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Abstract

Poroelastic analysis has traditionally focused on the relationship be-

tween dry or drained constants which are assumed known and the sat-

urated or undrained constants which are assumed unknown. However,

there are many applications in this field of study for which the main

measurements can only be made on the saturated/undrained system,

and then it is uncertain what the effects of the fluids were on the sys-

tem, since the drained constants remain a mystery. The work presented

here shows how to deduce drained constants from undrained constants

for anisotropic systems having symmetries ranging from isotropic to

orthotropic. Laboratory ultrasound data are then inverted for the

drained constants in three granular packings: one of glass beads, and

two others for distinct types of more or less angular sand grain pack-

ings. Experiments were performed under uniaxial stress, which resulted

in hexagonal (transversely isotropic) symmetry of the poroelastic re-

sponse. One important conclusion from the general analysis is that the

drained constants are uniquely related to the undrained constants, as-

suming that porosity, grain bulk modulus, and pore fluid bulk modulus

are already known. Since the resulting system of equations for all the

drained constants is linear, measurement error in undrained constants

also propagates linearly into the computed drained constants.

PACS numbers: 43.30.Ma,43.30.Pc
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I. INTRODUCTION

Analysis of poroelastic systems typically focuses on how poroelastic moduli from mea-

surements of undrained samples are related to the pore-fluid and drained system elastic

properties.1 These technical terms in poroelasticity sometimes have slightly different names

and meanings throughout the literature, but the approximate correspondence follows this

recipe: undrained ' jacketed ' unrelaxed, while drained ' relaxed, and unjacketed ' solid

' mineral. There are many useful and pertinent references.2−13 But the inverse problem

of deducing drained properties from undrained properties has seldom been addressed by

analytical means.14,15 Nevertheless, this important issue arises many times, especially in

oil and gas reservoir field measurements, because it may not be practical to determine the

drained moduli separately as it is typically impossible to drain the system — at least over

the timescales when this information would be most useful. Another example is that of

ocean sediment measurements made in place,5,12,16 and similarly in soil fluidization during

earthquakes.17,18 Further examples include medical applications, particularly studies of bone

and osteoporosis.19,20

One purpose of the present work is therefore to show how to deduce these hard-to-

measure drained quantities from the easier-to-measure undrained moduli, without requiring

the fairly common (but always tedious and uncertain) iterative and/or fitting techniques

that are typically used for such purposes at the present time.

We begin by discussing isotropic systems and then progress to orthotropic systems. We

ultimately concentrate on transversely isotropic ones as these are the ones for which we

currently have laboratory ultrasound data to invert.

II. POROUS MATERIALS CONTAINING FLUIDS

We first consider isotropic and microhomogeneous elastic materials containing voids or

pores, where the pores are connected (having finite permeability) and fluid-filled. This

situation is the one originally studied by Gassmann.21 One simplification that arises imme-
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diately is due to the fact that the presence of pore fluids — in microhomogeneous and overall

isotropic porous media11,21 — has no mechanical effect on shear moduli that are not coupled

to the principal stresses, so µu = µd, which means that the undrained (“u” superscript)

shear modulus is the same as the drained (“d” superscript) shear modulus, for the overall

porous system. There can be (and often may be in practice) other effects on the shear

moduli due to the presence of pore fluids, such as softening of cementing materials or ex-

pansion of interstitial clays, which we shall term “chemical” effects to distinguish them from

the purely mechanical effects to be considered here. We neglect all such chemical effects in

the following analysis. This means that mechanical and acoustical analysis for the effective

shear moduli is typically unaltered by the presence of fluids.22 Thus, we may simplify our

system of equations in order to focus only on those significant parts of the analysis, i.e., the

ones that change due to the mechanical properties of the pore fluids.

