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Abstract

A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equa-

tion, which explicitly includes the polarization drift, is derived systematically by using Lie-

transform method. The polarization drift is introduced in the gyrocenter equations of motion,

and the corresponding polarization density is derived. Contrary to the wide-spread expec-

tation, the inclusion of the polarization drift in the gyrocenter equations of motion does not

affect the expression for the polarization density significantly. This is due to modification of

the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys.

Plasmas 3, 4658 (1996)] .

I. INTRODUCTION

Nonlinear gyrokinetic formulations1–7 have played an important role in progress towards

understanding tokamak microturbulence.8,9 Even after continuous research for almost three

decades, there still remain some theoretical issues which deserve further clarification. For

instance, in the standard gyrokinetic formulation, there is a polarization density term in

the Poisson equation, while there is no polarization drift in the gyrokinetic Vlasov equation

which is based on gyrocenter equations of motion.

It was widely believed that the gyrokinetic Poisson equation should be significantly

changed if the polarization drift is explicitly included in the gyrocenter equations of mo-

tion. For instance, Sosenko, et al. kept the polarization drift in the quasi-particle equations,
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and found cancelations of leading order terms in the long wavelength limit in the Poisson

equation.10 Heikkinen, et al. applied this model to particle simulation of tokamak transport.11

In the present paper, we find that including the polarization drift explicitly in the gy-

rokinetic Vlasov equation does not significantly change the Poisson equation in the long

wavelength limit. We note that Dimits16 has reached the same conclusion on this issue inde-

pendently. We adopt the Lie-transform method13–15 as is done in the standard gyrokinetic

theory, but the polarization drift is systematically included in the gyrocenter equations of

motion by changing the definition of the gyrocenter. The definition of the guiding-center

in this paper is the same as that in the standard gyrokinetic theory, whereas the definition

of the gyrocenter is different. Various definitions of the guiding-center and the gyrocenter

are summarized in Table I and Fig. 1. The different definition of the gyrocenter results in a

different gyrocenter phase-space volume, which can affect the expression for the polarization

density.17 In many previous works, this effect was neglected.10,11

The principal results of this paper include:

1. A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation

is systematically derived by using the Lie-transform method. The main difference from

the standard gyrokinetic equations1–7 is that the polarization drift in the gyrocenter

equations of motion is introduced in this work.

2. We find that the polarization density remains almost the same in the long wavelength

limit in homogeneous plasmas, although the polarization drift is introduced in the

gyrocenter equations of motion. This is different from the expectation widely spread

in the literature. The correct polarization density can only be derived by taking into

account the change of the phase-space volume of gyrocenter coordinates due to the

fluctuating E×B velocity.

3. The phase-space Lagrangian Lie-perturbation theory ensures that the gyrokinetic

Vlasov-Poisson system has an exact energy invariant.

The remainder of this paper is organized as follows. In Sec. II, the results of a phase-

space Lagrangian transformation from particle phase space to gyrocenter phase space are

presented. The polarization drift is included in the gyrocenter equations of motion. We

systematically derive the gyrokinetic Vlasov-Poisson system and the energy invariant in
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Sec. III. In Sec. IV, we present discussion relevant to our work. We focus our attention on

the systematic derivation of a set of gyrokinetic Vlasov equation and Poisson equation in the

presence of polarization drift and on the clarification of the relationship between polarization

drift and polarization density.

II. LIE-TRANSFORM FOR GYROCENTER PHASE SPACE WITH

POLARIZATION DRIFT

In this section, we present the gyrocenter equations of motion including the polarization

drift. The particle phase-space Lagrangian is given by

γ =
(e

c
A + mv

)
· dx−

(
1

2
mv2 + eδφ

)
dt, (1)

where A is the magnetic vector potential, x is the particle position, v = ub+c⊥ is the particle

velocity, b ≡ B/B, B = ∇×A is the inhomogeneous equilibrium magnetic field, and δφ is

the fluctuating electrostatic potential. The standard nonlinear gyrokinetic ordering1 consists

of:

ω/Ω ∼ k‖ρi ∼ eδφ/Ti ∼ ε

and

k⊥ρi ∼ 1,

where ω and Ω are the characteristic fluctuation frequency and the ion cyclotron frequency,

respectively, k‖ and k⊥ are the components of the wave vector in the parallel and perpen-

dicular direction with respect to the magnetic field, ρi = (Ti/m)1/2/Ω is the thermal ion

gyroradius, and ε ¿ 1 is a small ordering parameter.

