A SURFACE CRYSTALLOGRAPHY STUDY BY DYNAMICAL LEED OF THE (sqrt3xsqrt3)R30o CO STRUCTURE ON THE Rh(111) CRYSTAL SURFACE

PDF Version Also Available for Download.

Description

The atomic positions of the Rh(111) + ({radical}3 x {radical}3)R30{sup o} CO and CO{sub 2} surfaces are analyzed by dynamical LEED. The Rh(111) + ({radical}3 x {radical}3)R30{sup o} CO and CO{sub 2} systems produce identical I-V curves, confirming the dissociation of CO{sub 2} to CO on this surface. The adsorbed CO is found to stand perpendicular to the surface with the carbon end down at an atop site (that is, terminally bonded). The CO overlayer spacings are d{sub RhC} = 1.95 {+-} 0.1 {angstrom} and d{sub CD} = 1.07 {+-} 0.1 {angstrom}. This geometry yields a Zanazzi-Jona R-factor of 0.40 ... continued below

Physical Description

31 p.

Creation Information

Koestner, R.J.; Van Hove, M.A. & Somorjai, G.A. September 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The atomic positions of the Rh(111) + ({radical}3 x {radical}3)R30{sup o} CO and CO{sub 2} surfaces are analyzed by dynamical LEED. The Rh(111) + ({radical}3 x {radical}3)R30{sup o} CO and CO{sub 2} systems produce identical I-V curves, confirming the dissociation of CO{sub 2} to CO on this surface. The adsorbed CO is found to stand perpendicular to the surface with the carbon end down at an atop site (that is, terminally bonded). The CO overlayer spacings are d{sub RhC} = 1.95 {+-} 0.1 {angstrom} and d{sub CD} = 1.07 {+-} 0.1 {angstrom}. This geometry yields a Zanazzi-Jona R-factor of 0.40 and a Pendry R-factor of 0.50.

Physical Description

31 p.

Subjects

Keywords

STI Subject Categories

Source

  • Journal Name: Surface Science; Journal Volume: 107; Journal Issue: 2-3

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-11263
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 993751
  • Archival Resource Key: ark:/67531/metadc1014210

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1980

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 6:59 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Koestner, R.J.; Van Hove, M.A. & Somorjai, G.A. A SURFACE CRYSTALLOGRAPHY STUDY BY DYNAMICAL LEED OF THE (sqrt3xsqrt3)R30o CO STRUCTURE ON THE Rh(111) CRYSTAL SURFACE, article, September 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014210/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.