ANGLE-RESOLVED PHOTOEMISSION STUDIES OF Ag, Au, AND Pt

PDF Version Also Available for Download.

Description

An important question regarding the technique of angle-resolved photoemission (ARP) is the extent to which it can be used to determine experimental valence-band dispersion relations E{sub i}({rvec k}) for single crystalline solids. In the case of the 3d and 4d transition metals, studies of copper, nickel, palladium, and silver, show that a model based on the assumption of direct interband transitions (direct-transition model) may be used, in conjunction with an appropriate final-state dispersion relation E{sub f}({rvec k}), to elucidate E{sub i}({rvec k}) for these materials along several high symmetry lines (primarily {Gamma}{Lambda}L) in k-space. To answer this question more generally, ... continued below

Physical Description

0.625

Creation Information

Davis, R.F.; Mills, K.A.; Thornton, G.; Kevan, S.D. & Shirley, D.A. June 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An important question regarding the technique of angle-resolved photoemission (ARP) is the extent to which it can be used to determine experimental valence-band dispersion relations E{sub i}({rvec k}) for single crystalline solids. In the case of the 3d and 4d transition metals, studies of copper, nickel, palladium, and silver, show that a model based on the assumption of direct interband transitions (direct-transition model) may be used, in conjunction with an appropriate final-state dispersion relation E{sub f}({rvec k}), to elucidate E{sub i}({rvec k}) for these materials along several high symmetry lines (primarily {Gamma}{Lambda}L) in k-space. To answer this question more generally, we have undertaken an extensive study of the valence band structures of other transition metals along various k-space lines. To date, studies have been extended to the (111) faces of the 5d metals Pt and Au along with the Pt(100) ((5 x 20) surface structure) face, and the (110) and (100) faces of Ag. The experiments were all conducted at SSRL, using synchrotron radiation in the range 6 eV < h{nu} < 34 eV. The results of these studies, combined with our previous Ag(111) work at these energies, allow us to invoke important conclusions concerning the relationships between ARP data, E{sub i}({rvec k}) and E{sub f}({rvec k}) for these materials. Several are summarized. For each crystal face investigated, the direct-transition model, along with a simple quasi-free-electron E{sub f}({rvec k}), was sufficient to determine experimental E{sub i}({rvec k}) relations along the appropriate k-space line that were in general agreement with theoretical RAPW band structure calculations. Essentially, we required E{sub f}({rvec k}) to be of the form (h{sup 2}/2m*)|{rvec k} + {rvec G}|{sup 2} + V{sub o}, where {rvec G} is a reciprocal lattice vector, fitting this relation to the appropriate calculated bulk conduction band near the center of the line under investigation, with the inner potential V{sub o} and the reduced mass m* as free parameters. An additional shift of V{sub o} was necessary for Ag(110) and Pt(100) data, to obtain better agreement with theoretical bands. While generally excellent agreement between experimental and theoretical bands was found for Ag, as was the case for other 3d and 4d metals, substantial disagreement was observed for Pt and Au in parts of the Brillouin zone. This is probably an indication that further theoretical work is needed for these more complicated elements. The agreement in Ag is illustrated by Fig. 1, where experimental and theoretical bands are compared for all three high-symmetry directions. The determinations of E{sub i}({rvec k}) for the {Lambda} directions were relatively simple because peaks in the ARP spectra of (111) faces were essentially all attributable to primary direct transition. However, the {Sigma}, {Sigma}{prime}, and {Delta} directions were complicated by secondary emission peaks and dispersionless density-of-states (DOS) features in the spectra of the (100) and (110) faces. Peak intensity resonances associated with the bulk conduction band structure near {Lambda} were observed for each crystal face, and these simplified the assignment of peaks in the ARP spectra. The relationship between these resonances, which appear to be rather general phenomena, and E{sub f}({rvec k}), will be discussed. In summary, it is clear from these and other studies that the ARP technique, in conjunction with the direct-transition model, is generally applicable to valence band mapping in single crystals, provided that a suitable final-state dispersion relation can be calculated. However, complications like those observed in the ARP spectra of Ag, Pt, and Au may make the determination of E{sub i}({rvec k}) relations considerably more difficult for more complicated systems.

Physical Description

0.625

Source

  • VI International Conference on Vacuum Ultraviolet Radiation Physics, Charlottesville, VA, June 2-6, 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-11247
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 993843
  • Archival Resource Key: ark:/67531/metadc1013891

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1980

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 5:59 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Davis, R.F.; Mills, K.A.; Thornton, G.; Kevan, S.D. & Shirley, D.A. ANGLE-RESOLVED PHOTOEMISSION STUDIES OF Ag, Au, AND Pt, article, June 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1013891/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.