
Scalability and interoperability within glideinWMS

D Bradley1, I Sfiligoi2, S Padhi3, J Frey1 and T Tannenbaum1

1University of Wisconsin, Madison, WI, USA
2Fermilab, Batavia, IL, USA
3University of California, San Diego, La Jolla, CA, USA

E-mail: dan@hep.wisc.edu, sfiligio@fnal.gov, Sanjay.Padhi@cern.ch,

jfrey@cs.wisc.edu, tannenba@cs.wisc.edu

Abstract.
Physicists have access to thousands of CPUs in grid federations such as OSG and EGEE.

With the start-up of the LHC, it is essential for individuals or groups of users to wrap together
available resources from multiple sites across multiple grids under a higher user-controlled layer
in order to provide a homogeneous pool of available resources. One such system is glideinWMS,
which is based on the Condor batch system. A general discussion of glideinWMS can be found
elsewhere. Here, we focus on recent advances in extending its reach: scalability and integration
of heterogeneous compute elements. We demonstrate that the new developments exceed the
design goal of over 10,000 simultaneous running jobs under a single Condor schedd, using strong
security protocols across global networks, and sustaining a steady-state job completion rate of a
few Hz. We also show interoperability across heterogeneous computing elements achieved using
client-side methods. We discuss this technique and the challenges in direct access to NorduGrid
and CREAM compute elements, in addition to Globus based systems.

1. Introduction
glideinWMS [2] is a workload management system used by the CMS LHC experiment. In a
nutshell, its purpose is to dynamically gather grid resources and present them to the users like a
dedicated Condor batch system. This provides a number of advantages to the users over direct
submission to the grid. For example, rather than sending the user’s jobs into remote queues,
which generally have unpredictable wait times, the user’s jobs remain in the central submit
queue until matchmaking finds a specific worker node that has been allocated to glideinWMS
and which is therefore available to begin execution immediately. This is known as “late binding”.
glideinWMS is a specific example of a general technique known as “pilot job” submission, and
late binding is one of the main attractions of such systems [4].

In the context of this paper, we shall assume that an instance of the glideinWMS system is
being used by a group of users belonging to a Virtual Organization such as the CMS VO. In
this case, just like in a normal Condor pool, glideinWMS provides the ability to set system-wide
relative user priorities and to change them as needs of the VO change.

A final example of an advantage of glideinWMS over direct grid submission is improved
monitoring, error handling and troubleshooting [5] of the running of the user’s job, an essential
ingredient for productivity in a distributed system such as the grid, which crosses networks,
administrative domains, and organizational boundaries.

FERMILAB-CONF-10-258-CD

Site C

Site F

Site E

Site B
Site A

Site D

Submit job

Get result

Schedd Collector

Negotiator

Glidein

 GF

 GF

Collector

 VO Frontend

Glidein

Glidein Glidein

Glidein

Glidein

Startd

Legend

 Condor

 glideinWMS

Figure 1. Overview of glideinWMS system.

The operation of glideinWMS is illustrated in Figure 1. The main idea is that when demand
for more resources is sensed by the VO Frontend, Condor job execution daemons (aka glidein
pilots) are submitted to the grid by the Glidein Factory. This is known as “gliding in” to the grid.
When they begin running, they “phone home” and join the glideinWMS Condor pool. Then
they are available to run user jobs through the normal Condor mechanisms. Once demand for
resources decreases to the point where some nodes have no work to do, the Condor job execution
daemons on those idle nodes exit and the resources that were allocated to glideinWMS at the
grid site are released for use by others.

A brief description of the Condor components will help understand the rest of this paper.
The responsibility of the Condor collector is to receive descriptions (called ClassAds) of all of
the other daemons in the Condor pool. The collector also responds to queries from other Condor
components wishing to find out about the existence and attributes of other parts of the pool.
The Condor schedd maintains a job queue. The Condor startd runs on the worker nodes and
executes jobs that it receives from the schedd. The startd is therefore the main component
of a glidein worker. When we say that the glidein “phones home” we mean that the startd
on a worker node sends a description of itself to the central collector. The Condor negotiator
does matchmaking between jobs and startds, verifying that they are compatible and allocating
resources according to the relative priorities of the users.

