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Abstract 
Hydrogeological systems are often characterized by imprecise, vague, inconsistent, 
incomplete, or subjective information, which may limit the application of conventional 
stochastic methods in predicting hydrogeologic conditions and associated uncertainty. 
Instead, predictions and uncertainty analysis can be made using uncertain input 
parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of 
this paper is to present the theory for, and a case study as an application of, the fuzzy-
probabilistic approach, combining probability and possibility theory for simulating soil 
water balance and assessing associated uncertainty in the components of a simple water-
balance equation. The application of this approach is demonstrated using calculations 
with the RAMAS Risk Calc code, to assess the propagation of uncertainty in calculating 
potential evapotranspiration, actual evapotranspiration, and infiltration—in a case study 
at the Hanford site, Washington, USA. Propagation of uncertainty into the results of 
water-balance calculations was evaluated by changing the types of models of uncertainty 
incorporated into various input parameters. The results of these fuzzy-probabilistic 
calculations are compared to the conventional Monte Carlo simulation approach and 
estimates from field observations at the Hanford site.  
 
Keywords: Water balance, uncertainty, fuzzy-probabilistic approach, fuzzy calculations. 
 

1. Introduction 
Hydrogeological predictions are subject to numerous uncertainties, including the 
uncertainty involved in developing conceptual, mathematical, and numerical models, and 
determining their parameters. The uncertainty quantification of hydrological processes 
has recently become a subject of intense research in stochastic simulation (Meyer et al. 
1997; Neuman and Wierenga 2003; Neuman 2003; Winter 2004; Orr and Meystel 2005; 
Wagener and Gupta 2005; Ye et al. 2004; 2005). Stochastic simulation of 
hydrogeological systems is usually based on the assumption that spatial and temporal 
variations in input and output hydrogeological parameters are random, and described by 
known probability distributions—so that their uncertainties are also quantified using 
probability distributions. However, some hydrogeological parameters are characterized 
by imprecise, vague, inconsistent, incomplete, or subjective information, insufficient for 
constructing reliable probability distributions and limiting the application of conventional 
stochastic methods.  
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Still, during the last 30 to 40 years, several alternative approaches for modeling complex 
systems with uncertain parameters have been developed, based on fuzzy set theory, 
possibility theory (Zadeh 1978; 1986; Dubois and Prade 1994; Yager and Kelman 1996), 
rough sets, imprecise probability, belief functions, the Dempster-Shafer theory of 
evidence (Dempster 1967; Shafer 1976; Smets 1990; Zadeh 1986), and fuzzy random 
variables. Some of these approaches include the blending of interval or fuzzy-interval 
analysis with probabilistic methods (Ferson and Ginzburg 1995; Ferson 2002; Ferson et 
al. 2003). Applying methods of fuzzy calculus and fuzzy-probabilistic (hybrid) modeling 
to hydrological problems is a relatively new direction for hydrological research, risk 
assessment, and sustainable water resources management under uncertainty (Chang 
2005).  The motivation of this paper is to demonstrate the potential of the application of 
this approach for water-balance calculations, given the general inadequacy of 
meteorological information and field data collected at regional scale. 
 
The objective of this paper is to present the theory and application (through a case study) 
of the fuzzy-probabilistic approach for assessing the uncertainty involved in 
hydrogeological modeling, based on the integration of probability and possibility 
theories. The paper will present the main concepts involved in combining statistical and 
fuzzy-calculus analyses. A case study, using the data from the Hanford, Washington, 
USA, site, is developed to evaluate the uncertainty involved in assessing soil water 
balance—potential evapotranspiration, evapotranspiration, and infiltration. Since the 
water-balance calculations are conducted in several steps, the author will also analyze 
how uncertainty could be propagated across multiple submodels of the water-balance 
model.  
 
The structure of the paper is as follows: In Section 2, the general approaches involved in 
a hydrogeological uncertainty analysis, as well as the concepts of fuzzy modeling and the 
integration of stochastic and fuzzy modeling approaches, will be discussed. In Section 3, 
the notion of fuzziness within a hydrogeological system will be introduced, including the 
description of (1) a general form of the water-balance equation, (2) the Penman equation 
for evaluating potential evapotranspiration (Eo), (3) a modified Budyko’s model for 
evaluating evapotranspiration (ET), and (4) an approach for evaluating net infiltration 
(i.e., drainage below the bottom of the evapotranspiration zone within the soil profile). In 
Section 4, input parameters and calculation results for the Hanford site will be presented. 
In Section 5, conclusions will be provided. 
 
 

2. Types of and Approaches to Uncertainty Analysis 

2.1. Types of Uncertainties 
The uncertainties involved in hydrogeological predictions can generally be 
categorized into two groups—aleatory and epistemic uncertainties. Aleatory 
uncertainty arises because of the natural, inherent variability of subsurface properties 
or input and/or model parameters, such as meteorological parameters or subsurface 
heterogeneity. If a sufficient amount of information is available, stochastic 
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simulations with parameters generated by probability density functions (PDFs) can be 
used to assess aleatory uncertainty. This type of uncertainty is also referred to as 
irreducible, stochastic, or random uncertainty.  
 
