Use of Hydrogen Getters for Ensuring Safe Storage of Plutonium-Bearing Materials at the Savannah River Site

PDF Version Also Available for Download.

Description

Plutonium oxide left over from the 3013 destructive surveillance process is ultimately disposed of as waste. Therefore, this material is not re-stabilized and packaged to meet the requirements of DOE-STD-3013. Instead, it is stored on an interim basis in compliance with the interim safe storage criteria issued by DOE in January 1996. One of the safe storage criteria requires actions to be taken to minimize the formation or accumulation of flammable gases inside the storage container. Personnel responsible for the safe storage of the material have chosen to use a polymer-based, ambient air compatible hydrogen 'getter' to prevent the formation ... continued below

Creation Information

Woodsmall, T.; Hackney, B. & Traver, L. May 20, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plutonium oxide left over from the 3013 destructive surveillance process is ultimately disposed of as waste. Therefore, this material is not re-stabilized and packaged to meet the requirements of DOE-STD-3013. Instead, it is stored on an interim basis in compliance with the interim safe storage criteria issued by DOE in January 1996. One of the safe storage criteria requires actions to be taken to minimize the formation or accumulation of flammable gases inside the storage container. Personnel responsible for the safe storage of the material have chosen to use a polymer-based, ambient air compatible hydrogen 'getter' to prevent the formation of hydrogen gas inside the storage container and thus prevent the formation of a flammable gas mixture. This paper briefly describes the method in which the getter performs its functions. More importantly, this paper presents the results of the testing that has been performed to characterize the bounding effects of aging and demonstrate the use of the getter for long-term storage. In addition, the favorable results of a post-storage analysis of actual getter material are presented and compared with bounding predictions. To date, bounding test results have shown that after 18 months of continuous storage and 39 months of total storage at 70C, the getter is able to both recombine gaseous hydrogen and oxygen into water when oxygen is available, and irreversibly getter (i.e., scavenge) hydrogen from the vapor space when oxygen is not available, both under a CO{sub 2} environment. Further bounding testing has been deemed unnecessary, and continued post-storage testing will be conducted on a periodic basis. The first post-storage testing of deployed getter material after two years of service revealed that it still performed like new material.

Notes

available

Source

  • 2010 INMM Annual Meeting

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: X-ESR-H-00247
  • Grant Number: DE-AC09-08SR22470
  • Office of Scientific & Technical Information Report Number: 981406
  • Archival Resource Key: ark:/67531/metadc1014223

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 20, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • May 11, 2018, 1:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Woodsmall, T.; Hackney, B. & Traver, L. Use of Hydrogen Getters for Ensuring Safe Storage of Plutonium-Bearing Materials at the Savannah River Site, article, May 20, 2010; [Aiken,] South Carolina. (https://digital.library.unt.edu/ark:/67531/metadc1014223/: accessed March 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.