A. Isotropy

We start the analysis by showing Gassmann’s equation,21 which for isotropic systems is

sometimes written in the following form:

Ku = Kd + α2/[(α − φ)/Ks + φ/Kf ], (1)

where α ≡ 1 − Kd/Ks is the effective stress or Biot-Willis coefficient,4 Ks is the solid

modulus of the grains (assumed to be a homogeneous collection composed of grains of the

same mineral), Kf is the fluid modulus, and φ is the porosity. Now, by introducing a modulus

for a fluid suspension having the same solid and fluid components, but the corresponding

drained modulus is Kd ≡ 0, we find that the effective modulus is given by

Ksusp =

[

1 − φ

Ks

+
φ

Kf

]

−1

. (2)

In fact this result follows directly from Gassmann’s formula by setting Kd = 0 everywhere

in (1). But of course it is also a well-known exact result23 in mechanics and acoustics for

these types of fluid-solid suspensions.
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Rewriting Gassmann’s formula in these terms, we find first that

Ku = Kd +
(1 − Kd/Ks)

2

1/Ksusp − Kd/K2
s

. (3)

Now if we simply multiply through by the denominator on the right hand side, we find

Ku

(

1

Ksusp

−
Kd

K2
s

)

= 1 − 2
Kd

Ks

+
Kd

Ksusp

. (4)

Note that two terms of the form (Kd/Ks)
2 have cancelled from this expression. Once these

convenient cancellations have occurred, Kd now appears only linearly in this expression. The

equation can therefore be solved immediately for Kd in terms of the undrained modulus Ku

and the other factors that are also assumed to be known (and in fact these other factors are

typically easier to measure than either Ku or Kd). Finally, we find:

Kd =

(

Ku

Ksusp

− 1

)

[

1/Ksusp − 2/Ks + Ku/K2

s

]

−1

. (5)

This form is very useful in our present applications, but so far it applies only to the fully

isotropic case. We show next that a very similar (but nevertheless distinct) formula applies

to the anisotropic cases under consideration here. This version of the formula (for the

isotropic case only) has been derived previously by Zhu and McMechan14,15

B. Orthotropy

If the overall porous medium is anisotropic either due to some preferential alignment

of the constituent particles or due to externally imposed stress (such as a gravity field and

weight of overburden, for example), we consider the orthorhombic anisotropic version of the

poroelastic equations:
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The eii are strains in the i = 1, 2, 3 directions. The σii are the corresponding stresses.

The fluid pressure is pf . The increment of fluid content is ζ. The drained compliances

are sij = sd
ij. Undrained compliances (not yet shown) are symbolized by su

ij. Coefficients

βi = si1 + si2 + si3 − 1/3Ks, where Ks is again the solid modulus of the grains (assumed

uniform for simplicity here). The Reuss average bulk modulus24,25 is defined by

1

Kd
R

=
∑

ij=1,2,3

sd
ij. (7)

A similar definition of Ku
R, with undrained compliances replacing drained compliances, will

also be needed later in our discussion. The alternative Voigt average25,26 of the stiffnesses

(Kd
V =

∑

ij=1,2,3 cd
ij/9) will play no significant role in our present discussion, although we

will show some of these values later with the examples. And, finally, γ =
∑

i=1−3
βi/BKd

R,

where B is Skempton’s coefficient,27 which will be defined carefully later in our discussion.

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23,

σ31, σ12) are excluded from the present discussion since they typically do not couple to the

modes of interest for anisotropic systems having orthotropic symmetry, or any still more

symmetric system such as transversely isotropic or isotropic. We have also assumed that

we know the true axes of symmetry, and have made use of them in our formulation of the

problem; this helps to eliminate coupling between the modes shown here and those shear

modes not displayed (which can happen for systems less symmetric than orthorhombic).

Note that the sij’s are the elements of the compliance matrix S and are all independent

of the fluid, and therefore would be the same if the medium were treated as elastic (i.e.,

by ignoring the fluid pressure, or assuming that the fluid saturant is air). We typically

call these compliances the drained compliances and the corresponding matrix the drained

compliance matrix Sd, since the fluids do not contribute to the mechanical energy if they

are free to drain into a surrounding reservoir containing the same type of fluid. In contrast,

the undrained compliance matrix Su presupposes that the fluid is trapped (unable to drain

from the system into an adjacent reservoir), and therefore contributes in a significant and

measurable way to the compliance and stiffness (Cu = [Su]−1) of the undrained system.
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The poroelasticity matrix in (6) is in compliance form and has extremely simple poroe-

lastic behavior in the sense that all the fluid mechanical effects appear only in the single

coefficient γ. We can simplify the notation a little more by lumping some coefficients to-

gether, combining the 3 × 3 submatrix in the upper left corner of the matrix in (6) into S,

and defining the column vector b by

bT ≡ (β1, β2, β3). (8)