Epistemic uncertainty arises because of a lack of knowledge about processes and/or 
models, insufficient experimental data to characterize subsurface flow and transport 
processes, or poor understanding of coupled-physics phenomena and events. One of 
the reasons for epistemic uncertainty is the lack of reliable experimental data, which 
can be ambiguous, conflicting, insufficient, or not in agreement with existing 
conceptual models used for predictions and quantifying uncertainty. This type of 
uncertainty is also referred to as subjective or reducible uncertainty, because it can be 
reduced as new information becomes available, and by using various models for 
uncertainty evaluation. Epistemic uncertainty decreases as knowledge about a system 
or model (and their parameters) increases.  
 
Note that uncertainty (both aleatory and epistemic) caused by a lack of knowledge 
regarding either the model or subsurface properties is different from error, which 
may arise from a human mistake or faulty sensor. Moreover, positive and negative 
errors may cancel each other out, while uncertainty is always additive (just as 
variances are always positive). Generally, variability, imprecise measurements, and 
errors are distinct features of uncertainty; however, they are very difficult, if not 
impossible, to distinguish (Ferson and Ginzburg 1996). In this paper, the author will 
consider the effect of aleatory uncertainty on water-balance calculations by assigning 
the extent of input parameters, and the effect of epistemic uncertainty is considered 
by assigning different models for input parameters, using probability distributions and 
fuzzy numbers. 
 

2.2. Approaches to Assessing Uncertainty 
One classical approach to assessing uncertainty is based on Monte Carlo simulations (i.e., 
random sampling) of PDFs describing system parameters. Other approaches, used for 
assessing uncertainty in the event of insufficient information for constructing reliable 
PDFs, are based on the specification of uncertain parameters using probability boxes (p-
box), interval numbers, and fuzzy numbers, which are schematically shown in Figure 1. 
For example, an uncertain number expressed with a probability distribution, as shown in 
Figure 1a, can be represented as an interval number, as shown in Figure 1b. The 
application of interval analysis for modeling is based on the assumption that model inputs 
are within their realistic (usually, the largest) intervals. Interval analysis is often used for 
assessing extreme values and ranges of uncertainty—for example, worst-case scenarios—
when the input information is poor and cannot be used to develop reliable PDFs.  
 
The probability box (p-box) approach combines both interval and probability methods, by 
imposing bounds on a cumulative distribution function (CDF) used to express different 
sources of uncertainty. This method provides an envelope of distribution functions, which 
bounds all possible dependencies (Ferson 2002; Ferson et al. 2003). Figure 1c illustrates 
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a p-box [
_

,F F
−

] representation of a random variable X, for which the exact distribution F 

is unknown, except that it is located within the p-box. In Figure 1c, the right curve F
−

 (x) 

is a lower bound on an imprecisely known probability, showing that the random variable 

X is smaller than x, and the left curve F
−

 (x) is an upper bound on probability and a lower 

bound on the x quantity. With better empirical information, when input information is 
abundant, the p-box bounds are narrower, and the results of predictions come close to 
those from traditional probability theory.  
 
Using probability for evaluating uncertainty is a way of predicting an object’s (or 
event’s) occurrence. In other words, probability theory can be used to determine the 
likelihood of (and the uncertainty over) an event’s occurrence. Because probability is the 
theory of random events, it is not capable of capturing uncertainty resulting from 
vagueness of input parameters and system behavior. Possibility theory, on the other hand, 
using fuzzy numbers, is concerned with event ambiguity, or the extent to which an event 
occurs, given incomplete information expressed in terms of fuzzy numbers. Fuzzy 
modeling theory or possibility theory, introduced by Zadeh (1978), can be used for 
modeling of uncertainty in complex systems—systems that contain imprecise, vague, 
inconsistent, incomplete, or subjective information.  
 
A fuzzy set is defined as a generalized set to which objects can belong with various 
degrees of membership over the interval [0,1]. A fuzzy number can be defined as a family 
of intervals representing an estimate of an uncertain number. Based on this definition of a 
fuzzy number, fuzzy arithmetic can be considered a generalization of the interval analysis 
for treating uncertainty (Dubois and Prade 1981; Ferson 2002).  Because fuzzy arithmetic 
theory is generally based on using less stringent axioms than probability theory, it can be 
applied to a wider spectrum of uncertainty problems. For instance, it may be appropriate 
for handling nonstatistical uncertainty, e.g., resulting from inaccurate measurements or 
subjective evaluation, including the consensus of opinions of observers.  
 
The fuzzy-probabilistic approach (which is also called a hybrid approach) is used 
when some quantities can be represented by fuzzy numbers and other quantities by 
probability distributions and interval numbers (Kaufmann and Gupta 1985; Ferson 
2002; Guyonnet et al. 2003; Cooper et al. 2006). This approach is presented in 
Section 2.3.2.  
 