Starting from the unperturbed phase-space Lagrangian of a charged particle, one can

perform the Lie perturbation analysis as described in Refs. 13–15, to obtain the unperturbed

guiding-center phase-space Lagrangian,

Γ0 =
(e

c
A + mUb

)
· dR +

µB

Ω
dθ − (

µB + mU2/2
)
dt. (2)

Here, (R, U, µ, θ) are guiding-center phase-space coordinates: R denotes the guiding-center

position, U is the parallel guiding-center velocity, µ is the guiding-center magnetic moment,

and θ is the guiding-center gyro-phase angle. All the definitions are the same as those of
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the standard modern gyrokinetics7 so far. Catto has used a preliminary transformation from

particle to guiding-center variables for the linear gyrokinetic theory.18 This remains to be

useful for the nonlinear derivation as well.

Next, the gyrocenter phase-space transformation is needed to remove the gyro-phase

angle dependence contained in the fluctuation. The perturbed guiding-center phase-space

Lagrangian is:

Γ1 = −eδφ(R + ρ, t)dt ≡ −eδφgcdt, (3)

where ρ = b × c⊥/Ω. The lowest-order gyrocenter phase-space Lagrangian has the same

expression as the corresponding expression in standard modern gyrokinetics,

Γ0 =
(e

c
A + mUb

)
· dR +

µB

Ω
dθ −

(
µB +

1

2
mU

2
)

dt. (4)

“ ” in this paper means a physical quantity in gyrocenter phase space.

Our derivation deviates from the standard modern gyrokinetic theory in the following.

For the first-order gyrocenter phase-space Lagrangian, we choose the generators and gauge

function of Lie transformation such that

Γ1 = mδuE · dR−H1dt, (5)

where δuE = cb ×∇〈δφgc〉/B and H1 is gyro-phase angle independent. Here, introduction

of the fluctuating E×B velocity results in a different definition of the gyrocenter position.

In this way, the polarization drift can explicitly be included in the gyrocenter equations

of motion, as can be seen shortly. According to the nonlinear gyrokinetic ordering, the
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first-order Hamiltonian is given by

H1 = e〈δφgc〉, (6a)

and the generators are given by

GR
1 =

1

B∗
0‖

(
mc

e
b× δuE − c

e
b×∇S1 − B∗

0

m

∂S1

∂U

)
,

GU
1 =

B∗
0

mB∗
0‖
· (∇S1 −mδuE

)
,

Gµ
1 =

e

mc

∂S1

∂θ
,

Gθ
1 = − e

mc

∂S1

∂µ
, (6b)

and the gauge function is

S1 =
e

Ω

∫
dθ δ̃φgc. (6c)

Here, B∗
0 = ∇ × A + mc/eU∇ × b, B∗

0‖ = b · B∗
0, δ̃φgc = δφgc − 〈δφgc〉, and the bracket

means gyro-phase angle average, i.e, 〈δφgc〉 ≡ (2π)−1
∮

dθδφ(R + ρ, t), for instance. The

main difference from the standard modern gyrokinetics is that there is an additional term,

mcb × δuE/(eB∗
0‖), in GR

1 . This indicates that the definition of gyrocenter position, R, is

different from that of standard modern gyrokinetics. The difference is illustrated in Table I

and Fig. 1.