The resulting 4 × 4 matrix and its inverse are now related by:







S −b

−bT γ






=







A q

qT z







−1

, (9)

where the elements of the inverse matrix can be shown to be written in terms of drained

stiffness matrix Cd = C = S−1 by introducing three components: (a) the scalar z =
[

γ − bT Cb
]

−1

, (b) the column vector q = zCb, and (c) the undrained 3×3 stiffness matrix

(i.e., the pertinent one connecting the principal strains to principal stresses) is given by

A = C + zCbbTC = Cd + z−1qqT ≡ Cu, since Cd is the drained stiffness and A = Cu is

clearly the undrained stiffness by construction.This fact is most easily recognized by noting

the inverse relationship, showing that






A q

qT z













E

−ζ






=







Σ

−pf






, (10)

where

E = (e11, e22, e33)
T and Σ = (σ11, σ22, σ33)

T . (11)

When ζ = 0 on the left hand side, the only possible interpretation of the equation is that

the nonzero contributions are for the undrained case, and so A = Cu is necessarily the

undrained stiffness by inspection.

The results contained in (9) and (10) are also equivalent to those of Gassmann21 for

both isotropic and anisotropic porous media as we shall show later in this paper, although

Gassmann’s results were presented in a form somewhat harder to scan. Also, note the
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important fact that the observed decoupling of the fluid effects occurs only in the compliance

form (6) of the equations, and never in the stiffness (inverse) form for the poroelasticity

equations, since all terms in A, q, and z contain fluid dependent components.

From these results, it is not hard to show that

Sd = Su + γ−1bbT . (12)

This result shows the remarkably simple result that the drained compliance matrix can be

found directly from knowledge of the inverse of undrained compliance, and the still unknown,

but sometimes relatively easy to estimate, values of γ and the three distinct orthotropic βi

coefficients, for i = 1, 2, 3.

Now we make further progress by considering again the Reuss averages of both of the

drained and undrained orthotropic compliances:

1

Kd
R

≡ sd
11

+ sd
22

+ sd
33

+ 2(sd
12

+ sd
13

+ sd
23

), (13)

and

1

Ku
R

≡ su
11

+ su
22

+ su
33

+ 2(su
12

+ su
13

+ su
23

). (14)

These effective moduli are the Reuss averages of the nine compliances in the upper left 3×3

of the full (including the uncoupled shear components) 6× 6 compliance matrix for the two

cases, respectivley, when the pore fluid is allowed to drain from the porous system, and

when the pore fluid is trapped by a jacketing material and therefore undrained.

Although the significance of the formula is somewhat different now, we find again that

β1 + β2 + β3 =
1

Kd
R

−
1

Ks

=
αR

Kd
R

(15)

if we also choose to define a Reuss-average effective stress coefficient (or Biot-Willis4 coeffi-

cient) by:

αR ≡ 1 − Kd
R/Ks, (16)

in analogy to the isotropic case. Furthermore, we have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(

1

Kf

−
1

Ks

)

, (17)
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since we have the rigorous result in this notation (see Berryman10) that Skempton’s B

coefficient is given by

B ≡
1 − Kd

R/Ku
R

1 − Kd
R/Ks

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Ks)

. (18)

We emphasize that all these formulas are rigorous statements based on the preceding

anisotropic analysis. Note that the appearance of the Reuss averages Kd
R and αR is not

an approximation, but merely a useful choice of notation made here because it will enable

us to see clearly the similarity between the rigorous anisotropic formulas and the correspond-

ing isotropic ones.

C. Reuss average moduli

We are now in position to develop the analogy between the isotropic and anisotropic

Gassmann equations. In particular, the equation for the suspension modulus in (2) does

not change at all. The equation of the effective undrained bulk modulus Ku, as shown in

both (1) and (3), changes only in that the relationship is now between the Reuss averages

Ku
R and Kd

R of these quantities. The result is completely analogous to (3), and is given for

pertinent Reuss average quantities by

Ku
R = Kd

R +
(1 − Kd

R/Ks)
2

1/Ksusp − Kd
R/K2

s

. (19)

The remainder of the argument is virtually identical to the isotropic case, and the final

result for the drained modulus is:

Kd
R =

(

Ku
R

Ksusp

− 1

)

[

1/Ksusp − 2/Ks + Ku
R/K2

s

]

−1

. (20)

This formula shows how to invert for drained Reuss bulk modulus Kd
R from knowledge of

Ku
R, φ, Kf and Ks in an anisotropic (up to orthotropic) poroelastic system.