2.3. Fuzzy System and Fuzzy-Probabilistic Approach 

2.3.1. Fuzziness and a Fuzzy Number 
For the past 30 to 40 years, the theory of fuzziness has successfully been applied to 
describe such systems as complex, large-scale engineering systems, social systems, 
economic systems, management systems, medical diagnostic processes, human 
perception, and others. The term fuzziness is, in general, used to describe objects or 
processes that cannot be given precise definition or precisely measured. Fuzziness 
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identifies a class (set) of objects with nonsharp (i.e., fuzzy) boundaries, which may result 
from imprecision in the meaning of a concept or measurements used to characterize and 
model the system. Fuzzy processes can be defined as vague processes with some inherent 
uncertainty in their description, so that a fuzzy system may not have precise boundaries 
or parameters. Fuzzification implies replacing a set of crisp (i.e., precise) numbers with a 
set of fuzzy numbers, using fuzzy membership functions based on the results of 
measurements and perception-based information (Zadeh 1978).  
 
The central idea of fuzzy theory and fuzzy arithmetics is the notion of a fuzzy number. A 
fuzzy number is a quantity whose value is imprecise, rather than exact (as is the case with 
“ordinary” single-valued numbers). Any fuzzy number can be thought of as a function 
whose domain is a specified set of real numbers. Each numerical value in the domain is 
assigned a specific “grade of membership,” with 0 representing the smallest possible 
grade (full nonmembership), and 1 the largest possible grade (full membership). The 
grade of membership is also called the degree of possibility. In other words, a fuzzy 
number is a fuzzy subset of the domain of real numbers, which is an alternative approach 
to expressing the uncertainty. A fuzzy variable has a fuzzy membership function (FMF), 
which is defined on a universe of discourse that ranges over a set of possible values for 
the fuzzy variables. Several types of membership functions are commonly used for fuzzy-
systems modeling: triangular, trapezoidal, Gaussian, sigmoid, bell-curve, Pi-, S-, and Z-
shaped curves. As an illustration, Figure 1d shows a triangular fuzzy membership 
function given by 
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where a=6, b=10, and c=14, 
 
a trapezoidal fuzzy membership function given by  
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where a=6, b=9, c=11, and d=14, 
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and a Guassian fuzzy membership function given by  
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where c=10, and σ2=1. 
 
These membership functions are convex, starting at the grade of zero, monotonically 
increasing to a maximum of 1, and then monotonically declining to zero as the x-
domain increases. (Note that an ordinary set is a special case of a fuzzy set, with the 
degree of membership either 0 or 1.)  
 
One of the most important attributes of fuzzy numbers is the notion of an α-cut, 
illustrated in Figure 1d. The range of the fuzzy variable at an α-cut of near 0 may 
represent a pessimistically wide uncertainty of the variable, and the range of the fuzzy 
variable at an α-cut value of near 1 represents the optimistically narrowest uncertainty of 
the variable. The α-cut interval is a crisp interval, limited by a pair of real numbers. In 
this case, FMFs are themselves precise/deterministic, although they are used to represent 
uncertain parameters. (This type of fuzzy numbers is called a Type-1 fuzzy number.) In 
this paper, the following characteristic parameters are used to express the uncertainties of 
calculations using fuzzy numbers and p-boxes: mean, core, iqrange, and breadth of 
uncertainty. The definitions of these parameters (given as intervals) are described in 
Table 1. 
 
Arithmetic operations on fuzzy numbers can be based on the idea of using the interval 
calculus, using several α-cuts of the fuzzy numbers, and then constructing corresponding 
output fuzzy numbers, as illustrated in Figures 2a and 2b. An interval is defined as a 
bounded subset of real numbers  
 

X = [a, b] is an interval ⇐⇒ (X = {x ∈ R| a ≤ x ≤ b}).   (4) 
 
Arithmetic operations on intervals always contain every possible outcomes of the 
corresponding arithmetic operation on real numbers, so that the result of X ⋄ Y is an 
interval, Z, given by 
 

X ⋄ Y = Z = {z = x ⋄ y | x ∈ X, y ∈ Y } ,      (5) 
  

where ⋄ denotes one of the operations {+,−,×, /}, which can be expressed in terms of 
ordinary arithmetic on the interval endpoints: 
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with the condition for division that Y∉0 , and that the underbar expresses the smallest 
value and the overbar expresses the largest value of the interval.  
 
Fuzzy arithmetic is generally applicable for evaluating all kinds of uncertainty, regardless 
of its source or nature. It is based on the application of both hard data and the subjective 
(perception-based) interpretation of data. Fuzzy arithmetic approach provides a 
distribution characterizing the results of all possible magnitudes, rather than just 
specifying upper or lower bounds. Fuzzy methods can be combined with calculations 
with PDFs, interval numbers, or p-boxes, using the RAMAS Risk Calc code (Ferson 
2002), described in Section 2.3.2. 
 
