Exascale for Energy: The Role of Exascale Computing in Energy Security

PDF Version Also Available for Download.

Description

How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation, ... continued below

Physical Description

22

Creation Information

Authors, Various July 15, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation, rather than relying on trial and error. The predictive understanding of complex engineered systems made possible by computational modeling will also reduce the construction and operations costs, optimize performance, and improve safety. Exascale computing will make possible fundamentally new approaches to quantifying the uncertainty of safety and performance engineering. This report discusses potential contributions of exa-scale modeling in four areas of energy production and distribution: nuclear power, combustion, the electrical grid, and renewable sources of energy, which include hydrogen fuel, bioenergy conversion, photovoltaic solar energy, and wind turbines. Examples of current research are taken from projects funded by the U.S. Department of Energy (DOE) Office of Science at universities and national laboratories, with a special focus on research conducted at Lawrence Berkeley National Laboratory.

Physical Description

22

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-3940E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/988989 | External Link
  • Office of Scientific & Technical Information Report Number: 988989
  • Archival Resource Key: ark:/67531/metadc1013873

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 15, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 17, 2017, 8:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Authors, Various. Exascale for Energy: The Role of Exascale Computing in Energy Security, report, July 15, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1013873/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.