Decomposition of Rare Earth Loaded Resin Particles

PDF Version Also Available for Download.

Description

The Fuel Cycle R and D (FCR and D) program within the Department of Energy Office of Nuclear Energy (DOE-NE) is evaluating nuclear fuel cycle options, including once-through, modified open, and fully closed cycles. Each of these scenarios may utilize quite different fuel management schemes and variation in fuel types may include high thermal conductivity UO{sub 2}, thoria-based, TRISO, metal, advanced ceramic (nitride, carbide, composite, etc.), and minor actinide (MA) bearing fuels and targets. Researchers from the US, Europe, and japan are investigating methods of fabricating high-specific activity spherical particles for fuel and target applications. The capital, operating, and maintenance ... continued below

Creation Information

Voit, Stewart L & Rawn, Claudia J September 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Fuel Cycle R and D (FCR and D) program within the Department of Energy Office of Nuclear Energy (DOE-NE) is evaluating nuclear fuel cycle options, including once-through, modified open, and fully closed cycles. Each of these scenarios may utilize quite different fuel management schemes and variation in fuel types may include high thermal conductivity UO{sub 2}, thoria-based, TRISO, metal, advanced ceramic (nitride, carbide, composite, etc.), and minor actinide (MA) bearing fuels and targets. Researchers from the US, Europe, and japan are investigating methods of fabricating high-specific activity spherical particles for fuel and target applications. The capital, operating, and maintenance costs of such a fuel fabrication facility can be significant, thus fuel synthesis and fabrication processes that minimize waste and process losses, and require less footprint are desired. Investigations have been performed at the Institute for Transuranium Elements (ITU) and the French Atomic Energy Commission (CEA) studying the impact of americium and curium on the fuel fabrication process. proof of concept was demonstrated for fabrication of MA-bearing spherical particles, however additional development will be needed for engineering scale-up. Researchers at the Paul Scherer Institute (PSI) and the Japan Atomic Energy Association (JAEA) have collaborated on research with ceramic-metallic (CERMET) fuels using spherical particles as the ceramic component dispersed in the metal matrix. Recent work at the CEA evaluates the burning of MA in the blanket region of sodium fast reactors. There is also interest in burning MA in Canada Deuterium Uranium (CANDU) reactors. The fabrication of uranium-MA oxide pellets for a fast reactor blanket or MA-bearing fuel for CANDU reactors may benefit from a low-loss dedicated footprint for producing MA-spherical particles. One method for producing MA-bearing spherical particles is loading the actinide metal on a cation exchange resin. The AG-50W resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2010/216
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/990701 | External Link
  • Office of Scientific & Technical Information Report Number: 990701
  • Archival Resource Key: ark:/67531/metadc1014035

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Nov. 2, 2017, 6:24 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Voit, Stewart L & Rawn, Claudia J. Decomposition of Rare Earth Loaded Resin Particles, report, September 1, 2010; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc1014035/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.