Clearly this formula does not yet give us the individual matrix elements sd
ij directly.

Nevertheless, (20) was the hardest step in the procedure that follows, and the rest of the

steps are easily taken once we have this general result.
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First note that, from (15) and (17), it also follows that γ−1 =
BKd

R

αR

. So we can now

rearrange (12) to give

sd
ij = su

ij +
BKd

R

αR

βiβj, for i, j = 1, 2, 3. (21)

At this point in the analysis, we know everything needed for the inversion except for the

three coefficients βi, for i = 1, 2, 3. But, by taking appropriate sums of (21) and recalling

Eqn. (15), we find that

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Ks

= su
i1 + su

i2 + su
i3 −

1

3Ks

+ Bβi. (22)

We used (15) again to show that the product term resulting from (21) is (Kd
R/αR)(β1 +β2 +

β3) = 1. Rearranging (22), we find that

βi =

[

su
i1 + su

i2 + su
i3 −

1

3Ks

]

/(1 − B). (23)

Formula (18) for Skempton’s coefficient27 determines B exactly in terms of previously known

quantities. So, all three βi’s (which are themselves drained constants) and also γ [using

Eqn. (17)] are now precisely determined. All the remaining constants sd
ij can then be found

directly from (21). Note that all the steps in this inversion procedure are linear; there is no

need to solve any quadratic (or higher order) equation in this formulation of the undrained-

to-drained inversion problem. As we shall demonstrate in the examples, it is sufficient to

know the cu
ij’s, porosity φ, and the two bulk moduli Ks and Kf , in order to determine first

the βi’s from (23), and then the sd
ij from (21). Once all the sd

ij for all i, j = 1, 2, 3 are

known, then the corresponding stiffnesses are found by inverting the pertinent 3× 3 matrix

of compliances.

III. EXAMPLES

Recently, one of us (together with other colleagues at LBNL28) developed a new tech-

nology for measuring the seismic/ultrasonic anisotropy of soft sediments during their com-

paction. This method is based on a specially designed compaction cell, equipped with three
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pairs of ultrasonic transducers, including one P -wave and two S-wave transducer pairs. The

setup also includes a phased P -wave piezoelectric source array with 32 elements, and a sen-

sor to generate steerable ultrasonic plane waves. The central (or resonance) frequency of the

transducers is in the range of 500 kHz–1 MHz. Compared to previously existing methods,

this method has the capability (a) to determine all five of the independent elastic constants

in a TI (transversely isotropic) medium, (b) to conduct measurements continuously while

the sedimentary material is compacted in situ (i.e., in the uniaxially pressurized chamber),

and (c) does not require single or multiple directionally cored samples (such coring, when

needed, actually releases stress of the compacted sediments and therefore does not give ac-

curate measurements of in situ conditions). Uniaxial loading was taken to a maximum of 5

MPa.

The spectral content of the measured ultrasonic waves changes significantly during com-

paction of fluid-saturated sediments. These changes occur primarily because of the scat-

tering of high-frequency acoustic energy, which can be large — particularly for low-velocity

S-waves. To reduce the phase-velocity measurement errors related to the changes in the

central frequency of the waves, and to reduce the impact of the high-frequency wave scat-

tering in the examples presented in this paper, amplitude spectrum of the measured wave

was filtered to have the shape of a Ricker wavelet with a central frequency of 500 kHz for

P -waves and 50 kHz for S-waves. From each measurement, the propagation time was de-

termined from the arrival time of a dominant phase (e.g., first peak or trough) compared

to the reference measurements (face-to-face measurements of the transducer couples). Four

out of the five elastic constants of a TI medium can be determined directly from the wave

velocities along the axes of the sample (one P -wave and two S-wave measurements along the

horizontal plane, and one P -wave measurement in the vertical direction). The last constant

is determined through a numerical inversion method29 using phase slownesses of the P -waves

steered in a range of directions.

Further details of these experimental methods will be presented later in a companion

paper. The present work will concentrate on showing examples of the inversion results for
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FIG. 1. (color online) Plots of measured undrained (u) and inverted drained (d) constants

for the stiffnesses c11 and c33 in glass bead samples under uniaxial pressure. The abscissa

values are those of the uniaxial stress applied to the anisotropic system.

drained constants from the measured values of undrained constants.

