Multiscale Simulation of Thermo-Mechanical Processes in Irradiated Fission-Reactor Materials

PDF Version Also Available for Download.

Description

This research characterized, by atomic level molecular dynamics (MD) simulations, the early stage aggregation of the fission product xenon in a model uranium oxide nuclear fuel matrix that contributes to the long term bubble formation mechanisms that compromise the efficiency and lifetime of nuclear fuels. These atomic level computer simulations disclosed a previously unknown pre-coarsening phenomenon in which the clustering of xenon is driven by vacancy diffusion. These key findings are to be included in higher level simulations of nuclear fuel thermo-mechanical processes that model irradiation effects within nuclear fuels. Previous multiscale models did not include these early time pre-coarsened ... continued below

Creation Information

Corrales, Louis Rene November 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This research characterized, by atomic level molecular dynamics (MD) simulations, the early stage aggregation of the fission product xenon in a model uranium oxide nuclear fuel matrix that contributes to the long term bubble formation mechanisms that compromise the efficiency and lifetime of nuclear fuels. These atomic level computer simulations disclosed a previously unknown pre-coarsening phenomenon in which the clustering of xenon is driven by vacancy diffusion. These key findings are to be included in higher level simulations of nuclear fuel thermo-mechanical processes that model irradiation effects within nuclear fuels. Previous multiscale models did not include these early time pre-coarsened clusters that occur in the nanosecond regime and therefore will lead to a better understanding of bubble formation in nuclear fuels.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/46369- Final Report
  • Grant Number: FG02-07ER46369
  • DOI: 10.2172/991658 | External Link
  • Office of Scientific & Technical Information Report Number: 991658
  • Archival Resource Key: ark:/67531/metadc1014274

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 2, 2017, 3:07 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Corrales, Louis Rene. Multiscale Simulation of Thermo-Mechanical Processes in Irradiated Fission-Reactor Materials, report, November 1, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc1014274/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.