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Abstract

One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by
low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van
der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM)
experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse
length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion
velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for
characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
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Figure 1: Density vs time and space, 30% liquid density 10µm thick foam
(modeled as 15 slabs of solid material) heated by a 30 kJ/g 0.5ns pulse.

1. Introduction

Heavy ion accelerators have recently excited interest for
near term warm dense matter (WDM) studies as well as long
term potential applications to inertial fusion energy experiments
[1, 11]. For fundamental physics studies in the WDM regime
heavy ion accelerators have the advantage that ion energies
can be adjusted so that the beam deposition is nearly uniform
throughout the target. The Neutralized Drift Compression Ex-
periment (NDCX-I) [9, 8] at LBNL is carrying out experiments
on metals in the two-phase regime [3]. A planned experiment
NDCX-II, at LBNL, will explore higher temperatures [5], in-
cluding temperatures above the critical point. NDCX-II will
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Figure 2: Temperature vs time and space, 30% liquid density 10 µm thick foam
heated by a 30 kJ/g 0.5ns pulse (same as in Figure 1).

run a 2.8 MeV Li beam with peak central fluence 30 J/cm2 cor-
responding to 20 kJ/g in Al with a range of roughly 4 µm.

Previous simulation work on NDCX targets heated by heavy
ion beams focused specifically on certain experimental config-
urations, including solid foils, with 1-D and 2-D simulation
codes [1]. In this paper we focus on the simulation of metal-
lic foams. Foam targets are of interest due to potential Iner-
tial Confinement Fusion (ICF) uses [6] as well as for studying
physics in the WDM regime. We present highly idealized stud-
ies of this problem and examine the fundamental processes of
homogenization and expansion of the foams as heating param-
eters are varied.

The objective of this study is to determine the parametric de-
pendence of peak temperatures, pressures, and expansion ve-
locities on the beam energy, pulse duration, and foam den-
sity. Effects of foam dynamics on material phase in the ex-
pansion are explored, and we also determine the characteristic
time scales for homogenization of the foam and the level of ho-
mogeneity expected.
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Figure 3: Density vs time and space, 30% liquid density 10µm thick foam
heated by a 30 kJ/g 0.5ns pulse (rotated view of Figure 1).

Volumetrically heated foam targets have attracted recent in-
terest. Tahir et al. have proposed using porous targets at GSI
for critical point and two-phase studies, simulating potential tar-
gets without porous effects [10]. Efremov et al. present exper-
imental and computational studies of pore collapse effects in a
foam, similarly using a 1-D Lagrangian code but with a Mie-
Gruneisen equation of state [4]. Tauschwitz et al. use a 1-D
Lagrangian Mie-Gruneisen code to study potential foam targets
for GSI equation of state measurements in the WDM regime
[12]. Their foam structure is highly similar to ours with a sim-
ilar energy deposition in a much longer pulse length. Unlike
these previous works this paper presents a fundamental study
of the dynamics of foam targets over a large parameter space,
and our focus is on heating times that are comparable to ho-
mogenization times.

2. Methods

For the simulations in this paper we use a one dimensional
Lagrangian hydrodynamic code called DISH written by R.
More [7]. Since the ion beam heating experiments we are mod-
eling have target spot sizes much larger than the target depths
a 1-D model is a good approximation in the center of the beam
and computationally attractive. Higher dimensional foams may
include more complex physics. We use a Van der Waals equa-
tion of state including the Maxwell construction, the simplest
EOS that captures the phase transition between liquid and gas.
The present DISH simulations are non-viscous and do not in-
clude ionization, heat conduction, or radiation transport, and
are thus highly idealized.

The radiation energy density per gram is 4σT 4/ρc, which at
a temperature of 4 eV is ∼ 10−3 J/g, where σ is the Stephan-
Boltzmann constant, compared to the matter energy density per
gram ε of ∼ 30 kJ/g. Similarly, the radiative energy flux is
σT 4 ∼ 32 MW/cm2, whereas the hydrodynamic energy flux
is ∼ ρεcs ∼ 24 GW/cm2, suggesting that neglecting radiation
effects should not significantly affect the dynamics.