The second-order perturbation analysis is quite similar to that of Ref. 4, but the result

is not exactly the same due to the different first-order gyrocenter phase-space Lagrangian

adopted in this work. The second-order terms should be kept for energy conservation up to

O(ε2) as discussed in Ref. 3 and further detail in a recent review article.7 Finally, the total

gyrocenter phase-space Lagrangian can be written as

Γ =
(e

c
A + mUb + mδuE

)
· dR +

µB

Ω
dθ −

(
µB +

1

2
mU

2
+ eδΨgy

)
dt. (7)

Here, the effective gyrocenter perturbation potential is

δΨgy = 〈δφgc〉 − e

2B

∂

∂µ
〈δ̃φ2

gc〉+
mc2

eB2
|∇⊥〈δφgc〉|2. (8)

The Euler-Lagrangian equations corresponding to the gyrocenter phase-space Lagrangian4

are given by

e

c

dR

dt
×B∗ −mb

dR

dt
= µ∇B + e∇δΨgy + m

∂

∂t
δuE, (9)
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and

mb · dR

dt
= mU. (10)

Here,

B∗ = B∗
0 + mc/e∇× δuE, (11)

and

B∗
‖ = b ·B∗ ' B∗

0‖ +
mc2

e
∇⊥ ·

(
1

B
∇⊥〈δφgc〉

)
. (12)

The second term associated with the potential fluctuation in B∗
‖ is new feature which was

absent in the standard gyrokinetic theory. It results from the fluctuating E×B drift which

is introduced in the gyrocenter phase-space Lagrangian.

Equations (9)-(10) can be decomposed into the following gyrocenter equations of motion

which look more familiar:

dR

dt
= U

B∗

B∗
‖

+
cb

eB∗
0‖
× (

µ∇B + e∇δΨgy

)− c

ΩB∗
‖

∂

∂t
∇⊥〈δφgc〉, (13)

dU

dt
= −B∗

B∗
‖
·
(

µ∇B + e∇δΨgy +
∂

∂t
δuE

)
. (14)

The last term in Equation (13) is the polarization drift. It can be attributed to the intro-

duction of the fluctuating E×B velocity in the gyrocenter phase-space Lagrangian.

III. GYROKINETIC VLASOV-POISSON EQUATIONS AND ENERGY

CONSERVATION LAW

We have derived the gyrocenter equations of motion with the polarization drift in the

previous section. With Equations (13) and (14), the gyrokinetic Vlasov equation for the

gyrocenter distribution function F (R, µ, U, t) can be written as

∂F

∂t
+

dR

dt
· ∇F +

dU

dt

∂F

∂U
= 0. (15)

Here, dµ/dt ≡ 0 and ∂F/∂θ ≡ 0 have been used. It has been recognized that the gyrokinetic

Vlasov equation, the gyrokinetic Poisson equation, and the corresponding energy invariant

are three important pillars of nonlinear gyrokinetic theory.7 Therefore, it’s desirable to treat

them on an equal footing. A field theoretical variational method was introduced in deriving
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systematically the gyrokinetic Vlasov-Maxwell system.19,20 In the present paper, we express

the particle charge density in Poisson equation and corresponding energy invariant in terms

of the gyrocenter distribution function by a pull-back transformation from the gyrocenter

phase space to the particle phase space. Then, we evaluate them explicitly from the most

general formal expression of the pull-back transformation. The polarization density in the

gyrokinetic Poisson equation will be discussed in details.

Poisson equation in particle phase space is given by

∇2δφ(x, t) = −4πe [ni(x, t)− ne(x, t)] . (16)

In this paper, we do not specify the electron dynamics, so the electron density can be written

in a primitive form

ne(x, t) =

∫
d3xd3vfe(x, v, t). (17)

The ion particle density written in terms of the gyrocenter distribution function via a pull-

back transformation is given by

ni(x, t) =

∫
d3vfi(x, v, t)

=

∫
d3vd3x′fi(x

′, v, t)δ3(x′ − x)

=

∫
d6ZFi(Z)δ3(R + ρ− x)