2. Scalability of glideinWMS
Because glideinWMS attempts to turn the Grid into one centralized Condor pool as big as
the input workflow(s), scalability is an important concern. One could always scale by using
multiple instances of glideinWMS, but this would detract from one of the main selling points
of the glideinWMS approach, which is to unify the Grid computing resources under a single
batch-system interface. Therefore a major effort has been made to understand and extend the
limits of scalability in glideinWMS.

Table 1. Network latency and authentication cost in seconds for cross-Atlantic (WAN) and
a local network for comparison. Only time spent blocking on the network is counted in the
authentication cost, so the conversion of some client-side operations from being blocking to
asynchronous helped reduce the cost in Condor 7.1.3.

WAN loopback
ping time 0.15 0.00006
bare GSI authentication (client) 0.43 0.15
bare GSI authentication (server) 0.74 0.15
GSI + condor sec v7.0.1 (client) 1.4 0.16
GSI + condor sec v7.0.1 (server) 1.2 0.16
GSI + condor sec v7.1.3 (client) 1.0 0.15
GSI + condor sec v7.1.3 (server) 1.2 0.16

2.1. The Cost of Authentication
Experience with glideinWMS in LHC Common Computing Readiness Challenge 08 (CCRC-
08 [3]) exercise taught us that the cost of strong authentication between Condor components
increases considerably with added network latency and this has a detrimental impact on
scalability. Therefore, scalability tests that we had conducted on the Fermilab LAN gave us an
overly optimistic expectation for scalability over the WAN, especially over large distances such as
between the US and Europe. This observation prompted us to conduct extensive tests between
Europe and locations in the US. (Alternatively, network latency could have been artificially
introduced, but we found it convenient to simply use the Atlantic Ocean.) We set up the
glideinWMS front-end scheduler (schedd) and collectors in Padova, Italy. The glidein worker
daemons (startds) were submitted to test sites in the US, including Fermilab, University of
Wisconsin, University of Nebraska, and University of California San Diego.

The first question we investigated was, why does network latency make authentication so
expensive in Condor? The answer is that the authentication protocol is implemented as a series
of messages that are exchanged between the two sides, and while one side is waiting for the
other side to respond, the entire process blocks. This hurts scalability, because it limits the rate
at which central Condor components such as the collector and the schedd can authenticate new
glidein daemons that they have never talked to before. Existing daemons that they have already
talked to are not much of a problem, because after authentication, a security session is cached
for a configurable amount of time (e.g. one day).

Table 1 shows the authentication cost measured between the Padova and Wisconsin test sites
compared to tests on a loopback network. The cost is in seconds of time in which the Condor
process is devoted solely to a single authentication task. For glideinWMS purposes, we are not
interested in the actual latency of authentication measured in time from start to stop but rather
in the cost to throughput in the Condor daemon’s event handler. Since there is only one thread
of execution in current versions of Condor, any time spent on the authentication task is time
that cannot be used for any other purpose, but time spent doing other things while asynchronous
authentication operations complete is not counted as a cost.

The first thing to notice from the table is that there is a base CPU cost in doing GSI (0.15s)
that has nothing to do with network latency. This is visible in the looback test. Our test machine
in this case was a 1.5GHz Pentium 4. On faster hardware, the CPU time for GSI authentication
will be less, but it is still a scalability concern.

The next thing to notice is that the cost of latency comes from both the bare GSI protocol
and the Condor security protocol that is wrapped around it. With a total cost of over a second,
it is easy to see why it was impossible to achieve even 1Hz in the number of new glideins entering

Top CollectorTop Collector

Sub-Collector 1 Sub-Collector 2 ... Sub-Collector N

ClassAd AggregationClassAd Aggregation

Site 1 Site 2 Site M

...

Load BalancingLoad Balancing

Match
Maker

W
A

N
LA

N

Figure 2. Multiple collectors may be used
to handle the WAN authentication workload.
In our largest scale tests where the collectors
were also acting as authenticated Condor
Connection Broker (CCB) server, 70 sub-
collectors on one machine were able to handle
a pool of over 20,000 glideins.

the pool and being claimed for use. If 3600 glideins started running at around the same time,
the last one to be successfully authenticated to join the pool would have to wait around doing
nothing for over an hour! This would result in unacceptably low efficiency when expanding the
pool and when the scale of operation requires replacing glideins at anything approaching 1Hz
or beyond.