Similarly, heat conduction should be relevant on a time scale
τhc ∼ (ρCv/κ)L2, where Cv is the specific heat at constant
volume ∼ 0.9 J/gK , κ is the conductivity ∼ 2.4 W/cm K

and L is the characteristic thermal gradient length scale. So
τhc ∼ (1s/cm2)(L/1cm)2. For characteristic length scales of 10
µm, the timescale for heat conduction would be 1 µs, which
is much longer than the simulation times. However for a sin-
gle slab of thickness 0.067 µm (for a 10% foam) the heat con-
duction time scale is 4 × 10−11 s, whereas the hydrodynamic
time scale for the same slab is∼ L/cs ∼ 2 × 10−11 s. In this
case heat conduction over individual slabs is not completely
ignorable. Thus, our neglect of heat conduction should not ef-
fect the macro-scale dynamics, but temperature spikes observed
during slab collisions in the simulations probably overestimate
the temperature, since heat conduction would have the effect of
reducing the extremes in temperature.

Since the Van der Waal equation of state does not specify the
electron number density, it does not include any effects of ion-
ization. At 1− 2 eV ionization is relatively weak for atomic Al.
However, in the liquid state, conduction electrons act in some
ways like free electrons. Nevertheless, the critical point and the
liquid-vapor boundary of the Van der Waal fluid is chosen to be
in the same regime as expected for Al, so qualitative features
of the hydrodynamics in this study are expected to be present
when a more detailed EOS is used for the simulation.

Simulations are driven by initial and boundary conditions as
well as energy deposition in the form of a spatially uniform
pulse with a parabolic time dependence. Unless otherwise spec-
ified, we use aluminum for the foams and foils. The density
(Figures 1, 3) and temperature (Figure 2) are plotted versus time
and space for a typical foam.

We assume that the transition between solid and liquid is
rapid, and therefore focus on the phase transition between liq-
uid and vapor. Liquid foils are initialized as a continuous set of
Lagrangian cells, created with a tapering routine such that the
cells near the edge are smaller in size than the central cells, al-
lowing for better expansion accuracy. Foams are initialized as
a series of slabs of liquid material separated by gaps filled with
a very low density gas. The nominal construction used was
fifteen liquid slabs of material modeled with 315 Lagrangian
cells, which is considered to be the minimum number of slabs
and cells per slab to describe the essential foam physics. Gap
sizes were slightly randomized, and the same randomization
was used for all standard foam runs. Here the size for the ith
gap is given by

dgap,i = d̄gap × δgap,i, (1)

where δgap = 1 ± ε where ε is a random number of magnitude
|ε| ≤ 0.7.

Changing the randomization was found to affect macro pa-
rameters by only 2-3%. Foam average density was adjusted by
changing the relative thickness of the slabs and gaps. Our stan-
dard foams and foils were 10µm in total thickness.

For the results in sections four through six we varied the av-
erage foam density from 15% to fully liquid foils. This was
achieved by scaling the liquid slab sizes and inversely scaling
the gaps, while holding the total foam thickness constant. Even
though average foam densities as low as 1% are constructed in
the lab, 10−15% minimum density is more common, especially
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for target physics. The foam density is defined as

ρfoam =
ρliquid

1 + dgap/dliquid
, (2)

where dgap and dliquid are the average thickness of the slabs of
liquid material in the initial foam and the gas-filled gaps be-
tween them. We normally quote fractional liquid densities:

(ρfoam/ρliquid) =
1

1 + dgap/dliquid
. (3)

The pulse length was varied from 0.075ns to 4.0ns, and the
energy deposition varied from 10kJ/g to 30kJ/g. This spans pa-
rameter ranges of interest for upcoming ion beam experiments
at NDCX II which will be ∼ 20kJ/g deposition in ∼ 1ns.

Peak parameters, i.e. the temperature or pressure of the foam,
were calculated as a mass weighted mean of the center third of
the Lagrangian cells. For calculating the homogenization of a
foam we use three methods: first, a volume weighted average
density to calculate the rms deviance of the density from the
mean, normalized to the mean, over the center third of the La-
grangian cells. This gives us a measure that is high when the
foam has large inhomogeneities, such as when it is initially par-
titioned into liquid slabs, and low when the foam slabs have col-
lided and homogenized. We calculate a homogenization time
from this measure by finding the mean and standard deviation
of several time points at the end of the run, and then defining the
homogenization time as the time at which the homogenization
level is within two standard deviations of the final value.