=

∫
d6Z F i(Z) T−1

gy δ3(R + ρ− x). (18)

Here, d6Z =
∣∣∂(v, x)/∂Z

∣∣ d3RdUdµdθ, and
∣∣∂(v, x)/∂Z

∣∣ ' B∗
0‖/m+ c2∇⊥ ·

(
1
B
∇⊥〈δφgc〉

)
/e

is the Jacobian for transformation from the particle phase space to the gyrocenter phase

space. As discussed in Section II, the second term makes the gyrocenter phase-space volume

different from that of the standard gyrokinetic theory. The gyrocenter phase-space volume

is modified due to the different definition of gyrocenter position used in this work. Equa-

tion (18) contains contributions from two parts. One part is the gyro-averaged gyrocenter

density

N i(x, t) =

∫
B∗

0‖
m

d3RdUdµdθ F i(Z)δ3
(
R + ρ− x

)
, (19)
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and the other part is the polarization density

npol(x, t) = −
∫

B∗
‖

m
d3RdUdµdθ F i(Z)

(
GR

1 · ∇+ Gµ
1∂µ + Gθ

1∂θ

)
δ3(R + ρ− x)

+

∫
B∗

0‖
m

d3RdUdµdθ F i(Z)
mc2

eB∗
0‖
∇⊥ ·

(
1

B
∇⊥〈δφgc〉

)
δ3(R + ρ− x). (20)

Here, N i does not explicitly include the potential fluctuation. We keep all the potential

fluctuation associated terms in the polarization density. The second term of npol is at-

tributed to the modification of the gyrocenter phase-space volume due to 〈δφgc〉.17 The

time-dependent, self-generated E×B zonal flows8,21,22 also contribute to this term. More

recently, the modification of Jacobian due to the equilibrium E×B drift was avoided by

moving it into the Hamiltonian part in Ref. 12 rather than keeping it in the sympletic part

of the Lagrangian.17,23 Combining Equations (17), (19) and (20), the gyrokinetic Poisson

equation is written as

∇2δφ(x, t) = −4πe
[
N i(x, t) + npol(x, t)− ne(x, t)

]
. (21)

The global gyrokinetic Vlasov-Poisson energy invariant is obtained by the Noether’s theorem

and integration over space, as described in Eq. (50) of Ref. 20, and Eq. (199) of Ref. 7:

E =

∫
d3x

8π

(|∇δφ|2 + B2
)

+

∫
d6zfe

1

2
mev

2

+

∫
B∗
‖

m
d3RdUdµdθ F i(Z)

[
µB +

1

2
mU

2
+ eδΨgy − e〈T−1

gy δφgc〉
]

=

∫
d3x

8π

(|∇δφ|2 + B2
)

+

∫
d6zfe

1

2
mev

2

+

∫
B∗
‖

m
d3RdUdµdθ F i(Z)

[
µB +

1

2
mU

2
+

e2

2B
∂µ〈δ̃φ

2

gc〉
]

. (22)

So far, the gyrokinetic Vlasov-Poisson system and the corresponding energy invariant are

presented formally. Next, we consider two limiting cases and evaluate them explicitly.

Case I. In the long wavelength limit, i.e., k⊥ρi ¿ 1, the gyrokinetic Vlasov equation

is
∂F i

∂t
+

dR

dt
· ∇F i +

dU

dt

∂F i

∂U
= 0. (23)
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The corresponding gyrocenter equations of motion,

dR

dt
= U

B∗

B∗
‖

+
cb

eB∗
0‖
× (

µ∇B + e∇δΨgy

)− c

ΩB∗
‖

∂

∂t
∇⊥〈δφgc〉, (24)

dU

dt
= −B∗

B∗
‖
·
(

µ∇B + e∇δΨgy +
∂

∂t
δuE

)
. (25)

Here, the effective gyrocenter perturbation potential in the long wavelength limit is reduced

to

δΨgy = 〈δφgc〉+
1

2e
m|δuE|2, (26)

where δuE = cb×∇ δφ/B, with δφ ≡ δφ(R, µ, U, t).