A. Examples for transversely isotropic glass bead samples

Experiments were performed on glass bead samples (Potter industry, soda lime glass,

size 212 to 250 µm). Figures 1 and 2 display plots of measured undrained (u) and inverted

drained (d) constants for stiffnesses obtained by performing ultrasound experiments and

measuring the wave speeds in different directions. For example, stiffness cu
33

= ρv2

p, where

ρ is the fluid-saturated system density and compressional wave speed vp is measured along

the symmetry axis in our glass bead samples under uniaxial pressure. Figure 1 shows both

drained and undrained constants c11 and c33, while Figure 2 shows the same types of results
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FIG. 2. (color online) Plots of measured undrained (u) and inverted drained (d) constants

for the stiffnesses c12 and c13 in glass bead samples under uniaxial pressure. The abscissa

values are the uniaxial stresses applied to the anisotropic system.

for c12 and c13. The abscissa values are the applied uniaxial stress. These glass beads had

Ks = 40.7 GPa, µs = 29.7 GPa, and density ρs = 2.46 × 103 kg/m3. (For comparison, also

see Plona.30) Bulk modulus Kf = 2.2 GPa for the water saturant. Porosity varied with

stress level and was monitored, with values in the range 0.370 ≤ φ ≤ 0.375. Two (or more

for the sands) distinct curves are visible for each stiffness as the stress was first cycled up

and then down again (repeatedly for the sands), while measurements were made during both

(multiple) phases of the test. Figure 3 shows the results for the computed Voigt and Reuss

bulk moduli for both measured undrained (Ku
V and Ku

R) and the computed drained cases

(Kd
V and Kd

R). Figure 4 shows the measured values of porosity for the cases in Figures 1–3,

and also the uniaxial effective stress coefficient X3. (See Appendix B.)
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FIG. 3. (color online) For glass bead samples, examples of the undrained and drained

bulk modulus estimators KR and KV , being the appropriate Reuss and Voigt averages of

the compliance and stiffness matrices, respectively. Undrained values were measured, and

drained values were computed using the formulas in the text. The drained Voigt averages are

found by first computing the drained compliances, then inverting for the drained stiffnesses,

and finally averaging. The abscissa values are the uniaxial stresses applied to the anisotropic

system. These glass beads had Ks = 40.7 GPa, µs = 29.7 GPa, and density ρs = 2.46× 103

kg/m3. Bulk modulus Kf = 2.2 GPa for water. Porosity varied with stress level and was

monitored, with values in the range 0.370 ≤ φ ≤ 0.375.

B. Examples for sand samples: K and OK

The next two sets of Figures follow the same sequencing as that used for presenting the

glass bead data. The bulk modulus for the sands was taken as that for quartz, so Ks = 38.0

GPa, and Gs = 44.0 GPa in both cases. The density of the sand grains was ρ = 2.65 × 103
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FIG. 4. (color online) Plots of measured porosity φ and computed effective uniaxial stress

coefficient X3 in glass bead samples.

kg/m3. Visual inspection shows that the K sand grains are more angular, and the OK #1

sand grains are significantly less angular. K sand results are presented in Figures 5–8, while

those for OK sand are seen in Figures 9–12.

C. Summary of the inversion procedure

The first step of the inversion procedure is to compute the undrained Reuss bulk modulus

Ku
R using (14) from measured undrained compliances (or stiffnesess — when these are the

measured data as in ultrasound data — by first converting them to compliances). The

suspension bulk modulus Ksusp is also computed from (2) using known values of porosity

φ, solid grain bulk modulus Ks and pore fluid modulus Kf . These values and Ks again

are the only ones needed in formula (20). Once Kd
R is known, then αR = 1 − Kd

R/Ks is

known, and Skempton’s coefficient can be computed from (18). Once B is known, then β1,
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FIG. 5. (color online) Plots of measured undrained (u) and inverted drained (d) constants

for the stiffnesses c11 and c33 in K sand samples under uniaxial pressure. The abscissa values

are the uniaxial stresses applied to the anisotropic system.