In simulations where the homogenization time is small com-
pared to the total length of the simulation a linear trend in this
value of the homogenization is observed at the tail of the ex-
periment due to macro-rarefaction waves, where here the rar-
efaction wave resulting from the expansion of the bulk mate-
rial is called the macro-rarefaction. To account for this a sec-
ond method of calculating the homogenization uses the result
of the first and subtracts this linear trend, recalculating the ho-
mogenization time. This method is only used when the macro-
rarefaction affects the homogenization calculations.

The code hydrodynamics was verified against an analytic so-
lution in an initialized temperature slab expansion, i.e. a double
rarefaction, and agreed to better than 0.5%. Convergence was
tested for typical cases by decreasing the time step by an or-
der of magnitude, resulting in no measurable change in macro
parameters, and by increasing the number of Lagrangian zones
by an order of magnitude, which results in a change of macro
parameters ∼ 4 − 8% for typical cases.

3. Time Scales in the Problem

3.1. Sound Speed

Relevant time scales in the problem will be inherently depen-
dent on the Van der Waals sound speed. Here,

c2
s ≡

∂p
∂ρ

∣∣∣∣
s

=
∂p
∂ρ

∣∣∣∣
T
−
∂p
∂T

∣∣∣∣
ρ

 ∂s
∂ρ

∣∣∣
T

∂s
∂T

∣∣∣
ρ

 , (4)

where for a Van der Waals fluid

p =
ρkT

ma(1 − bvdwρ)
− avdwρ

2, (5)

s =
k

ma
ln

(
ma

1 − bvdwρ

ρλ3

)
, λ =

√
h2

2πmakT
(6)

ε =
3kT
2ma

− avdwρ, (7)

where ma is the atomic mass. So we have, in the Van der Waals
EOS,

∂p
∂ρ

=
kT
ma

1
(1 − bvdw ρ)2 − 2avdw ρ, (8)

∂p
∂T

=
kρ

ma(1 − bvdw ρ)
, (9)

∂s
∂T

=
3
2

k
ma T

, (10)

∂s
∂ρ

= −
k

ma(1 − bvdw ρ)ρ
. (11)

avdw and bvdw are the Van der Waals coefficients:

avdw =
27bvdwTcrit

8cvdw
, (12)

bvdw =
1 +

√
1 − (32/27)(Tre f /Tcrit)

2ρsolid
, (13)

Since Tre f ≈ 1/40eV and Tcrit ≈ 1eV, it is a good approxima-
tion to let bvdw = 1/ρsolid.

Substituting these expressions into Equation 4 gives us that

c2
s =

5
3

T
cvdw

1
(1 − bvdw ρ)2 − 2avdw ρ. (14)

This is plotted versus T and ρ in Figure 4. These formulas apply
in the one-phase part of the ρ−T space. In the two-phase region,
the sound speed is obtained from values on the phase boundary
by the Maxwell construction [2].

The speed of sound as the foams are heated will thus depend
on the time evolution of the temperature and density. We can
estimate the time dependence of the temperature by taking the
beam power per unit of mass,

P =
3
2

Edep

tpulse

1 − 4(t − tpulse/2)2

t2
pulse

 , −tpulse

2
≤ t ≤

tpulse

2
(15)

where Edep is the total energy deposition per unit mass and tpulse
is the pulse length, and integrating over time while dividing by
the specific heat:

T ≈
∫

Pdt
dE
dT

∣∣∣
ρ

,
dE
dT

∣∣∣∣
ρ

=
3k

2ma
(16)

T ≈
Edepma

k

( t
tpulse

)2

−
1
3

(
t

tpulse

)3 + T0. (17)
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In[57]:= Clear@Tcrit, Tref, ec, ma, rhos, avdw, bvdw, cvdw, csD;
Tcrit = 1.0; Tref = 0.025; ec = 1.602 * 10^-19; ma = 4.482 * 10^-23; rhos = 2.7;

cvdw = ma ê ec;
bvdw = H0.5 ê rhosL * H1 + Sqrt@1 - H32 ê 27L * HTref ê TcritLDL;
avdw = H27 * bvdw * Tcrit * ecL ê H8 * maL;
cs@T_, rho_D = H5 ê 3L * HT ê cvdwL * H1 ê H1 - bvdw * rhoL^2L - 2 * avdw * rho;

Plot3D@cs@T, rhoD, 8T, 0, 3<, 8rho, 0., 2.7<D;
ContourPlot@cs@E^T, E^rhoD, 8rho, -3, Log@2.7D<, 8T, -1, 1<,
ContourShading Ø 8LightGray, LightGray, White, White, White, White,

White, White, White, White, White, White, White<, ContourLines Ø True,

Contours Ø 8-2500, 0, 2500, 5000, 7500, 10 000, 12 500, 15 000, 17 500, 20 000, 22 500, 25 000<,
ContourStyle Ø Black,

FrameLabel Ø 8"logHrL Hgê\!\H\*SuperscriptBox@\"cm\", \"3\"D\LL", "logHTL HeVL"<D

Out[63]=
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Figure 4: Contour plot of c2
s . Contours are spaced at 2.5km/s increments. The

shaded region corresponds to where c2
s < 0 in the Van der Waals sound speed

without Maxwell construction.