Our first attempt to address this problem may be seen in the reduction of about 30% in
the client-side authentication cost in Condor 7.1.3. This was achieved by converting parts of
the Condor security code to using non-blocking event-driven network operations. This sort of
refactoring of the code can become rather laborious in cases of deeply nested function calls, and
even if we were to remove all of the blocking operations, the CPU cost of authentication would
not have been addressed. We therefore looked for alternative solutions to the still high cost of
authentication in 7.1.3.

The longer term solution that we chose was to introduce a limited form of threading in
Condor. This work is in progress. The shorter term solution that we chose was two-pronged:
use multiple processes in the collector and optimize away WAN authentication in the schedd.
These steps are done (Condor 7.2) and resulted in significant gains in scalability.

2.1.1. Two-tier Collector To make it possible to use multiple collector processes while still
having one global view of the pool, we made a simple extension to the existing ability to forward
ClassAds from one collector to another. We configure N collectors to each forward ClassAds to
one top-level collector. By making Condor forward a little more information than was previously
done, it became possible to use the top-level collector for matchmaking purposes (i.e. the top-
level collector is paired with a negotiator that then has access to the state of the whole pool).

The glidein daemons are then configured to advertise themselves to just one of the N sub-
collectors. In this way, the authentication workload is spread across N processes rather than
just one, as depicted in Figure 2. The top-level collector only has to authenticate the N sub-
collectors once and then they communicate efficiently using cached security sessions. Since the
authentication workload is largely just a matter of blocking on the network, glidein creation
rates at our target of about 1Hz can be sustained comfortably with a single CPU. However,
since the N sub-collectors run in different processes, they can take advantage of multiple
cores or even multiple machines if a higher rate is needed. We have only tested at up to

1.8 new glideins/s (achieved with 70 sub-collectors on a single machine). This corresponds to
about 16 authentications/s when taking into account the two extra monitoring daemons that
we happened to be running in the glidein, and the fact that the collector was also serving
as an authenticated CCB server (discussed in more detail in section 2.3). Although further
optimization of the number of authentications per glidein is certainly possible, and increasing
the use of asynchronous operations in the collector is also possible, this is not a major scalability
concern: adding more sub-collectors is cheap.

The following rule-of-thumb may be used to determine the required number of sub-collectors
to handle the latency in authentication in Condor 7.2 and 7.3. It simply assumes that the
number of required collectors scales linearly with the rate of authentication and the network
latency.

Nsub-collectors = k ∗RTT ∗ glideinRate∗ (glideinDaemons+ isCCB∗ (glideinDaemons+ glideinStarters))

where k is an experimentally determined constant, RTT is the round-trip-time between the
collectors and the glideins, glideinRate is the peak desired rate of new glideins joining the pool,
glideinDaemons is the number of Condor daemons that publish to the collector in each glidein
instance (4 in our case due to 2 extra monitoring daemons), isCCB is 1 if the collector is also
acting as a CCB server (0 otherwise), and glideinStarters is the number of starter processes
expected to be running in the glidein (usually 1, for one running job). The lower bound for
k has not been thoroughly probed in our setup, but we have experienced good performance
for values of k as low as 30. Based on our measurement of authentication cost, k = 30 would
correspond to the collector spending only between 2% and 3% of its time authenticating glideins
on average. It seems likely that smaller values of k could give reasonable performance, but
whether one has 40 or 70 sub-collectors is not a very important difference, since there is only a
small fixed cost per collector (∼1MB RAM); the rest of the collector cost scales with the number
of glideins in the pool and is split across however many sub-collectors there are.

The primary cost of deploying a two-tier collector scheme in place of a single collector is that
it doubles the amount of memory required, since each ClassAd is stored twice, once in a sub-
collector and once in the top collector. This double-storage could be eliminated by making the
sub-collectors forward ClassAds to the top collector without storing a copy themselves. However,
the cost is not very large, and the extra information is useful in debugging. In our tests, the
memory required to support the two-tier collector was under 40kB per registered daemon (less
than 2GB for 13000 glideins).

