X-ray optics metrology limited by random noise, instrumental drifts, and systematic errors

PDF Version Also Available for Download.

Description

Continuous, large-scale efforts to improve and develop third- and forth-generation synchrotron radiation light sources for unprecedented high-brightness, low emittance, and coherent x-ray beams demand diffracting and reflecting x-ray optics suitable for micro- and nano-focusing, brightness preservation, and super high resolution. One of the major impediments for development of x-ray optics with the required beamline performance comes from the inadequate present level of optical and at-wavelength metrology and insufficient integration of the metrology into the fabrication process and into beamlines. Based on our experience at the ALS Optical Metrology Laboratory, we review the experimental methods and techniques that allow us to ... continued below

Physical Description

1

Creation Information

Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Cambie, Rossana; Celestre, Richard; Conley, Raymond et al. July 9, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Continuous, large-scale efforts to improve and develop third- and forth-generation synchrotron radiation light sources for unprecedented high-brightness, low emittance, and coherent x-ray beams demand diffracting and reflecting x-ray optics suitable for micro- and nano-focusing, brightness preservation, and super high resolution. One of the major impediments for development of x-ray optics with the required beamline performance comes from the inadequate present level of optical and at-wavelength metrology and insufficient integration of the metrology into the fabrication process and into beamlines. Based on our experience at the ALS Optical Metrology Laboratory, we review the experimental methods and techniques that allow us to mitigate significant optical metrology problems related to random, systematic, and drift errors with super-high-quality x-ray optics. Measurement errors below 0.2 mu rad have become routine. We present recent results from the ALS of temperature stabilized nano-focusing optics and dedicated at-wavelength metrology. The international effort to develop a next generation Optical Slope Measuring System (OSMS) to address these problems is also discussed. Finally, we analyze the remaining obstacles to further improvement of beamline x-ray optics and dedicated metrology, and highlight the ways we see to overcome the problems.

Physical Description

1

Source

  • The 16th Pan-American Synchrotron Radiation Instrumentation Conference, Argonne National Laboratory, Chicago, USA, September 21-24, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-3727E-Ext-Abs
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 985913
  • Archival Resource Key: ark:/67531/metadc1014110

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 9, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 18, 2017, 12:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Cambie, Rossana; Celestre, Richard; Conley, Raymond et al. X-ray optics metrology limited by random noise, instrumental drifts, and systematic errors, article, July 9, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1014110/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.