3.2. Definitions

We have identified five relevant time scales in the problem:
tmicro, tcollision, thomog, tmacro, and tpulse. The micro-rarefaction
time, or tmicro, is the time at which rarefaction waves in the
slabs of the foam propagate to the centers of the slabs. The
slab collision time, or tcollision, is the time at which the slabs col-
lide. The homogenization time, or thomog, is the time at which
the foam has homogenized. The macro-rarefaction time, tmacro,
is simply when the rarefaction waves in the bulk material have
propagated to the center of the foam. Finally, tpulse is the end of
the pulse.

In the parameter space examined in this study tmicro is ob-
served to always be the shortest of the time scales. In a shorter
pulse regime this timescale would be more interesting.

We can estimate some of the time scales. The micro rarefac-
tion time is of course the time necessary for a rarefaction wave
to propagate to the middle of a single liquid slab:

dliquid

2
=

∫ tmicro

0
cs(t)dt (18)

Since tpulse >> tmicro we observe that the temperature, Equa-
tion 17, is approximately constant over this time scale.

We can use a perfect gas approximation to estimate the time
for the rarefaction wave to propagate to the center of the slabs
by:

dliquid

2
≈ cs0

t2
micro

tpulse
, (19)

tmicro ≈

√
dliquid tpulse

2cs0
. (20)

Here cs0 is the sound speed at the end of the pulse, assuming
no hydro motion. If the time for the slabs to collide is also

small compared to the energy deposition timescale (tpulse) we
can extend this:

tcollision ≈
tmicro

3
dgap

dliquid
, (21)

where in an ideal gas EOS approximation the micro-rarefaction
waves have an expansion rate of 3cs.

We can also make some estimates of the macroscopic rar-
efaction time, depending on how tmacro compares to tpulse:

tmacro ≈
dmacro

2cs
(tmacro >> tpulse), (22)

where dmacro is the total width of the foam. In the other limit:

tmacro ≈

√
dmacro tpulse

2 cs
(tmacro << tpulse). (23)

Here cs is the sound speed of the homogenized foam as a Van
der Waals fluid at the average density and temperature of the
foam. When tpulse ∼ tmacro such analytic approximations be-
come complicated, since energy deposition occurs over several
of these time scales relevant to stages of foam expansion and
homogenization, and the continued heating affects the physics.

These simplified, analytic time scales are presented for order
of magnitude estimates. The subsequent results for time scale
comparisons are numeric.

4. Comparing Foams to Foils

4.1. Peak Temperature
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Figure 5: Central temperature vs time, 30% liquid density foam heated by a
0.5ns pulse with various energy depositions.

In Figure 5 we show plots of the central temperature in 30%
initial liquid density foams heated by a 0.5 ns pulse for five
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different energy depositions. In an idealized model, peak tem-
peratures will occur at the end of the pulse, when all of the pulse
energy has been deposited but before the foam expands. In re-
ality a macro rarefaction wave propagates into the foam during
energy deposition and can cool the center during energy depo-
sition. Thus, if the macro rarefaction reaches the center before
the end of the pulse the peak central temperature can occur be-
fore all energy deposition has occurred.
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pulses. The solid line connects the points for each energy deposition trend
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We show the peak temperature vs the initial density of the
foam in Figure 6, for 0.5ns pulses of various energy deposi-
tions. The solid line denotes where tpulse = tmacro. For higher
densities, to the right of the solid line, we find that increasing
the density increases the sound speed (see Figure 4) and thus
decreases tmacro, which reduces the amount of energy deposited
by the time the macro rarefaction wave propagates to the center
of the foam (tmacro < tpulse), which in turn reduces the maxi-
mum temperatures reached. For lower densities, to the left of
the solid line, we observe a slight increase to a peak tempera-
ture and then a long tail to lower temperatures. In these cases
tmacro > tpulse, so the macro expansion of the foam does not alter
the temperature in the center by the end of the pulse - when the
peak temperature occurs in these cases. We use a large section
of the foam, equal to one third of the volume, as the defined cen-
ter. As a result, the macro-rarefaction wave does have a small
effect on the central temperature when tpulse is only slightly less
than tmacro. This accounts for the shift between the observed
peaks in Figure 6.