β2, and β3 can all be obtained from (21) and (22). Once all these constants are known,

equation (12) is used to compute the individual drained compliance matrix elements. Then,

if so desired, the drained stiffness matrix elements may also be computed by inverting the

drained compliance matrix. The remaining compliance and stiffness coefficients (i.e., s44,

s55, s66 — and, therefore, c44, c55, and c66) are not affected by the presence of the fluid, in

transversely isotropic (or more generally orthotropic) materials, so their values are the same

for both drained and undrained systems.

Also note that the consistently large offset observed between Ku
R and Kd

R is easily un-

derstood from the fact that, when Kd
R << Ks, Eq. (19) implies

Ku
R ' Ksusp + Kd

R, (24)
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FIG. 6. (color online) Plots of measured undrained (u) and inverted drained (d) constants

for the stiffnesses c12 and c13 in K sand samples under uniaxial pressure. The abscissa

numbers are again the computed (true) effective stress values for this anisotropic system.

The abscissa values are the uniaxial stresses applied to the anisotropic system.

if we neglect terms of order Kd
R/Ks compared to unity. So the observed offset is almost

entirely due to the large value of the suspension modulus Ksusp, although there are some

small corrections of order Kd
R/Ks neglected by (24).

IV. DISCUSSION

The analysis presented in this paper has apparently been wholy quasi-static, treating the

stiffnesses and bulk moduli as if they were entirely frequency independent so that Gassmann’s

quasi-static analysis for either isotropic or anisotropic porous media may be used throughout.

The authors are of course well aware of Biot’s theory2,3 of fluid-saturated porous media. This
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FIG. 7. (color online) For K sand samples, examples of the undrained and drained bulk

modulus estimators KR and KV , being the appropriate Reuss and Voigt averages of the

compliance and stiffness matrices, respectively. The abscissa values are the uniaxial stresses

applied to the anisotropic system. These sand grains had Ks = 38.0 GPa, µs = 44.0 GPa,

and density ρs = 2.65× 103 kg/m3. Bulk modulus Kf = 2.2 GPa for water. Porosity varied

with stress level and was monitored, with values in the range 0.445 ≤ φ ≤ 0.480. Two

distinct curves are visible for each stiffness as the stress was first cycled up and then down

again, while measurements were made during both phases of the test.

theory introduces the interesting complication of the Biot slow-wave7,30, which is an out-of-

phase motion of the fluid and solid frame that produces strongly fluid-dependent attenuation

and scattering mechanisms. Since the experiments that motivated the present work were

not designed to measure the attenuation of the resulting waves, and since the very confined

nature of the experimental chamber essentially prevents excitation of the Biot slow-wave31,

it seems unnecessary for our present purposes to use the full Biot theory for the analysis.
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FIG. 8. (color online) Plots of measured porosity φ and computed effective uniaxial stress

coefficient X3 in K sand samples.

Thus, we have concentrated instead on the Gassmann approach to the problem.

This treatment does not necessarily imply that frequency plays no role in the experiment.

For example, there are good reasons to believe32 that sometimes an even simpler theory

yet, i.e., one treating the frame constants as if they are identically zero, can give a good

accounting in some cases of acoustic wave speeds and attenuation in many isotropic granular

systems. For present purposes, we view our present work as treating Gassmann’s approach

as being valid at each fixed frequency – thus making this a viscoelastic theory, rather than

just an elastic theory. In the absence of observable slow waves, this approach seems to give

a satisfactory approximation to these data. It leads, as we have shown here in detail, to

results that allow us to determine effective frame constants of the drained system, valid in

the small range of ultrasonic frequencies pertinent to these specific experiments.

We do not assume that these measured values will necessarily hold true for other mea-
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FIG. 9. Plots of measured undrained (u) and inverted drained (d) constants for the stiffnesses

c11 and c33 in OK sand samples under uniaxial pressure. Two distinct curves are visible for

each stiffness as the stress was first cycled up and then down again, while measurements

were made during both phases of the test. The abscissa values are the uniaxial stresses

applied to the anisotropic system.

surements in different frequency bands. In the literature, it is also commonly assumed that

there is a small frequency dependent dissipative component associated with these frame con-

stants (see discussion of these issues by Chotiros33), but for our present purposes we have

treated this dissipative component as negligible, and therefore set it to zero.