2.1.2. Matchmaking and Security Sessions Having an adequate solution for the collector
allowed us to observe the next bottleneck, which was the schedd. In order to use a newly
registered glidein, the schedd must connect to it and send the job. This connection needs to
be authenticated, so here again the effect of latency created a severe limit on the rate at which
the schedd could begin using new glideins. Using multiple schedds does work, in the same way
that using multiple collectors works, but aggregation of job queues is not as simple a task as
aggregation of collector contents. This added layer of complexity is not desirable if it can be
avoided.

Fortunately, the authentication problem can be completely removed from the schedd, at
least if one is willing to accept a small change to the security model. The central manager (top
collector plus negotiator) authenticates and authorizes all members of the glideinWMS Condor
pool. This includes the startds and the schedd. The members of the pool also authenticate the
central manager, since GSI is mutual. Therefore, if the startds and schedd are willing to trust
the central manager in the same way that they trust each other when communicating about a
job, the act of matchmaking can be used to establish a security session between the startd and
schedd without them ever directly authenticating each other beforehand. By “security session”

Condor Central
Manager

(Collector+Negotiator)

Schedd Startd

12

3

Figure 3. Integrated matchmaking and
security session management optimizes secure
communication between the schedd and
startd, boosting scalability of the schedd,
which has to communicate with many startds.
The security session, which is good for the
duration of the match, is established by
passing a shared secret from the startd to the
central manager and then to the schedd that
is matched to the startd.

schedd throughput in cross-Atlantic glidein tests

0

50000

100000

150000

200000

250000

7.0.1 7.1.3 7.3.1

Condor Version

jo
b

s/
d

a
y

maximum number of running jobs in cross-
Atlantic glidein tests

0

5000

10000

15000

20000

25000

7.0.1 7.1.3 7.3.1

Condor Version

ru
n

n
in

g
 j

o
b

s

Figure 4. Number of running jobs during the cross-Atlantic glideinWMS tests. The average
job runtime in these tests was 3h. Condor 7.0 suffered from authentication latency. Condor 7.1
addressed this. Condor 7.3 optimized memory usage and switched from GCB to CCB. Note that
the 7.3 test also switched from a 32-bit to a 64-bit Linux kernel to handle the larger number of
concurrent running jobs.

we mean a securely established shared secret that can be efficiently and securely verified by
both parties in future communication and a mapping of that shared secret to an identity that is
authorized to do specific operations. A simple illustration of the communication flow is shown
in Figure 3.

We added support for this mode of operation to Condor in 7.1.3. It is enabled by using the
SEC ENABLE MATCH PASSWORD AUTHENTICATION option. The effect was to avoid
all the blocking on round-trips and CPU overhead involved in GSI authentication between the
schedd and startds. The resulting improvement in throughput is shown in Figure 4.

2.2. Memory Usage
After dealing with the authentication bottleneck, the limiting factor to running more jobs under
a single schedd was primarily memory usage. In Condor 7.3.0, we reduced memory usage per
running job from 1.1MB to 400kB. This is memory used by the condor shadow process that
runs under the schedd. We also found that it was important to use a 64-bit Linux kernel in
order to exceed 11k running jobs, because the 32-bit kernel would run out of memory for some
data structures, even though there was plenty of free “HighMem” available. Figure 4 shows the
observed improvement in sustained number of running jobs.

2.3. Disk Latency
In addition to memory usage, the final improvement in scalability was made possible by a
reduction in the number of transactions required to prepare a running job in the schedd. The
schedd keeps a database log so that the job queue can be reliably reconstructed after sudden loss
of power or other similar events. We found that the expansion of $$ macros in job ClassAds was
unnecessarily expensive because each individual macro was expanded in its own transaction. In
Condor 7.3.1, these are now bundled together to reduce time spent waiting for data to be safely
synched to the disk.

2.4. Port Usage
In our tests, after all of the other optimizations were made, the limiting factor in Condor 7.3.1
was network port usage. With more than 23k running jobs, the schedd machine began to run
out of network ports. There are only 65k TCP ports per IP address. Each running job consumes
between 2 and 3 during its life. The rate at which ports are opened and closed leaves a fraction
of ports in the TIME WAIT state at any given time.