For the low density tail of the curves we discover that as the
slabs of liquid material in the foam expand into the gaps of the
foam the material cools, and this is sufficient cooling to account
for the trend in Figure 4.

We also observe a third effect during the foam heating pro-
cess. When the slabs of liquid material expand into the gaps
they collide with adjacent slabs. This compression can create

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4

F
oa

m
 D

en
si

ty
 w

ith
 H

ig
he

st
 P

ea
k 

C
en

tr
al

 T
em

pe
ra

tu
re

 (
%

 s
ol

id
)

Pulse Length (ns)

Figure 7: The foam density with the highest peak temperature vs pulse length,
15 kJ/g energy deposition.

a momentary jump in the observed temperature. This effect is
more prominent in lower density foams, since we use the same
number of slabs for each foam a slab in a lower density foam
has more space to accelerate before colliding with another slab.
In special cases where tcollision is comparable to tpulse this effect
can create maximum central temperatures.

In Figure 7 we plot the densities at which the peak tempera-
ture occurs for various pulse lengths, all with one value for the
energy deposition. We see that at lower pulse lengths the peak
temperature occurs in a higher density foam. This is because
tmacro decreases as the density increases, and so for lower tpulse
we have that tpulse = tmacro at a higher density. Likewise, longer
pulses experience a peak temperature for lower densities.

4.2. Peak Pressure

We similarly calculate the peak pressure observed in the
foam center and examine the parameter dependence. Figures
8 and 9 show this for varying energy depositions in 0.5ns and
1.5ns pulses. The solid lines connect the points on each con-
stant energy deposition trend for which tpulse = tmacro. At higher
foam densities in Figures 8 and 9 we can see sharp increases in
the peak pressure. At higher densities the peak pressure mea-
sured occurs before the initial slabs of the foam expand and
homogenize. Since the densities are close to ρliquid at these con-
ditions the Van der Waals equation of state pressure (given in
Eq. 5) diverges since bvdw ≈ 1/ρliquid.

Unlike in the previous section we see a maximum in this pa-
rameter, i.e. the pressure, at densities which do not correspond
to tpulse = tmacro. This is especially clear in the longer pulse case,
Figure 9. We thus observe that maximizing the pressure for
given pulse parameters in this regime requires a higher density
foam than if the temperature is maximized. This is entirely the
result of the density dependence of the Van der Waals pressure.
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Figure 10: Material gas fraction vs time, 3.0ns pulse with 15 kJ/g energy depo-
sition. The foam is 30% liquid initial density.

4.3. Phase Evolution

Another interesting quantity to observe as we compare foams
to foils is the phase evolution of the material as it is heated and
expands. In particular we calculate the gas fraction for all of
the simulated material versus time. In the two-phase region the
gas fraction is calculated by extrapolating between the liquid
and gas boundaries. Figures 10 and 11 show the gas fraction
for both 30% foams and liquid foils for 3.0ns pulses of 15kJ/g
and 30kJ/g energy deposition. In the lower energy case, Figure
10, the foam almost entirely vaporizes during the pulse and then
partially condenses, approaching an asymptotic value of the gas
fraction between 0.5 and 0.6. This is because the material is
heated above the two phase region and then the material cools
along adiabats into the two phase region. We observe several
time steps during energy deposition where the material tracks
the two-phase boundary from initial cold liquid conditions, un-
til the material is mostly homogenized at around 1 g/cc, 1.4−1.6
eV and then cools along adiabats to slighly below the two-phase
boundary. The low energy liquid foil, on the other hand, heats
and expands through the two phase region, remaining mostly
liquid during the pulse and afterwards asymptotically approach-
ing approximately 0.5 gas fraction.

In the higher energy deposition case, Figure 11, we observe
both the foam and the foil completely vaporizing during the
pulse, and then beginning to condense later as the material cools
along adiabats into the two phase region. The foam, however,
vaporizes faster than the foil and condenses slower. These two
behaviors are qualitatively similar to most of the simulations
run. In some cases we also observe neither foam nor foil signif-
icantly vaporizing during the pulse, similar to the behavior of
the foil in Figure 10.

