC: the electricity bills and the coefficient of
performance.

a) Electricity Bill: The electricity bill

Tews rer ()

—S1
N —_—S2
. —S3
BZ” = ZC(kAt)POU}eT((E(kAtLU((k - 1)At))At (15) 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06
— time (hour)
F=0 (@) Control input setpointd’cyw s, re s

is the cost function that the proposed MPC controller mini-
mizes. Power(z,u) is the electrical power consumption as 200
a function of states and inputs, ard(¢) is the price of o !E
electricity at timet. Both are defined in [10]. By comparing
the electricity bill we can quantify the cost savings geteta
by the MPC controller.

b) Coefficient of PerformanceThe Coefficient of Per- %0 —_

formance (COP) —s2
6 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06

COP = EThermal EElectrical 16 time (hour)
Generated/ plant (16) (b) Control input setpointsic grw s,re f

mdmcnws (kg/s)
=
o
(=]

o2

captures the efficiency of the central plant, i.e., the amhoun
of thermal energy (J) generated by the central plant with
1 J of electrical energyr/ilccirical is the electrical energy

consumed by the central plant, afgermal s the thermal 2 e

enerated

energy generated by the central plant defined as Z 280

EEhermal =S gcaws (kAL (Tomw r(kAt)
—Teorws(kAt))At 17

PYT)

276

274
06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06
time (hour)

By comparing the COP between the three scenarios S1, (c) Control input Setpointsc: 7 s. e

S2, and S3, we can better understand if MPC improves the

efficiency of the central plant. Fig. 5: Control Sequence Set points (Set points are valid only durin
the charging period of time)

B. Discussion of Experimental Results
Next we compare the three experiments S1, S2 and S3

S1 S2 S3

by analyzing the performance of the central plant and the Tows K 5800 2023 2932
corresponding control profiles. merws[Kg/s] [KJ] 1526 158.2 178.0
1) Performance ComparisonThe performance of the Tenws [K] 276.7 2764 2769

central plant will be compared by using the metrics defined iMBLE Vi: Average values of central plant flows and temperesuduring charging
section V-A. Table V lists the electrical energy consumptio "¢

Sl S5 53 2) Control Profile: Figure (5) shows the control profiles
Energy Consumption (Electricall(°KJ]  8.63 4.25 4.40 for experiments S1, S2 and S3 respectively. Table VI ligts th
Enoelggy Generated (Thermal)("KJ] i-(;% 240717 253;6 average values of the control set points during the charging
Bill [dollar] 1680 418 475 Emz. Based on these information the following remarks can
e drawn:

TABLE V: Central plant performance comparison (all quaesitcorrespond to daily . .
average) o The MPC controller in S2 uses higher condensed water

supply temperature set point¥ (s r.r) for cooling
thermal energy generated, COP and the electricity bill for  towers than experiment S1. In the baseline control (ex-
experiments S1, S2 and S3. We can observe that: i) com- periment S1), the operators usually setThgy s .+ as
paring S1 with S2. The MPC controller has significantly low as possible so that the cooling towers always work
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at full load. However, it turns out the cooling towers Ongoing research is trying to improve models, increase
are overloaded, which means highefy s . can also MPC sampling time while maintain real-time feasibility [11
guarantee the functionality of the cooling towers whileand consider additional degrees of freedom such as night air
consuming less energy. ventilation in the campus buildings.

During experiment S2, the central plant is working with

shorter charging windows, and the average mass flow VII. ACKNOWLEDGMENTS
ratercgws is greater than that in S1. This work was partially supported by the Department
The set points of chilled water supply temperatur®f Energy and Laurence Berkeley National Laboratories
Toaws ref for S1, S2 and S3 are reported in fig_and NSF CAREER Award CMMI-0844456. We thank John

ure (5(0)), and for all three scenarios, there is n&”iott, Satish Narayanan and Stella M. Oggianu for con-
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the end of each charging event in both experiments S2
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