V. CONCLUSIONS AND EXTENSIONS

One important conclusion about the general analysis presented here is that the drained

constants are uniquely related to the undrained constants, assuming that porosity, grain
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FIG. 10. Plots of measured undrained (u) and inverted drained (d) constants for the stiff-

nesses c12 and c13 in OK sand samples under uniaxial pressure. The abscissa values are the

uniaxial stresses applied to the anisotropic system.

bulk modulus, and pore-fluid bulk modulus are already known when the porous material

is microhomogeneous.6,21 This fact follows directly from the linearity of the equations be-

ing solved. Of course, measurement error in undrained constants and the other constants

(porosity, and bulk moduli for grains and pore fluid) is never zero, and so must be taken

into account. However, since the equations are linear, the errors also propagate linearly

into the computed drained constants. The linearity of this problem also leads to a qualified

uniqueness result in the sense that, except for issues already mentioned concerning propa-

gation of measurement errors, the results of the undrained to drained inversion process is

unique — in principle. This fact has implications for earlier work that has sometimes been

done using fitting or iterative methods, the point being that such methods always have an

implicit caveat associated with them that the results found might not be unique (and in
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FIG. 11. (color online) For OK sand samples, examples of the undrained and drained bulk

modulus estimators KR and KV , being the appropriate Reuss and Voigt averages of the

compliance and stiffness matrices, respectively. The abscissa values are the uniaxial stresses

applied to the anisotropic system. These sand grains had Ks = 38.0 GPa, µs = 44.0 GPa,

and density ρs = 2.65× 103 kg/m3. Bulk modulus Kf = 2.2 GPa for water. Porosity varied

with stress level and was monitored, with values in the range 0.3496 ≤ φ ≤ 0.3502.

addition they too are obviously subject to the measurement errors) if the system of poroe-

lastic equations happens to have multiple solutions. All that could be said previously of the

iterative or fitting methods is that one solution had been found. The present results improve

this situation for all such methods since we have shown the solution is actually unique (in

principle again, except for the unavoidable measurement errors), and so earlier results of the

iterative (or fitting) type may now be assumed to have found good approximations to the

(in principle) unique solution of each inversion problem.

One simplification obtained in the chosen range of our analysis is that, since we are
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FIG. 12. (color online) Plots of measured porosity φ and computed effective uniaxial stress

coefficient X3 in OK sand samples.

specifically considering data on granular materials, we have been able to limit our discussion

to ones that happen to be homogeneous mixtures of grains all having the same bulk and

shear moduli. This simplification puts our work in the same class as that of Gassmann,21

Walton,34 Johnson et al.,35 and many others, including a large number of the laboratory

experimental results, including Domenico,36 Murphy,37 and Zimmer et al.,38 on granular

bead-packs and some sands that are especially homogeneous. We have not tried to deal

specifically with issues related to microscopic heterogeneity (other than the pore space it-

self), but this complication is actually relatively easy to include as needed for such mixed

systems6,39 – the point being that the pertinent generalizations required here involve only

Reuss averages of bulk moduli, as we have shown for the simpler cases presented.

Some very general discussions of anisotropic porous media have been given by Thompson

and Willis,40 and Cowin.41 Both these contributions emphasize the advantages of formulat-
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ing the anisotropic stress-strain relations for poroelasticity in the compliance form, as we

have also chosen to do. In contrast, while expressing the elastic material constants them-

selves in terms of compliances (i.e., Young’s modulus and Poisson’s ratio), Loret et al.42 have

nevertheless emphasized the stiffness formulation of the poroelastic problem. But, in addi-

tion, they have also given careful consideration to relationships connecting the undrained

and drained constants, as we have again chosen to do. However, these authors focus effort

on somewhat different aspects of the problem than the more practical ones considered in

the present work. In particular, their studies consider the issue of how to measure and/or

estimate the quantities such as Ks and φ, which might be considered microscale quantities,

especially if the solid material itself is not microhomogeneous,6,21 as we have assumed it is in

our measured samples. These issues are indeed important for a great many applications, but

not so important for the data analysis we presented, since the samples we studied were in

fact composed of very well-sorted materials. Thus, an assumption of microhomogeneity for

these laboratory samples is quite reasonable. Such an assumption may not however always

be equally good for field data in the earth, in ocean sediments, or in other applications of

these methods. So the present analysis needs to be — and will be — subsequently general-

ized to incorporate these considerations pertaining to microheterogeneous frame materials

in future work.
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APPENDIX A: INVERTING A MATRIX FORMED FROM THE SUM OF

AN INVERTIBLE MATRIX AND A RANK ONE MATRIX

A result used several times in the main text when we transform between compliance

and stiffness matrices in poroelasticity involves the use of a fairly well-known fact about

inverting simple matrix sums. The matrices of interest to us are always symmetric, so we

use this condition here to simplify and shorten the discussion.