The cause of differing phase evolution behavior between the
foam and foil in these cases results from the initial structure of
the foam. As the foam is heated the material quickly expands
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Figure 11: Material gas fraction vs time, 3.0ns pulse with 30 kJ/g energy depo-
sition. The foam is 30% liquid initial density.

into the gap regions. In a 30% foam this results in a decrease in
the density by a factor of 3. This tends to cause more and rapid
vaporization. In the higher energy deposition case, Figure 11,
the foam condenses at a slower rate than a foil heated by the
same pulse since the hydrodynamic expansion is slower. This
suggests that foams more easily achieve complete vaporization:
in the low energy case the foam is vaporized while the foil only
reaches a gas fraction of 50%. In the higher energy case, where
both types of target vaporize, the foam reaches xgas = 1 quicker
and remains completely vaporized longer than the foil.
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Figure 12: Asymptotic expansion velocity vs initial density, 0.5ns pulses of
various energy depositions.
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Figure 13: Lagrangian tracks near expansion edge, 45% foam heated by a 1.5ns
15 kJ/g pulse. Foam zones are represented by solid lines, while single slab
zones are dashed lines. Here we clearly see that the expansion is identical in
both cases.

5. Expansion Velocity

In Figure 12 the asymptotic expansion velocity at the edge of
the simulated material is plotted versus the initial foam density,
up to liquid foils. Lagrangian zones where the gradient scale is
larger than the zone width are removed from these calculations
as numerically unreliable. This qualitative behavior is typical
of all pulse lengths. Here the expansion velocity increases very
slightly, linearly, up to approximately 60 − 70% initial density.
This behavior is characteristic of an edge expansion dominated
by material from the first slab of material only.

Figure 13 shows the Lagrangian tracks for several zones near
the edge of a 45% foam with a single outer slab simulation
overlaid, and we observe that these edge zones track exactly.
At higher densities the eventual macro expansion of the foam
becomes faster than this initial single wall expansion and be-
gins to increase the overall asymptotic velocity. This is shown
in an analogous plot, Figure 14, for a 90% foam driven by
the same pulse parameters compared against a single slab. We
can see that the macro expansion dominates the single slab ex-
pansion in this case. In Figure 12 this macro expansion de-
termines the asymptotic expansion velocity for foam densities
higher than ∼ 60 − 70%. The upper bound on the expansion
velocity for given pulse parameters is given by the case of an
instantaneously heated solid foil.

Tauschwitz et. al. observe an enhancement of the expan-
sion velocity due to shocks from slab collisions within the foam
propagating to the expansion front [12]. We similarly observe
these slab collision shocks. Although the total energy deposi-
tion is similar, in their simulations tpulse >> thomog. This re-
sults in expansion velocities approximately 1 order of magni-
tude lower than ours. Therefore in our simulations the shocks
do not reach the expansion front over time scales of interest.
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Figure 14: Lagrangian tracks near expansion edge, 90% foam heated by a
1.5ns 15 kJ/g pulse. Foam zones are represented by solid lines, while single
slab zones are dashed lines. Early in the expansion, between 0.5 and 1.0ns,
the macroscopic expansion causes the foam zones to accelerate outwards at a
greater rate than the single slab zones.

Additionally, the randomized nature of our foams reduce the
periodicity between successive shocks.

6. Foam Homogenization

In Section 2 we described methods for calculating the inho-
mogeneity in a foam target, which is calculated as

H =

√√
1
n

n∑
i=1

(
ρa − ρi

ρa

)2

, (24)

where n is the number of central zones that we use and ρa is a
volume weighted average density over those zones. The inho-
mogeneities are driven by the initial density distribution, as the
foam has constant initial temperature and the energy deposition
is volumetric.

This level of inhomogeneity is plotted versus time, as an ex-
ample, for five 30% foams heated by 0.5ns pulses of various en-
ergy deposition in Figure 15. The foams initially start out with
a high level of inhomogeneity, as we would expect, and rapidly
homogenize to a final ’plateau’, representing some amount of
persistent inhomogeneity characteristic of foams after homog-
enization in our simulations. In Figure 15 we can also see that
foams heated by higher levels of energy deposition homogenize
faster, as expected. For a very low beam intensity (10kJ/g) the
foam takes a very long time to homogenize.