When fuzzy measures serve as upper bounds on probability measures (Figure 2a), one 
could expect to obtain a conservative (bounding) prediction of system behavior 
(Figure 2b). Although calculations using fuzzy arithmetic may enclose the true 
answer, the results may overestimate uncertainty. For example, the application of 
fuzzy arithmetic is not optimal (i.e., it overestimates uncertainty) when sufficient data 
are available to construct reliable PDFs needed to perform a Monte Carlo analysis. 
Moreover, fuzzy arithmetic may lead to erroneous results if the α-levels used for the 
fuzzy calculus are not comparable for different variables. Fuzzy arithmetic does not 
yield conservative results when the dependencies among variables are unknown. 
Also, fuzzy arithmetic cannot make use of knowledge about correlations among input 
variables to reduce bounds on estimates. As with using interval analysis and 
probability methods, repeated variables may make calculations cumbersome (Ferson 
2002).  
 

2.3.2. Fuzzy-Probabilistic Calculations using RAMAS Risk Calc Code  
A pair (F, P), or a combination of a probability distribution, P, with a fuzzy number, F, is 
called a “hybrid number,” and can be obtained by convolving the respective P and F 
functions, according to fuzzy arithmetic and probability theory rules (Ferson 2002). 
Hybrid numbers can be represented by nesting the interval numbers with uncertain 
bounds, which are defined using probability distributions at several discrete α-levels of 
fuzzy uncertainty (Figure 2c). Arithmetic operations using fuzzy numbers and probability 
distributions include applying fuzzy-interval calculus to a selected number (called hybrid 
levels) of the fuzzy-interval α-levels. Figure 2d shows an example of hybrid 
multiplication, using numbers given by PDFs and fuzzy numbers for four α-levels. 
Calculations are performed using the RAMAS Risk Calc software (Ferson 2002), which 
supports calculations using scalars, probability bounds, fuzzy arithmetic, and interval 
analysis. This code automatically carries all the uncertainties through calculations, using 
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standard arithmetic operations, mathematical functions, comparison operations, basic 
logical connectives, and string manipulation.  
 

3. Fuzzy Water-Balance Equations 

3.1. Fuzziness of Hydrogeologic Systems and Fuzzy-
Probabilistic Water Balance Equation 
Fuzziness in the description and prediction of hydrogeologic systems arises from the 
potential deficiency in assessing both epistemic and aleatory uncertainties. Fuzziness in 
epistemic uncertainty arises from vagueness in selecting adequate conceptual, 
mathematical, and numerical models, as well as types of input parameters for 
hydrogeological modeling. In hydrogeology, fuzziness in aleatory uncertainty results 
from vagueness in assessing the hydrogeological parameters used to describe the flow-
field heterogeneity of subsurface fractured-porous media. For example, fuzziness arises 
from insufficient measurements needed to quantify the spatial and temporal randomness 
of hydrogeological parameters such as hydraulic conductivity, transmissivity, porosity, 
and moisture content. Vague, sparse, or insufficient data collection in individual wells or 
weather stations, insufficient observations for assigning parameters of models, multiple 
models describing subsurface water flow and chemical transport—all lead to fuzzy 
knowledge about the subsurface, causing fuzziness in describing the components of the 
water-balance equation.  

The general form of the fuzzy-probabilistic water-balance equation is the same as that for 
conventional water-balance calculations, which is given by 
   

P = ET + In + S + (Roff  – Ron)    (9) 
  

where P is total precipitation, including snowmelt, ET is evapotranspiration, S is the soil 
water change in storage, Roff is runoff, Ron is runon, and In is the water flux below the root 
zone (if In > 0, the flux is downward, which is the source of net infiltration, and if In<0, it 
is upward flow, which is the source of evapotranspiration). For fuzzy-probabilistic 
calculations, all terms of Equation (9) are to be assigned using probability distributions or 
fuzzy numbers. For example, if time-series data from meteorological stations are known 
and contain sufficient information to construct PDFs, precipitation and evapotranspiration 
can be assigned using PDFs. In the event of a deficit of data, fuzzy numbers are used.  
 
For first-order, long-term water-balance calculations within arid and semi-arid areas, we 
can reasonably assume that (a) soil water storage does not change (S=0), (b) lateral water 
motion within the shallow subsurface is negligible, (c) the terms of the surface-water 
runoff and runon for regional-scale calculations simply cancel each other out, and (d) ET 
is determined as a function of the aridity index, φ: ET=f(φ), where φ = Eo/P, which is the 
ratio of potential evapotranspiration, Eo, to precipitation, P (Arora 2002). Then, a 
simplified water balance equation can be given by 
 
    P= ET + I = f(φ) + I     (10)  
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The steps involved in evaluating net infiltration, using the input probability distributions 
and/or fuzzy parameters, are as follows: (1) calculate Eo from the Penman equation, (2) 
evaluate ET from a modified Budyko equation, given in Section 3.2, and (3) calculate net 
infiltration from Equation (10).  
 
 

3.2. Modified Budyko’s Equation for Evaluating Evapotranspiration  
 
Using the data from a number of catchments around the world, Budyko (1974) found that 
the empirical relationship between the ratio of ET/P and the aridity index could be 
described using: 
 
   ET/P = {φ tanh (1/φ) [1 − exp (-φ)]}0.5       (11) 
 
Equation (11) can also be given as a simple exponential expression:  

 
ET/P=a[1-exp(-bφ)]     (12) 

 
with coefficients a =0.9946 and b =1.1493. The correlation coefficient between the 
calculations using (11) and (12) is 0.999. Application of the modified Budyko’s equation, 
given by an exponential function (12) with the φ value in single term, will simplify 
calculations using the RAMAS Risk Calc code.  
 
