Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator

PDF Version Also Available for Download.

Description

SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage and ... continued below

Physical Description

3 pages

Creation Information

Nguyen, M.N.; Burkhart, C.; Olsen, J.J.; Macken, K.; /SLAC & , June 7, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage and over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.

Physical Description

3 pages

Source

  • Journal Name: Conf.Proc.C100523:wepd100,2010; Conference: Contributed to 1st International Particle Accelerator Conference: IPAC'10, Kyoto, Japan, 23-28 May 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14109
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 981691
  • Archival Resource Key: ark:/67531/metadc1014043

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 7, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 2, 2017, 7:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Nguyen, M.N.; Burkhart, C.; Olsen, J.J.; Macken, K.; /SLAC & ,. Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator, article, June 7, 2010; [California]. (digital.library.unt.edu/ark:/67531/metadc1014043/: accessed July 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.