We also compute a final level of homogenization, which is
defined as the level of inhomogeneity immediately after the de-
fined homogenization time. This is plotted versus the initial
foam density for various energy depositions of 0.5ns pulses in
Figure 16. A trend towards more homogenization in higher den-
sity foams is observed.
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various energy depositions.
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Figure 16: Final level of inhomogeneity versus initial foam density, 0.5ns
pulses.
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We also examine how the homogenization time depends on
the initial density, which is plotted in Figure 17. Shorter ho-
mogenization times are observed for higher density foams. The
process of foam homogenization can be thought of as a series
of rarefaction and compression waves propagating between ad-
jacent liquid and gap regions, asymptotically approaching the
final level of inhomogeneity with each iteration of the rarefac-
tion/compression process. In this model the speed at which ho-
mogenization will occur depends on the sound speed: there-
fore, higher sound speeds in higher density foams (see Figure
4) cause lower homogenization times in those foams.
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Figure 17: Homogenization time versus initial density, 0.5ns pulses.

Finally, we can examine the relation between the pulse length
and homogenization time, which is plotted in Figure 18. In
this parameter regime the homogenization time is similar to the
pulse length and roughly linearly dependent on the pulse length.

The absolute homogenization time will depend on the foam
modeling, specifically on the number of slabs. The order of
the homogenization time can be estimated by realizing that an
idealized homogenization process consists of the hydrodynamic
motion of the slabs into the gaps, or the collision time scale.

7. Conclusions

A study of various behaviors of foams heated by ion beam
energy deposition has been conducted, along with the devel-
opment of a characterization of time scales in the problem.
We find that, as the foam density is varied, the peak temper-
ature reached in a foam is highest for foam densities where the
macroscopic rarefaction wave reaches the center of the foam at
the end of the pulse length. At fixed tpulse and Edep with ρfoam
such that tmacro > tpulse decreasing the foam density further de-
creases the temperature due to a cooling effect when the foam
slabs expand into the gaps, which is greater for lower densi-
ties. Likewise, with fixed tpulse and Edep and ρfoam such that
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Figure 18: Homogenization time versus pulse length, 30% foams.

tmacro < tpulse the macroscopic expansion cools the foam cen-
ter before the energy deposition is complete, resulting in lower
peak temperatures. Additionally, as expected, peak foam tem-
peratures increase with increasing energy deposition at fixed
ρfoam, tpulse.

Studies of the peak pressure imply increased pressures for
higher energy depositions and shorter pulses. In very high den-
sity foams we observe peak pressures before homogenization,
since the near liquid density slabs are in a phase regime where
the Van der Waals equation of state gives unphysical pressures.
In the lower density foams a maximum is observed in the peak
pressure versus density. Because of the Van der Waals pressure
density dependence this occurs at a higher foam density than
the peak temperature does.

For fixed tpulse, Edep the expansion velocity is found to be
roughly constant for foam densities below a certain critical den-
sity. Below this density the single slab expansion on the edge of
the foam dominates the overall expansion. For higher densities
the bulk expansion dominates, resulting in higher velocities.

When studying the phase evolution we find that at some
NDCX-II relevant parameters foam targets vaporize completely
while solid targets do not at the same pulse parameters. Both
targets are observed to trend towards the same asymptotic gas
fraction. This suggests that foam targets are more easily com-
pletely vaporized for fixed tpulse, Edep.

We developed a method for evaluating the homogenization
of foams versus time, including the time it takes foams to ho-
mogenize and levels of persistent inhomogeneity in the foams.
We find that this level of persistent inhomogeneity and the time
for homogenization both decrease with increasing foam den-
sity. The time for homogenization is roughly proportional to
the pulse length.

These studies focus on the idealized dynamics of foam tar-
gets, and thus have been conducted in 1-D with approximations
such as uniform heating and a single total thickness of the foam.
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In a real foam, phenomena such as gap collapses are highly de-
pendent on dimensionality and may result in deviations from
the one dimensional case. It is our expectation, however, that
the qualitative behavior and dynamics of the real foams when
parameterized by the appropriate analogous three dimensional
time scales will show similarities to the behaviors found in 1D
foams. Additionally, the Van der Waals with Maxwell construc-
tion does not include information on the dynamics of droplet
formation. This theoretical and computational study of fun-
damental foam dynamics will be applied to upcoming experi-
ments at LBNL and further theory work, including higher di-
mension simulations and more detailed equations of state.
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