Although the original Budyko’s model was developed to determine surface runoff, a 
Budyko-like approach can be used to assess an infiltration-runoff component of the water 
balance and the catchment-scale soil moisture capacity (Potter et al. 2005; 
Sankarasubramanian and Vogel 2003).  
 
The input parameters used in these calculations are given in Section 4.1. For the sake of 
simplicity of simulations, these input parameters are assumed to be independent 
variables.  

 

4. Input Parameters and Results of Calculations 

4.1. Input Parameters for the Hanford Site 

4.1.1. Site Description and Field Estimates of EO, ET and Infiltration 
The Hanford Site in Southeastern Washington State is the largest environmental 
cleanup site in the USA, comprising 1,450 square km (560 square miles) of semiarid 
desert. Located north of Richland, Washington, the Hanford Site is bordered on the 
east by the Columbia River and on the south by the Yakima River, which joins the 
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Columbia River near Richland, in the Pasco Basin. The Pasco Basin is one of the 
structural and topographic basins of the Columbia Plateau. The areal topography is 
gently rolling and covered with unconsolidated materials, which are sufficiently thick 
to mask the surface irregularities of the underlying material. Sedimentary material 
consisting of silts, sands, and gravel of the Hanford Formation and Ringold 
Formation cover thick basalt flows. Partially saturated sediments have a high 
absorption capacity (Neitzel 1996). Areas adjacent to the Hanford Site are primarily 
agricultural lands.  
 
Meteorological information (temperature and precipitation time-series data) used to 
assign model input parameters were taken from the Hanford Meteorological Station 
(HMS--see http://hms.pnl.gov/), located at the center of the Hanford Site just outside the 
northeast corner of the 200 West Area. Wind data were taken from the DOE report (DOE 
1996). 
At the Hanford Site, the ET is estimated to be 160 mm/yr, and the groundwater 
recharge (or infiltration) ranges from <0.1 mm/yr to ~100 mm/yr (Figure 3). The 
natural average recharge rate at the 200 Area is 1 mm/yr, through fine-textured soil 
with deep-rooted vegetation (Gee et al. 1992; 2007). This value is approximately one-
tenth of the recharge volume from artificial sources, such as Hanford cribs. Based on 
the results of lysimeter studies, groundwater recharge at the 200 Area is from 0 to 2 
mm/yr (Routson and Johnson 1990). Some episodic groundwater recharge may occur 
following periods of high precipitation in topographic depressions, highly permeable 
(such as gravel or coarse sand) surface deposits, and no-vegetation (bare-ground) 
land, as well as during the snow melting in the spring. According to independent 
geochemical estimates, using 87Sr/86Sr isotope ratios in the pore water, acid extracts, 
and sediments of a 70 m vadose zone at the Hanford site, the long-term (centuries to 
millennia) natural infiltration flux is 7 ± 3 mm/yr (Maher et al. 2003). The lower 
values of the recent estimates of infiltration and groundwater recharge by Routson 
and Johnson (1990) and Gee et al. (1992; 2007) are likely caused by the overall 
present-day increase in evapotranspiration, which has, in turn, caused a decrease in 
infiltration and groundwater recharge. A comparison of field estimates with the 
results of calculations performed in this paper is given in Section 4.2.  
 

4.1.2. Input Parameters for Different Calculation Scenarios 

For water-balance calculations, we used the temperature and precipitation time-series 
data representing a period of active infiltration from the surface (i.e., no freezing) from 
March through October for the years 1990–2007. These time-series data were used to 
determine a set of meteorological parameters summarized in Table 2, which were then 
used to develop the input PDFs and fuzzy numbers shown in Figure 4. Several modeling 
scenarios were developed (Table 3) to assess how the application of different models for 
input parameters affects the uncertainty of water-balance calculations. Scenario 0 was 
modeled using input PDFs by means of Monte Carlo simulations, using RiskAMP Monte 
Carlo Add-In Library version 2.10 for Excel. Scenarios 1 through 8 were simulated by 
means of the RAMAS Risk Calc code. Scenario 1 was simulated using input PDFs, and 
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the results are given as p-box numbers. Scenarios 2 through 6 were simulated applying 
both PDFs and fuzzy number inputs, using basic (corresponding to α=0) and an 
additional 10 hybrid levels (corresponding to α-cuts from 0.1 to 1). Scenarios 7 and 8 
were simulated using only fuzzy numbers.  

 
4.2. Results and Comparison with Field Data 
 
The results of simulations are shown in Figures 5, 6, and 7. Figure 5 illustrates the 
calculated Eo, ET, and I values for all eight scenarios, including the mean values from 
Monte-Carlo simulations (Scenario 0), the mean value ranges from p-box calculations 
(Scenario 1) and hybrid calculations (Scenarios 2 through 6), and the core values, 
corresponding to α=1, from fuzzy calculations (Scenarios 7 and 8).  This figure also 
demonstrates the interquartile ranges of the calculated distributions (with endpoints at the 
25th and 75th percentiles). Figure 6 presents the results of calculations of the breadth of 
uncertainty, and Figure 7—a comparison of the p-boxes, hybrid numbers, and fuzzy 
numbers for calculated Eo, ET, and infiltration rates.  
 

