Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis

PDF Version Also Available for Download.

Description

Nuclear resonance fluorescence (NRF) has been studied as one of the nondestructive analysis (NDA) techniques currently being investigated by a multi-laboratory collaboration for the determination of Pu mass in spent fuel. In NRF measurements specific isotopes are identified by their characteristic lines in recorded gamma spectra. The concentration of an isotope in a material can be determined from measured NRF signal intensities if NRF cross sections and assay geometries are known. The potential of NRF to quantify isotopic content and Pu mass in spent fuel has been studied. The addition of NRF data to MCNPX and an improved treatment of ... continued below

Physical Description

8

Creation Information

Ludewigt, Bernhard A.; Mozin, Vladimir; Haefner, Andrew & Quiter, Brian July 14, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Nuclear resonance fluorescence (NRF) has been studied as one of the nondestructive analysis (NDA) techniques currently being investigated by a multi-laboratory collaboration for the determination of Pu mass in spent fuel. In NRF measurements specific isotopes are identified by their characteristic lines in recorded gamma spectra. The concentration of an isotope in a material can be determined from measured NRF signal intensities if NRF cross sections and assay geometries are known. The potential of NRF to quantify isotopic content and Pu mass in spent fuel has been studied. The addition of NRF data to MCNPX and an improved treatment of the elastic photon scattering at backward angles has enabled us to more accurately simulate NRF measurements on spent fuel assemblies. Using assembly models from the spent fuel assembly library generated at LANL, NRF measurements are simulated to find the best measurement configurations, and to determine measurement sensitivities and times, and photon source and gamma detector requirements. A first proof-of-principal measurement on a mock-up assembly with a bremsstrahlung photon source demonstrated isotopic sensitivity to approximately 1% limited by counting statistics. Data collection rates are likely a limiting factor of NRF-based measurements of fuel assemblies but new technological advances may lead to drastic improvements.

Physical Description

8

Source

  • 51st INMM Annual Meeeting, Baltimore, MD, July 11-15, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3890E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 988081
  • Archival Resource Key: ark:/67531/metadc1014292

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 14, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 7, 2017, 7:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ludewigt, Bernhard A.; Mozin, Vladimir; Haefner, Andrew & Quiter, Brian. Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis, article, July 14, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014292/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.