Although we have not yet made any attempt to reduce port usage for running jobs, the
total number of ports required to support a glidein Condor pool has decreased quite a bit in
Condor 7.3 when we introduced CCB. This was more of a pleasant side effect than a design
goal. CCB is the Condor Connection Broker and we are now using it in place of GCB, the
Generic Connection Broker. The primary reason for introducing CCB was to make the system
more robust (CCB registrations are fault tolerant) and secure (CCB registrations are fully
authenticated) [6]. However, it also happens that the CCB server uses a single port whereas the
GCB server uses one port per registered daemon. Therefore, to support a glidein pool of 20k
glideins with 5 registered daemons per glidein as in our case, GCB requires 100k ports while
CCB requires just one per CCB collector (70 in our test). CCB therefore simplifies deployment
of the glideinWMS system, because more services can be squeezed onto fewer machines due to
the lower port requirements. We have tested with CCB, the central manager, and the schedd
all running happily on the same machine with 10k running jobs.

2.5. glideinWMS Pilot Factory Scalability
The job of the pilot glideinWMS pilot factory is to manage the submission of glideins to grid
sites. In the cross-Atlantic scale tests, up to 7 gt2 gatekeepers were targeted, using up to
13 Condor-G submission instances (which will be discussed in the following section). In this
configuration, glidein startup rates of up to 1.8Hz were demonstrated. However, the sustained
glidein completion rate peaked at 0.5Hz, due to throughput limitations in Condor-G as of version
7.3.1. Therefore, in order to support a job completion rate of 200,000 jobs/day (2.3Hz), it was
necessary to either increase the number of Condor-G instances, or site gatekeepers, or increase
the glidein lifespan to be sufficiently long so that each glidein could be reused for multiple jobs.
The latter is a reasonable thing to do as long as the glidein lifespan is less than the maximum
allowed time for running jobs at the grid sites: 24h is a typical upper limit. With glidein
lifespans of 9h, at most 16k simultaneously running glideins were sustained in our tests. With
glidein lifespans of 18h, 23k simultaneously running glideins were sustained and scaling higher
was limited by factors outside of the glidein factory component (port exhaustion in the Condor
schedd machine managing the running user jobs).

Another important scaling factor is how many sites could be simultaneously harnessed. We
did not conduct controlled tests of this, but we did learn some things during the already
mentioned LHC Common Computing Readiness Challenge 08. This also gave us experience
with the system in a more realistic usage environment.

All of the glideinWMS components were installed in the US, and the glideins were being sent
to O(100) production Grid sites in the US and in Europe. The demand placed on the Condor

schedd and collector was much smaller than in the other tests, with an average of 1k running
and 10k queued jobs, with peaks of 3k running and 50k queued. The system was being used for
more than a month.

The gfactory, Condor-G and the glideinWMS dashboard were hosted on one node, the
frontend shared a node with a GCB, the schedd was installed on a dedicated node, and a
tree of collectors was using another dedicated node. The dashboard and the frontend never
reached a scalability limit. Instead, the gfactory did.

The gfactory ran into IO transaction limits when serving more than approximately 50 Grid
sites. The load comes mostly from the administrative monitoring subsystem of the gfactory.
By disabling part of the monitoring, an option available since glideinWMS v1 4, the gfactory
was able to handle the available CMS Tier-2 grid sites, across Europe and US, but the load on
the system was still uncomfortably high. By moving the factory monitoring files to TMPFS (a
memory-backed filesystem), this problem was largely overcome. These files would be lost in the
event of a system crash or power loss, but since they are purely for monitoring purposes, an
occasional backup is usually all that is needed. Using all the CMS Tier-2 sites, the system load
factor is ∼2. To make the files fit into a reasonable amount of RAM, the number of plots had to
be restricted. This monitoring scalability problem has been addressed in glideinWMS version
2, after the time of our testing.

3. Interoperability of glideinWMS
Another important aspect of glideinWMS is its ability to interoperate with different types of
grids. The basic idea behind a glidein Condor pool is that somehow the glidein pilot is executed
on worker nodes. The mechanism by which that happens is not relevant to the functioning of
the glidein Condor pool, as long as the pilot’s startd daemon is able to phone home and join
the pool. Therefore, there is at least the potential for great flexibility in what types of grids or
compute clouds glideinWMS is able to integrate.