4.2.1. Potential Evapotranspiration 
Figure 5a demonstrates that the Eo mean from Monte Carlo simulations is within the 
mean ranges from the p-box (Scenario 1) and fuzzy-probabilistic scenarios (Scenarios 2-
6). It also corresponds to a midcore of the fuzzy scenario with trapezoidal FMFs 
(Scenario 7) and the core of the fuzzy scenario with triangular FMFs (Scenario 8). The 
range of means from the p-box and fuzzy-probabilistic calculations for α=1 is practically 
the same, indicating that including fuzziness within the input parameters does not change 
the range of most possible Eo values.  
 
Figure 5a shows that the core uncertainty of the trapezoidal FMFs (Scenario 7) is the same 
as the uncertainty of means for fuzzy-probabilistic calculations for α=1. Obviously, the 
output uncertainty decreases for the input triangular FMFs (Scenario 8), because these 
FMFs resemble more tightly the PDFs used in other scenarios. Figure 5a also illustrates 
that a relatively narrow range of field estimates of Eο (from 1,400 to 1,611 mm/yr, which 
was reported for the Hanford site [Ward 2005]), is well within the calculated uncertainty of 
Eo values. One can see from Figures 5a, 5b, and 5c that the uncertainty ranges from p-box, 
hybrid, and fuzzy calculations significantly exceed those from Monte Carlo simulations.  
 
Figure 6a demonstrates that while the range of means for α=1 remains practically the 
same, the overall breadth of Eo uncertainty increases for the basic hybrid scenario and 
decreases for the hybrid level 10 calculations, as the number of input fuzzy parameters 
increases from Scenario 2 to Scenarios 5 and 6. The overall increase in uncertainty is 
caused by the fact that (generally) a fuzzy number bounds a corresponding PDF. Because 
precipitation is not used in the Penman equation, the same Eo ranges are calculated for 
Scenarios 5 and 6. The breadth of Eo uncertainty decreases for fuzzy calculations in 
Scenarios 7 and 8. Figures 7a,b,c also illustrate that the breadth of uncertainty from fuzzy 
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probabilistic and fuzzy calculations of Eo are significantly larger than that from Monte 
Carlo calculation. Figures 7a,b demonstrate that the CDFs for Eo in the p-box and fuzzy-
probabilistic calculations are practically of the same shape as that from Monte Carlo 
calculations. 
 

4.2.2. Evapotranspiration 
Figure 5b shows that the mean ET of ~184 mm/yr from Monte Carlo simulations 
(Scenario 0) is practically the same as the ET means for Scenarios 1 through 5 and the 
core value for Scenario 8. A greater ET uncertainty for Scenario 6 (precipitation is 
simulated using a fuzzy number) can be explained by the relatively large precipitation 
range for α=0—from 46 to 324 mm/yr. At the same time, the means of ET values for α=1 
range within relatively narrow limits, as the precipitation for α=1 changes only from 
157.2 to 212.8 mm/yr (see Table 2). The breadth of uncertainty of ET (Figure 6b) is 
practically the same for Scenarios 1 through 5, and increase for Scenarios 6, 7, and 8, in 
the account of calculations using a fuzzy precipitation.  
 
For Scenarios 1 through 5, the ETs are merely probability distributions, which are close 
to that from Monte Carlo simulations (illustrated in Figure 7d for Scenario 1). When the 
fuzzy precipitation is included in Scenarios 6, the Eo uncertainty is largely characterized 
by fuzziness (note in Figure 7e that CDFs in the hybrid calculations of Eo for Scenario 6 
are practically vertical lines). Figure 7f demonstrates that a possibility distribution from 
fuzzy calculations only slightly exceeds that from Monte Carlo simulations.  
 
The calculated means for Scenarios 0, 1–5, and 8 exceed the field estimates of ET [160 
mm/yr (Gee et al., 1992; 2007)] by 22 to 24 mm/yr. This difference can be explained by 
Gee et al.’s calculations being based on using a lower value of annual precipitation (160 
mm/yr for the period prior to 1990), while our calculations are based on using a greater 
mean annual precipitation (185 mm/yr), averaged for the years from 1990 to 2007. The 
field-based data are within the ET uncertainty range for Scenarios 6 and 7, since the 
precipitation range is wider for these scenarios. 
 