Next, we calculate the polarization density in the long wavelength limit. The first term

of Equation (20) can be written as

−
∫

B∗
‖

m
d3RdUdµdθ F i(Z)〈GR

1∇+ Gµ
1∂µρ · ∇+ Gθ

1∂θρ · ∇〉δ3
(
R− x

)

= ∇ ·
∫

B∗
‖

m
dU dµ dθ F i(Z)〈GR

1 + Gµ
1∂µρ + Gθ

1∂θρ〉, (27)

where

〈GR
1 + Gµ

1∂µρ + Gθ
1∂θρ〉 =

mc

eB∗
0‖

b× δuE +
e

B
∂µ〈δ̃φgcρ〉

= − mc2

eBB∗
0‖
∇⊥δφ +

mc2

eB2
∇⊥δφ

' 0. (28)

It is shown that the first term vanishes up to O(k2
⊥ρ2

i ). This is due to cancelation of the

contributions from Gµ
1 and Gθ

1 (the usual polarization density) and that from GR
1 which is

introduced to get polarization drift explicitly in the gyrocenter equations of motion. This

lowest order cancelation has led to an expression of polarization density which scales like k4
⊥ρ4

i

in the long wavelength limit, in the literature.10,11 However, we find that the polarization

density comes from the second term associated with modification of the gyrocenter phase-

space volume with the following expression:

npol(x, t) ' mc2Ni

eB
∇⊥ ·

(
1

B
∇⊥δφ

)
, (29)

where

Ni(x, t) =

∫
B∗

0‖
m

d3RdUdµdθ F i(Z)δ3
(
R− x

)
. (30)
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Therefore, the gyrokinetic Poisson equation in the long wavelength limit is given by

∇2δφ(x, t) = −4πe

[
N i(x, t) +

mc2Ni

eB
∇⊥ ·

(
1

B
∇⊥δφ

)
− ne(x, t)

]
. (31)

Contrary to the conventional wisdom, the gyrokinetic Poisson equation does not change

significantly although the polarization drift is included in the gyrokinetic Vlasov equation.

For weak variation of Ni and B, the polarization density in the presence of polarization drift,

i.e., Eq. (29) is almost identical to the standard expression (for instance, Eq. (31) of Ref. 24)

mc2

e
∇⊥ ·

(
Ni

B2
∇⊥δφ

)
.

The importance of modification of gyrocenter phase-space volume to the polarization

density17 was also noted in Dimits’ work.16

For the energy invariant, the last term of Eq. (22) in the long wavelength limit is reduced

to
1

2
m |δuE|2 (32)

Therefore, the energy invariant in the long wavelength limit can be obtained by substituting

Eq. (32) to Eq. (22)

E =

∫
d3x

8π

(|∇δφ|2 + B2
)

+

∫
d6zfe

1

2
mev

2

+

∫
B∗
‖

m
d3RdUdµdθ F i(Z)

[
µB +

1

2
mU

2
+

1

2
m |δuE|2

]
. (33)

It has the same appearance as the standard one,4 but with a different gyrocenter phase-space

volume in the ion kinetic energy expression.

Case II. Now, we consider an arbitrary k⊥ρi but with an assumption of Maxwellian

ion gyrocenter distribution function in µ, i.e., F ∝ exp[−µB/Ti].

In this case, we calculate the polarization density, Eq. (20), by using Fourier expansion.

After an integration in phase space, the contribution from GR
1 term on the first line of

Equation (20) can be written as

∑

k

exp(ik · x)NibΓ0(b)
eδφk

Ti

. (34)
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Here, Γ0(b) = I0(b)e
−b, and I0 is the 0th order modified Bessel function, where b = k2

⊥ρ2
i .