In practice, the mechanism used by glideinWMS to distribute pilots is Condor’s “grid
universe”, also known as Condor-G. Condor-G jobs are managed in a job queue by the schedd,
just like jobs intended to run in a Condor pool. However, instead of being sent to a startd to
run, the jobs are sent to other grid sites. The grid universe supports a growing number of grid
protocols, including Globus gt2 and gt4, as well as Condor-to-Condor, EC2, and NorduGrid.
Support for different grid types is accomplished through protocol-specific modules called GAHPs
(Grid Ascii Helper Programs) plus a small amount of logic in the Condor gridmanager specific
to the use of each GAHP. From the glideinWMS system’s point of view, however, all that is
necessary is to configure the glidein factory to set the appropriate grid type in the job description
for pilot jobs destined for a given site.

In the CMS CCRC-08 exercise, glideinWMS successfully integrated over 4000 CPUs from
more than 40 sites across EGEE, NorduGrid, and OSG. This was the first time that the
NorduGrid ARC interface was used in CMS. The other sites were accessed via the gt2 protocol.

Recent developments to Condor-G have focussed on adding support for the CREAM CE
[1]. Figure 5 shows our test results in trial runs across several sites accessed via CREAM. In
submission of glideins to CREAM sites, we observed a 25% failure rate, mostly due to proxy
renewal/delegation. We reported this problem to the CREAM developers. Fortunately, the user
jobs are not affected, because the glidein fails before “calling home.” User jobs are only affected
by glideins that succeed in running, pass initial sanity checks, and join the Condor pool.

4. Related Work
A detailed comparison of glideinWMS to the current state of other workload management
systems is beyond the scope of this paper. Some prior work on this subject made quantitative
and qualitative comparisons of Condor-G, ReSS, gliteWMS, and glideinWMS [7]. A more recent

Figure 5. CMS tests of glideinWMS incorporating resources from CREAM sites.

stress test of gliteWMS demonstrated a sustained throughput of 90k jobs/day [8]. PanDA, a
pilot-based workload management system used by the ATLAS experiment, routinely processes
70k jobs/day and has achieved 35k simultaneously running jobs [9]. Both gliteWMS and PanDA
can use Condor-G as the underlying mechanism for submission to grid sites.

5. Conclusion
Significant progress has been made in making glideinWMS attractive for use by CMS and others
who wish to harness grid resources through a powerful and uniform interface. The system scales
to over 20k running jobs with a throughput of over 200k jobs/day while securely traversing
global networks. In addition, it has held true to the promise of flexibility by incorporating new
types of grids.

Acknowledgments
This work was supported by US DOE contract No. DE-AC02-07CH11359 and the U.S. National
Science Foundation grants PHY-0427113 (RACE) and PHY-0533280 (DISUN).

References
[1] Aiftimiei C, et al., 2009 Design and implementation of the gLite CREAM job management service, INFN

Technical Note INFN/TC 09/3
[2] Sfiligoi I, 2008 glideinWMS-A generic pilot-based Workload Management System, Journal of Physics:

Conference Series 119 062044
[3] Belforte S, Fanfani A, Fisk I, Flix J, Hemandez J, Klem J, Letts J, Magini N, Miccio V, Padhi S, Saiz

P, Sciaba A, Würthwein F, 2008 The commissioning of CMS computing centres in the worldwide LHC
computing Grid, N29-5, Nuclear Science Symposium Conference Record, NSS ’08. IEEE

[4] Sfiligoi I, Bradley D, Holzman B, Mhashilkar P, Padhi S, Würthwein F 2009 The pilot way to Grid resources
using glideinWMS Preprint CSIE.

[5] Sfiligoi I, Bradley D, Livny M 2009 Pseudo-interactive monitoring in distributed computing Preprint JPCS.
[6] Bradley D, 2009 The Condor Connection Broker Condor Week 2009.
[7] Holzman B, Sfiligoi I, 2007 A Quantitative Comparison Test of Workload Management Systems, CHEP 2007.
[8] Cecchi M, et al., 2009 The gLite Workload Management System Advances in Grid and Pervasive Computing,

5529 256-268.
[9] P. Nilsson, 2008, The PanDA System in the ATLAS Experiment, ACAT ’08, Italy, 2008.