4.2.3. Infiltration 
Figure 5c demonstrates that the mean infiltration of 1.18 mm/yr from Monte Carlo 
simulations (Scenario 0) is within the calculated mean uncertainty range for all other 
scenarios. The extended mean infiltration range for Scenario 6 can be explained by using a 
wide precipitation range for α=0 (which is also the case for the ET calculations). Note that 
the y-axis (infiltration) in Figure 5c is plotted using the log scale, because the infiltration 
distribution is lognormal, with a positive skewness and an asymmetric tail, extending toward 
larger values. The breadth of uncertainty of infiltration (Figure 6c) for a basic hybrid level is 
slightly increases for Scenarios 1 through 5, and significantly increases for Scenario 6, in the 
account of calculations using a fuzzy precipitation. Figures 7g,h, and i, showing a 
comparison of CDFs and possibility distributions for different scenarios, indicate that both 
statistical and fuzzy components are involved in the calculated infiltration uncertainty. 
Calculated infiltration for all scenarios ranges within the recharge-rate estimates given in 
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publications by Routson and Johnson (1990) and Gee et al. (1992; 2007), as well as in 
independent estimates (7±3 mm/yr) by Maher et al. (2003).  
 

5. Conclusions  
The motivation of this paper is to demonstrate the potential of the application of a fuzzy-
probabilistic approach for water-balance calculations, given the general inadequacy of 
meteorological information and field data collected at regional scale.  Depending on the 
information available, some input parameters can be given using probability distributions, 
and some parameters can be presented using fuzzy numbers when the information for 
constructing reliable PDFs is limited or vague. The fuzzy-probabilistic approach to 
modeling and uncertainty quantification of hydrogeological systems is based on a 
combination of statistical and fuzzy-calculus calculations. This paper provides the theory 
for, and a case study as an application of, the fuzzy-probabilistic approach, combining 
probability and possibility theory for assessing the uncertainty in the components of a 
water-balance equation—potential evapotranspiration, evapotranspiration, and net 
infiltration. 
 
Simulation results for the Hanford site indicate that the Eo, ET, and infiltration 
uncertainties increase with the increase in a number of fuzzy inputs, because the 
uncertainty of fuzzy numbers is generally greater than that of corresponding PDFs (as the 
input fuzzy numbers bound corresponding PDFs). Application of fuzzy-probabilistic 
calculations provides more conservative estimates of uncertainty, i.e., wider uncertainty 
ranges compared to conventional Monte Carlo simulations. The results of field 
observations of Eo, ET, and infiltration at the Hanford site are within the calculated 
uncertainty ranges, which also suggest the possibility of increasing the ranges of these 
parameters over longer time periods.  
 
The evaluation of water-balance uncertainty would be essential for predicting and 
controlling the deep-percolation rate through the unsaturated zone, groundwater recharge, 
contaminant transport in the unsaturated-saturated zone, as well as planning and assessing 
the risk of nuclear waste disposal in geologic media and remediation activities at 
contaminated and agricultural areas.   
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Figure 1. Graphical illustration of uncertain numbers: (a) Cumulative normal distribution 
function, with mean M=10 and standard deviation σ=1, (b) interval number, corresponding to the 
interval from 7.25 to 13.75, (c) p-box—left bound with M=9.5 and σ=0.9, and right bound with 
M=10.5 and σ=1.1, and (d) fuzzy triangular (dashed line) number, with FMF=1 corresponding to 
M=10, and trapezoidal (solid line) number, with FMF=1 corresponding to the interval M=9-11, 
and a Gaussian FMF function with M=10, and σ=1. Note that the Gaussian FMF is obtained by 
normalization of the Gaussian probability density function to the largest value of the probability 
density. Figure (d) also shows an α-cut (thick horizontal line) through the trapezoidal fuzzy 
number (for α=0.5). 
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Figure 2. Illustration of the concepts of fuzzy interval-arithmetic and hybrid calculations:  
 
(a) fuzzy numbers af=[0.1, 2.5, 3.5, 6] and bf =[3, 5.5, 6.5, 9], shown by dashed lines, and normal 
probability density functions an=[mean=3, standard deviation=1], and bn=[mean=6, and standard 
deviation=1], shown by solid lines;  
 
(b) results of multiplication of fuzzy numbers cf=af · bf are shown by a dashed line, and Monte 
Carlo multiplications cn=an · bn are shown by a solid line;  
 
(c) fuzzy number bf used for hybrid calculations, showing the intervals α=0, 0.33, 0.66, 
and 1; and  
 
(d) results of hybrid multiplication ch=an · bf, which are shown as a family of p-boxes: 
bounding black lines correspond to a multiplication of an by an interval for α=0, green 
lines—an by an interval for α=0.33, blue lines—an by an interval for α=0.66, and red 
lines—an by an interval for α=1; the middle black line is cn from Monte Carlo 
simulations, which is shown for comparison. 
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Figure 3. Estimated ET and recharge/infiltration at the Hanford site (Gee et al., 2007). 
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Figure 4. Input PDFs (solid lines) and fuzzy numbers (dashed lines) used for calculations.  
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Figure 5. Results of calculations of Eo (a), ET (b), and infiltration (c) for all scenarios. Red lines 
are the mean intervals (Scenarios 1-6) and core intervals (Scenarios 7 and 8), the blue diamonds 
indicate the interquartile ranges with endpoints at the 25th and 75th percentiles of the underlying 
distribution. Red diamonds for Scenarios 2-6 indicate the mean intervals for the hybrid level=10. 
The height of shaded areas in figures a and b indicate the range of Eo and infiltration from field 
measurements.   

