Storage Viability and Optimization Web Service

PDF Version Also Available for Download.

Description

Non-residential sectors offer many promising applications for electrical storage (batteries) and photovoltaics (PVs). However, choosing and operating storage under complex tariff structures poses a daunting technical and economic problem that may discourage potential customers and result in lost carbon and economic savings. Equipment vendors are unlikely to provide adequate environmental analysis or unbiased economic results to potential clients, and are even less likely to completely describe the robustness of choices in the face of changing fuel prices and tariffs. Given these considerations, researchers at Lawrence Berkeley National Laboratory (LBNL) have designed the Storage Viability and Optimization Web Service (SVOW): a ... continued below

Physical Description

51

Creation Information

Stadler, Michael; Marnay, Christ; Lai, Judy; Siddiqui, Afzal; Limpaitoon, Tanachai; Phan, Trucy et al. October 11, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Non-residential sectors offer many promising applications for electrical storage (batteries) and photovoltaics (PVs). However, choosing and operating storage under complex tariff structures poses a daunting technical and economic problem that may discourage potential customers and result in lost carbon and economic savings. Equipment vendors are unlikely to provide adequate environmental analysis or unbiased economic results to potential clients, and are even less likely to completely describe the robustness of choices in the face of changing fuel prices and tariffs. Given these considerations, researchers at Lawrence Berkeley National Laboratory (LBNL) have designed the Storage Viability and Optimization Web Service (SVOW): a tool that helps building owners, operators and managers to decide if storage technologies and PVs merit deeper analysis. SVOW is an open access, web-based energy storage and PV analysis calculator, accessible by secure remote login. Upon first login, the user sees an overview of the parameters: load profile, tariff, technologies, and solar radiation location. Each parameter has a pull-down list of possible predefined inputs and users may upload their own as necessary. Since the non-residential sectors encompass a broad range of facilities with fundamentally different characteristics, the tool starts by asking the users to select a load profile from a limited cohort group of example facilities. The example facilities are categorized according to their North American Industry Classification System (NAICS) code. After the load profile selection, users select a predefined tariff or use the widget to create their own. The technologies and solar radiation menus operate in a similar fashion. After these four parameters have been inputted, the users have to select an optimization setting as well as an optimization objective. The analytic engine of SVOW is LBNL?s Distributed Energy Resources Customer Adoption Model (DER-CAM), which is a mixed-integer linear program (MILP) written and executed in the General Algebraic Modeling System (GAMS) optimization software. LBNL has released version 1.2.0.11 of SVOW. Information can be found at http://der.lbl.gov/microgrids-lbnl/current-project-storage-viability-website.

Physical Description

51

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-4014E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/993858 | External Link
  • Office of Scientific & Technical Information Report Number: 993858
  • Archival Resource Key: ark:/67531/metadc1013711

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 11, 2010

Added to The UNT Digital Library

  • Oct. 14, 2017, 8:36 a.m.

Description Last Updated

  • Oct. 18, 2017, 10:13 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Stadler, Michael; Marnay, Christ; Lai, Judy; Siddiqui, Afzal; Limpaitoon, Tanachai; Phan, Trucy et al. Storage Viability and Optimization Web Service, report, October 11, 2010; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1013711/: accessed September 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.