Suppose that we need to invert a matrix of the form:

M = M0 + annT , (25)

where M0 is a square, invertible, m × m matrix, and n is a vector also of length m. The

remaining variable a is a nonzero scalar, and for simplicity, we assume a is positive (although

this condition is not always required). M0 is an invertible matrix by assumption, and annT

is a rank-one matrix (having only one nonzero eigenvalue) regardless of the size of m as long

as m ≥ 2, and a 6= 0.

It turns out that the form of the matrix inverse of M must be:

M−1 = M−1

0
+ bM−1

0
nnT M−1

0
, (26)

where b is a scalar to be determined. If the form (26) is correct, then multiplying (25) on the

right (by symmetry, multiplying on the left produces the same final result) by (26) gives:

I = I +
[

a + b + ab
(

nT M−1

0
n
)]

nnT M−1

0
, (27)

where I is an m×m identity matrix. Equation (27) shows — since the bracketed expression

should vanish — that the previously unknown scalar b must satisfy:

b = −a/
[

1 + a
(

nTM−1

0
n
)]

. (28)

Since, by assumption, M0 is invertible, and both a and n are known, this formula gives an

explicit result for the scalar b, and therefore justifies the form of the inverse matrix assumed

in (26).

Also note that this result was also used explicitly by Gassmann21 in the final section (on

anisotropic media) of his well-known paper on poroelasticity.
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APPENDIX B: UNIAXIAL STRESS CONDITIONS AND THE UNIAXIAL

EFFECTIVE STRESS COEFFICIENT X3

For uniaxial stress conditions, we have σ33 = −pc, e11 = e22 = 0, and in addition for

the undrained case we have ζ = 0. The transverse stresses σ11 = σ22 are uncontrolled,

but nevertheless determined by the boundary conditions. The fluid pressure is similarly

determined by the system of equations, since the fluid is assumed to be undrained.

The pertinent equations for a transversely isotropic system are:

(s11 + s12)σ11 − s13pc + β1pf = e11 = 0, (29)

2s13σ11 − s33pc + β3pf = e33, (30)

and

−2β1σ11 + β3pc − γpf = −ζ = 0, (31)

with e22 = e11 by symmetry, and similar statements about other symmetric variables and

coefficients.

Equations (29) and (31) can be turned into a 2× 2 system, and solved for σ11 and pf as

functions of pc. The result of this process is:







−σ11

pf






=







X1

X2






pc, (32)

where

X1 =
−s13γ + β1β3

(s11 + s12)γ − 2β2

1

and X2 =
−2s13β1 + (s11 + s12)β3

(s11 + s12)γ − 2β2

1

. (33)

For this uniaxial system, X2 clearly plays a role similar to that of Skempton’s coefficient

B in the isotropically confined case, giving the proportionality of pore pressure build up

when confining pressure pc increases. Also, the transverse stress σ11 build up is entirely

analogous physically to pf = X2pc, but the proportionality constant is given instead by

−X1. (Note that we have chosen pressure p to be positive in compression, while stress σ is

positive in tension – which is the reason for some of these minus signs.)
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We can now define the correct effective stress for the uniaxial problem in the following

way:

e33

−s33

≡ peff =

[

1 +
2s13

s33

X1 −
β3

s33

X2

]

pc = [1 − X3] pc, (34)

where the pertinent effective stress coefficient is therefore given by

X3 ≡
2s2

13
γ − 4s13β1β3 + (s11 + s12)β

2

3

s33 [(s11 + s12)γ − 2β2

1
]

. (35)

All the required coefficients in (35) except γ are drained constants (containing no factors of

Kf), and so X3 can be computed for the undrained experiments simply by using the earlier

analysis in the main text of the present paper.
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21F. Gassmann, “Über die Elastizität poröser Medien,” Vierteljahrsschrift der Natur-

forschenden Gesellschaft in Zürich, 96, 1–23 (1951).
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