JV Task 110 - Evaluation of an Acoustic Single-Fluid Nozzle for Oil Combustion

PDF Version Also Available for Download.

Description

Two residual (No. 6 fuel) oils from Texas and North Dakota with very different chemical compositions and physical properties were burned at similar injection rates ({approx}28 lb/hr) in a pilot-scale (550,000 Btu/hr) combustion test facility unit using conventional dual-fluid and Kimberly-Clark (K-C) acoustic nozzles to compare flame characteristics, gaseous and fly ash emissions, and fly ash morphological and chemical characteristics. The K-C acoustic nozzle supplied a more consistent oil feed rate to the furnace relative to the conventional dual-fluid nozzle. This consistency in oil flow reduced the variability in NO{sub x}, SO{sub 2}, CO{sub 2}, and O{sub 2} flue gas ... continued below

Creation Information

Galbreath, Kevin; Gunderson, Jay; Tibbetts, James & Kong, Lingbu August 1, 2007.

Context

This text is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this text can be viewed below.

Who

People and organizations associated with either the creation of this text or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this text. Follow the links below to find similar items on the Digital Library.

Description

Two residual (No. 6 fuel) oils from Texas and North Dakota with very different chemical compositions and physical properties were burned at similar injection rates ({approx}28 lb/hr) in a pilot-scale (550,000 Btu/hr) combustion test facility unit using conventional dual-fluid and Kimberly-Clark (K-C) acoustic nozzles to compare flame characteristics, gaseous and fly ash emissions, and fly ash morphological and chemical characteristics. The K-C acoustic nozzle supplied a more consistent oil feed rate to the furnace relative to the conventional dual-fluid nozzle. This consistency in oil flow reduced the variability in NO{sub x}, SO{sub 2}, CO{sub 2}, and O{sub 2} flue gas concentrations. K-C nozzle injection, however, produced a more carbon-rich residual oil fly ash (ROFA) relative to the conventional nozzle. The K-C acoustic nozzle promoted oil atomization and extended the flame higher in the furnace so that the residence time of the residual oil was greatly reduced. The lack of oil residence time in the furnace contributed to the incomplete combustion performance of the K-C acoustic nozzle. On average, the K-C acoustic nozzle reduced NO{sub x} emissions from burning the Texas and North Dakota oils by 66% and 33%, respectively. Late in the test program, it was discovered that a significant increase in power to the K-C acoustic nozzle improved combustion efficiency, flame stability, and reduced the amount of unburned carbon in ROFA. The unburned carbon particles were smaller, generally about 50 {micro}m in diameter, as a result of the increase in power to the K-C nozzle. Additional optimization of the K-C nozzle at higher power in a larger furnace has the potential to further improve combustion efficiency.

Language

Item Type

Identifier

Unique identifying numbers for this text in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FC26-98FT40321
  • Office of Scientific & Technical Information Report Number: 988094
  • Archival Resource Key: ark:/67531/metadc1014406

Collections

This text is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this text?

When

Dates and time periods associated with this text.

Creation Date

  • August 1, 2007

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Dec. 18, 2017, 6:12 p.m.

Usage Statistics

When was this text last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Text

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Galbreath, Kevin; Gunderson, Jay; Tibbetts, James & Kong, Lingbu. JV Task 110 - Evaluation of an Acoustic Single-Fluid Nozzle for Oil Combustion, text, August 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc1014406/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.