The second line of Equation (20) coming from modification of the gyrocenter phase-space

volume is reduced to

−
∑

k

exp(ik · x)NibΓ0(b)
eδφk

Ti

, (35)

which cancels the contribution from GR
1 term. The variation of B and Ni is neglected in this

limiting case. Then, the contribution from remaining Gµ
1 and Gθ

1 in the first line of Equation

(20) turns out to be the same as the standard polarization density

−
∑

k

exp(ik · x)Ni(1− Γ0(b))
eδφk

Ti

. (36)

Therefore, the Poisson equation in this limit can be given by

∇2δφ(x, t) = −4πe

[
N i(x, t)− ne(x, t)−

∑

k

exp(ik · x)Ni(1− Γ0(b))
eδφk

Ti

]
. (37)

The corresponding energy invariant for this system can be written as

E =

∫
d3x

8π

(|∇δφ|2 + B2
)

+

∫
d6zfe

1

2
mev

2

+

∫
B∗
‖

m
d3RdUdµdθ F i(Z)

[
µB +

1

2
mU

2
]

+
∑

k

e2

2Ti

Ni(1− Γ0)|δφk|2. (38)

Once again, the energy invariant in this case also has the same expression as the standard

one but with the modification of the ion gyrocenter phase-space volume which is related

to the polarization density. Note that polarization drift does not appear explicitly in this

expression. Both the gyrokinetic Poisson equation and the energy invariant in this case can

reduce to Eqs. (31) and (33) for the long wavelength limit (for weak variation of Ni and B)

by expanding the modified Bessel function Γ0 for small b.

IV. CONCLUSION

In the present paper, via introducing the fluctuating E×B velocity in the first-order

perturbed gyrocenter phase-space Lagrangian, we have derived a set of electrostatic toroidal

gyrokinetic Vlasov equation which includes the polarization drift explicitly. This results

in a different definition of gyrocenter position and consequently the gyrocenter phase-space
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volume is modified. The corresponding polarization density has been derived as well in which

the modification of phase-space volume is taken into account. We find that the polarization

density does not change significantly in the long wavelength limit. This is contrary to the

widely spread expectation.

We also consider the arbitrary k⊥ρi case with an assumption of Maxwellian gyrocenter

distribution function. The same polarization density as that of the standard gyrokinetic

theory is obtained. It can be reduced to the expression for the polarization density in the

long wavelength limit by expanding the modified Bessel function. In conclusion, gyrokinetic

Poisson equation in the presence of polarization drift is almost identical to that of the

standard gyrokinetic theory. This can be attributed to the modification of the Jacobian

for transformation from the particle phase space to the gyrocenter phase space17 which was

ignored in previous works.10–12

Including the polarization drift explicitly in the gyrocenter equation of motion does not

change significantly neither the gyrocenter equation of motion nor the energy invariant. The

phase-space Lagrangian Lie-perturbation theory ensures that the gyrokinetic Vlasov-Poisson

system has an exact energy conservation law. We present the gyrokinetic Vlasov equation

and Poisson equation and the corresponding energy invariant in two limiting cases.

The appearance of polarization drift containing a derivative with respect to time puts

more demand on the numerical scheme to be used. On the other hand, the familiar Laplacian

operator in the gyrokinetic Poisson equation seems to suggest that the situation is not as

bad25 as that implied by Refs. 10,11.
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TABLE I: Definitions of guiding center and gyrocenter in standard gyrokinetic theory and this work.

Guiding Center Gyrocenter

Standard R = x− ρ R = x− ρ− 1
B∗

0‖

(
c
eb×∇S1 + B∗0

m
∂S1

∂U

)

This work R = x− ρ R = x− ρ + mc
eB∗

0‖
b× δuE − 1

B∗
0‖

(
c
eb×∇S1 + B∗0

m
∂S1

∂U

)

FIG. 1: Definitions of gyrocenter in standard gyrokinetic theory and this work for uniform magnetic

field. φ = 〈φ〉 and a single mode φ ∝ cos(kx) are assumed for illustration.
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