Dose, exposure time, and resolution in Serial X-ray Crystallography

PDF Version Also Available for Download.

Description

Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser ... continued below

Physical Description

PDF-file: 37 pages; size: 0.9 Mbytes

Creation Information

Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N et al. March 22, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of a density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 7 {angstrom} should be possible with short (below 100 s) exposures.

Physical Description

PDF-file: 37 pages; size: 0.9 Mbytes

Source

  • Journal Name: Jounal of Synchrotron Research, vol. 15, no. 1, January 1, 2008, pp. 62-73; Journal Volume: 15; Journal Issue: 1

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-229466
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 991522
  • Archival Resource Key: ark:/67531/metadc1013731

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 22, 2007

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 27, 2017, 5:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N et al. Dose, exposure time, and resolution in Serial X-ray Crystallography, article, March 22, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc1013731/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.