1.21.2 1.0

5.5

1.0

4.8

1.0

5.0

1.0

5.1

1.0

5.6

0.2

19.9

0.9
1.4 1.4

1.0

0.1

1

10

100

0 1 2 3 4 5 6 7 8
Scenario

In
fil

tra
tio

n 
(m

m
/y

r)

(c)

Field

1241

1546

1231

1560
1715

968

1892

968

1892

1233

1548

1387

1094

1387

1174

1620

400

800

1200

1600

2000

2400

0 1 2 3 4 5 6 7 8
Scenario

E
o 

(m
m

.y
r)

Fuzzy-probabilistic Fuzzyp-boxMC

(a)

Field

184184

322.4

156.1

211.7

184184
184.5

180.1
184.6

180

184.6

179.8

184.6

179.4

43.1

185.2

179.4

40

90

140

190

240

290

340

0 1 2 3 4 5 6 7 8
Scenario

E
T

 (m
m

/y
r)

(b)

Field



 22

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Breadth of uncertainty of Eo, ET, and infiltration.  For Scenarios 2-6, grey bars are for 
the basic hybrid level (indicating the maximum uncertainty), and open bars are for the hybrid 
level=10 (indicating the minimum uncertainty).     
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Figure 7. Comparison of the p-boxes, hybrid numbers, and fuzzy numbers for calculated Eo 
(left column—figures a, b, and c ), ET (middle column—figures d, e, and f), and infiltration 
(right column—figures g, h, and i) with corresponding Monte Carlo simulations (shown by 
dashed lines). The upper row presents the results of p-box calculations (Scenario 1), the middle 
row—hybrid calculations (Scenario 6), and the lower row—fuzzy calculations (Scenario 7). 
Note the results of p-box and hybrid calculations are given using CDFs, and fuzzy calculations 
are given using fuzzy numbers and compared with normalized probability distributions.   
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Table 1. Definitions for the main characteristics of fuzzy numbers and p-boxes representation of 
uncertain numbers (calculated using Risk Calc code) 
 
Characteristic Definitions 
core The most possible value(s) of the uncertain number n, i.e., value(s) with a possibility of 

one, or for which the probability can be any value between zero and one.   
mean An interval between the means of the lower (left) and upper (right) bounds of the 

uncertain number n.   
iqrange An interval guaranteed to enclose the interquartile range (with endpoints are the 25th 

and 75th percentiles) of the underlying distribution.  
breadth of 
uncertainty 

For fuzzy numbers, it is given by the area under the membership function; and for p-
boxes, it is given by the area between the upper and lower bounds. The uncertainty 
decreases as the breadth of uncertainty decreases. 

 
 
 
 
Table 2. Meteorological parameters used for calculations  

 

 
Note: 1) The abbreviation Ly stands for a Langley, and 1 Ly=41,8440 joules per square meter or 1 
cal/cm2.  
 
 
 

Relative 
humidity 

(%) 

Temperature 
(oC) 

Type of 
data 

Parameters  
Wind 
speed 

(km/hr) Max Min 

Albedo Solar 
radiation 
Ly/day1) 

Annual 
precipi-
tation 

(mm/yr)
Max Min 

Mean 15.07 80.2 33.3 0.21 332.55 185 33.41 2.87 PDFs 

Standard 
Deviation 

0.92 4.01 1.66 0.021 16.63 55.62 1.08 1.11 

Min 12.31 68.17 28.29 0.15 282.66 46.0 30.17 0.0 α=0 

Max 17.84 92.23 38.31 0.27 382.44 324.1 36.65 6.17 

Min 14.61 78.2 32.47 0.22 324.24 157.2 32.87 2.32 

Trapezoidal 
FMFs 

α=1  

Max 15.53 82.2 34.14 0.27 382.44 212.8 33.95 3.42 
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Table 3. Scenarios of input and output parameters used for water-balance calculations 
 

Input parameters Scena
rios Wind 

speed 
Humidity Albedo Solar 

radiation 
Preci-
pitation 

Tempera-
ture 

Output 
parameters 

 
0 PDF PDF PDF PDF PDF PDF PDF 
1 PDF PDF PDF PDF PDF PDF p-box 
2 Fuzzy PDF PDF PDF PDF PDF Hybrid 
3 Fuzzy Fuzzy PDF PDF PDF PDF Hybrid 
4 Fuzzy Fuzzy Fuzzy PDF PDF PDF Hybrid 
5 Fuzzy Fuzzy Fuzzy Fuzzy PDF PDF Hybrid 
6 Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy PDF Hybrid 

71) Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy 
82) Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy Fuzzy 

 
Notes:  1) In Scenario 7, all FMFs are trapezoidal.  2) In Scenario 8, all FMFs are 
triangular: the mean values of parameters, which are given in Table 2, are used for α=1; 
and the minimum and maximum values of parameters, given in Table 2 for trapezoidal 
FMFs (Scenario 7), are also used for α=0 of triangular FMFs in Scenario 8.  
 
 
 


